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Chapter I

Preliminaries: Set theory and
categories

1 Näıve set theory

April 5, 2022

Remark. Reflexivity, symmetry and transitivity are independent for a re-
lation on a set.

Definition 1.1 (Indexed sets). Any function.

Definition 1.2 (Multisets). Any function with a codomain containing sets.1

Remark. One can switch back and forth between index sets and multisets.

Definition 1.3 (Pairwise disjoint union). Let A and B be sets. Let A′ and B′

be sets that are in bijection with A and B respectively such that A′∩B′ = ∅.
Then A′ ∪B′ is called a disjoint union of A and B.

Proposition 1.4. Pairwise disjoint unions of given sets are unique up to
bijectons.

Remark. Here, the multiplicity is important. Disjoint unions of arbitrary
multisets can be defined.

Proposition 1.5. The sets A×B × C, (A×B)× C and A× (B × C) are
all same up to bijections.

1Or cardinals.

1
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2 Functions between sets

April 5, 2022

Notation.

Functions: →

Injections: ↪→

Surjections: ↠

Bijections: ↪↠

Isomorphisms: ∼→

Remark. By a commutative diagram, we’ll mean that we can get from one
node to another via any of the shown paths and the results will be all same.

Proposition 2.1 (Function compositions). The following diagrams com-
mute:

A B C D
f

g◦f

g

h◦g

h

A A B B
idA

f

f

f

idB

Further,

if g is a left-inverse of f , then A B A
f

idA

g
commutes; and,

if g is a right-inverse of f , then B A B
g

idB

f
commutes.

Proposition 2.2 (Injectivity and surjectivity via left- and right-inverses).
Let f : A→ B be a function. Then the following hold:
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(i) If A ̸= ∅, then f is injective ⇐⇒ f has a left-inverse.

(ii) f is surjective ⇐⇒ f has a right-inverse.2

Remark. Right-inverses of surjections are called sections.

Lemma 2.3. Any left-inverse of a function is equal to any of its right-
inverse. Hence, if existent, the inverse is unique.

Corollary 2.4. A function is bijective ⇐⇒ it is invertible.3

Result 2.5.

(i) An injection that is not surjective has more than one left-inverses ⇐⇒
the domain has more than two elements.

(ii) A surjection that is not injective necessarily has more than one right-
inverses.

Definition 2.6 (Fibers). For f : A → B and b ∈ B, we call f−1({b}) the
fiber of b.

Result 2.7.

(i) A function is injective ⇐⇒ all the fibers are at most singletons.

(ii) A function is surjective ⇐⇒ all the fibers are at least singletons.

Definition 2.8 (Mono- and epi-morphisms). Let f : A→ B. Then f is

(i) a monomorphism (or is monic) iff for any set Z and any α, β : Z → A,

f ◦ α = f ◦ β =⇒ α = β; and,

(ii) an epimorphism (or is epic) iff for any set Z and any α, β : B → Z,

α ◦ f = β ◦ f =⇒ α = β.

Proposition 2.9 (Injectivity and surjectivity via mono- and epi-morphisms).

2This used AC
3This can be proven without AC.
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(i) A function is injective ⇐⇒ it is monic.

(ii) A function is surjective ⇐⇒ it is epic.

Theorem 2.10 (Canonical decomposition of a function). Let f : A → B.
Then the diagram

A A/∼ im f B

f

[a] 7→f(a)

commutes.

Remark. We’ll not write the canonical functions explicitly.

3 Categories

April 6, 2022

Definition 3.1 (Categories). A category C consists of

(i) a class Obj(C) of all the objects of the category; and

(ii) a set HomC(A,B) of morphisms for every pair of objects A, B of C
such that the following hold:

(a) For any objects A, B of C, for any f ∈ HomC(A,B) and any g ∈
HomC(B,C), there exists a unique morphism gf ∈ HomC(A,C).

HomC(A,B)× HomC(B,C)→ HomC(A,C)

(f, g) 7→ gf

(b) For any objects A, B, C, D of C, if f ∈ HomC(A,B), g ∈
HomC(B,C) and h ∈ HomC(C,D), then

(hg)f = h(gf).

(c) For every object A of C, there exists a morphism 1A ∈ HomC(A,A)
such that for any object B of C, and any f ∈ HomC(A,B) and
any g ∈ HomC(B,A), we have

f 1A = f , and

1A g = g.
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(d) For any objectsA, B, C,D of C, the sets HomC(A,B) are HomC(C,D)
are disjoint unless A = C and B = D.4

A category is called small, if its objects can form a set.

Corollary 3.2. It follows that the morphism 1A ∈ HomC(A,A) is unique.

Notation.

(i) We denote HomC(A,A) by EndC(A).

(ii) If the category C is understood and if f ∈ HomC(A,B), then we may
denote this fact by f : A→ B. (Note that A, B need not be sets here.)

Definition 3.3 (Diagrams). A diagram for a category is a set of objects in
that category equipped with some given morphisms between them.

It is said to commute iff for any pair of “nodes”, going from one to an-
other along any of the given “paths” yields the same result (upon morphism
composition).

Remark. We can state Definition 3.1 by demanding that the following di-
agrams commute:

Associativity: A B C D
f

g◦f

g

h◦g

h

Identity: B A A B
f

f

1A

g

g

Definition 3.4 (Subcategories). Let C be a category. Then a category C′ is
called a subcategory of C iff the following hold:

(i) Objects of C′ are also the objects of C.

(ii) For any objects A, B of C′, we have

HomC′(A,B) ⊆ HomC(A,B).

4This just says that the morphisms determine their domain and codomain objects.
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(iii) Compositions in C′ can be inherited from those in C.

(iv) Identities in C′ are also identities in C.

Remark. To show the necessity of (iv) in Definition 3.4, consider a category
C with an object A and with an f : A→ A such that f 2 = f . Then consider
the category C′ with the only object A and HomC′(A,A) = {f} with f ·f = f .

Proposition 3.5 (Associativity for multiple elements). Consider an asso-
ciative operation on a set X. Inductively define

x1 · · ·x1 := x1,

x1 · · · xn+1 := (x1 · · ·xn)xn+1 for n ≥ 1.

Then for any n ≥ 1 and for any 1 ≤ i < n, we have that

(x1 · · ·xi)(xi+1 · · ·xn) = x1 · · ·xn.

3.1 Some examples

April 7, 2022

Proposition 3.6 (Opposite category). Let C be a category. Then there exists
a category Cop whose objects are precisely the objects of C, and

HomCop(A,B) := HomC(B,A), and

g · f := fg

where · is the composition in Cop.
We also have

(Cop)op = C.

Proposition 3.7 (Category Set). There exists a category Set whose objects
are sets and we have

HomSet(A,B) := BA, and

gf := g ◦ f .
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Proposition 3.8 (Category induced by relations). Let S be a set (or a class)
and ∼ be a reflexive and transitive relation on S. Then there exists a category
C with elements of S being its objects, together with

HomC(a, b) :=

{{
(a, b)

}
, a ∼ b

∅, a ≁ b
, and

(b, c)(a, b) := (a, c).

Further, all of the diagrams of this category are commutative.

Proposition 3.9 (Slice and coslice category). Let C be a category with an
object A. Then there exists a slice category CA whose objects are morphisms
in HomC(Z,A) for objects Z of C, and

HomCA
(f1, f2) :=

{
(σ, f1, f2) : σ ∈ HomC(Z1, Z2),

fi ∈ HomC(Zi, A),

f1 = f2σ
}
, and

(σ2, f2, f3)(σ1, f1, f2) := (σ2σ1, f1, f3).

We can identify the objects and morphisms of CA with the following com-
mutative diagrams:

Objects:

Z

A

f

Morphisms in HomCA
(f1, f2):

Z1 Z2

A

σ

f1 f2

Compositions:

Z1 Z2 Z3

A

σ1

f1

σ2σ1

σ2

f2
f3

On similar grounds, coslice category CA is defined with A occurring in
domain’s place given by the following commutative diagrams:
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Objects:

A

Z

f

Morphisms in HomCA
(f1, f2):

A

Z1 Z2

f1 f2

σ

Compositions:

A

Z1 Z2 Z3

f1

σ1

σ2σ1

f2

σ2

f3

Proposition 3.10 (Categories CA,B, C
A,B and their fibered versions). Let C

be a category and A, B be objects. Then the following commutative diagrams
define a category CA,B:

Objects:

A

Z

B

f

g

Morphisms in
HomCA,B

(
(f1, g1), (f2, g2)

)
:

A

Z1 Z2

B

σ

f1

g1

f2

g2

Compositions:

A

Z1 Z2 Z3

B

σ1

f1

g1

σ2

f2

g2

f3

g3
σ2σ1
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Similarly we can define the “co-” of the above category, CA,B.
We can also define the fibered version Cα,β (and it’s “co-” version Cα,β)

of the above starting with two fixed morphisms α and β of C, with the same
target, replacing the above objects with the following commutative diagrams:

A

Z B

C

αf

g β

4 Morphisms

April 10, 2022

Definition 4.1 (Isomorphisms). A morphism in a category that has a (two-
sided) inverse is called an isomorphism.

Proposition 4.2 (Uniqueness of inverses). Let C be a category and f be a
morphism. Then the following hold:

(i) Any left-inverse of f is equal to any of its right-inverse.

(ii) The inverse of f , if existent, is unique.

(iii) f is an isomorphism ⇐⇒ it has a left-inverse and a right-inverse.

Proposition 4.3 (“Equivalence” properties of isomorphisms). Let C be a
category. Then the following hold:

(i) Each 1A is an isomorphism with 1−1
A = 1A.

(ii) If f is an isomorphism, then so is f−1 with (f−1)−1 = f .

(iii) If : A → B and g : B → C are isomorphisms, then so is gf with
(gf)−1 = f−1g−1.

Corollary 4.4. “Being isomorphic” is an equivalence relation on Obj(C) for
any category C.

Example 4.5.

Only 1A’s are isomorphisms: Categories formed by a partial orders.

All morphisms are isomorphisms: Categories formed by equivalence relations.
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Definition 4.6 (Groupoids). A groupoid is a category in which every mor-
phism is an isomorphism.

Definition 4.7 (Automorphisms). An isomorphism from an object A to it-
self is called an automorphism. We denote the corresponding set by AutC(A).

Corollary 4.8. AutC(A) forms a group under the morphism composition
inherited from C.

Definition 4.9 (Monics and epics). Let C be a category and f : A → B.
Then f is called

(i) monic (or a monomorphism) iff for all objects Z and for all α, α′ : Z →
A, we have

fα = fα′ =⇒ α = α′; and

(ii) epic (or an epimorphism) iff for all objects Z and for all β, β′ : B → Z,
we have

βf = β′f =⇒ β = β′.

Example 4.10. In the category induced by a reflexive and transitive relation,
the following hold:

(i) Every morphism is monic and epic.

(ii) Left-invertible ⇐⇒ isomorphism ⇐⇒ right-invertible.

Proposition 4.11.

(i) Left-invertible =⇒ monic.

(ii) Right-invertible =⇒ epic.

Hence an isomorphism is monic and epic.

Example 4.12. The category formed by a partial order (with at least two ele-
ments) shows that the converse of Proposition 4.11 is not true.

Proposition 4.13 (Compositions).

(i) Compositions of monics (respectively epics) is monic (respectively epic).

(ii) If gf is monic, then so is f .

(iii) If gf is epic, then so is g.
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5 Universal properties

April 13, 2022

Definition 5.1 (Terminal objects). An object A in a category C is called

(i) initial iff for every object B, the set HomC(A,B) is a singleton; and,

(ii) final iff for every object B, the set HomC(B,A) is a singleton.

An object is called zero iff it is both initial and final.

Proposition 5.2 (Terminal objects are “same”). Let C be a category. Then
any two initial (respectively final) objects (if any) are unique up to a unique
isomorphism.

Remark. We’ll say things like “an object X is universal with respect to
the property that for every object Y such that . . . , there exists a unique
morphism X → Y ”, “X satisfies the universal property that . . . ”, etc. to
mean that the object X is terminal in an appropriate category.

We might even describe X incompletely, and even let the morphisms
unclear.

5.1 Some examples

April 14, 2022

Corollary 5.3. The initial (respectively final) objects in C are final (respec-
tively initial) in Cop.

Proposition 5.4 (Terminals in Set). In Set, ∅ is the only initial object, and
the final objects are precisely the singletons.

Proposition 5.5 (Quotients in Set). Let ∼ be an equivalence relation on a
set A. Then the canonical function A→ A/∼ is an initial object in the full
subcategory of SetA whose objects are the functions f : A→ Z such that

a1 ∼ a2 =⇒ f(a1) = f(a2).

This category’s final objects are precisely the functions A→ {x}.

Proposition 5.6 (Terminals in pointed sets). In the category Set{∗}, the
initial, and also the final objects, are precisely the objects associated with
singletons.
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Products and coproducts

Definition 5.7 (Products and coproducts). A category C is said to admit
(finite) products iff for any objects A, B, the category CA,B has final objects.
We call the corresponding objects in C5 products, and usually denote them6

by A×B.
C is said to have (finite) coproducts iff for any objects A, B, the category

CA,B has initial objects. We call the corresponding objects in C coproducts,
usually denoting them by A ⊔B.

Example 5.8 (Products and coproducts in Set). In Set, the Cartesian products
(with the canonical projection maps) are products7, and the disjoint unions (with
the canonical injections) are coproducts:

A

A×B

B

πA

π
B

and

A

A ⊔B

B

a7→
(0,a)

b7→
(1
,b)

Example 5.9. Let ≤ on a set A be reflexive, transitive and total. Then in the
category formed by ≤, we have

a× b = min(a, b), and

a ⊔ b = max(a, b).

Example 5.10. In the category formed by the relation of divisibility in Z (which
is reflexive and transitive), we have

a× b =

{
± gcd(a, b), one of a, b is nonzero

0, a = 0 = b
, and

a ⊔ b =

{
± lcm(a, b), a, b ̸= 0

any integer, one of a, b is zero
.

5Not in CA,B !
6There can be several!
7A, B can be empty!
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Proposition 5.11 (Commutativity and associativity). Let C be a category.
If C has products, then

A×B ∼= B × A, and
(A×B)× C ∼= A× (B × C),

and if C has coproducts, then

A ⊔B ∼= B ⊔ A, and
(A ⊔B) ⊔ C ∼= A ⊔ (B ⊔ C).

Example 5.12. We can immediately apply this result to Examples 5.9 and 5.10.

Proposition 5.13. Let ∼A, respectively ∼B, be equivalence relations on sets
A, respectively B. Define the relation ∼ on A×B by

(a, b) ∼ (a′, b′) iff a ∼A a′ and b ∼B b′.

Then ∼ is an equivalence relation and

(A×B)/∼ ∼= (A/∼A)× (B/∼B).

Fibered products and coproducts

April 17, 2022

Definition 5.14 (Fibered products and coproducts). A category C is said
to have (finite) fibered products (respectively (finite) fibered coproducts) iff
for every pair of morphisms α, β having the same target, the category Cα,β
(respectively Cα,β) has final (respectively initial) objects.

The corresponding objects of C are called the fibered products and co-
products. They are usually denoted by A×B C and A ⊔B C.8

Remark. Yea, yea. . . The above notation is abusive. . .

Example 5.15 (Fibered products and coproducts in Set). Consider morphisms
α, β in the category Set. Then the following hold:

8B is the common target or the common source.
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(i) Let α : A→ B and β : C → B. Then

A×B C ∼= {(a, c) ∈ A× C : α(a) = β(c)}

and the initial objects in Setα,β are isomorphic to

A

A×B C B

C

απA

πC β

.

(ii) Let α : B → A and β : B → C. Define the relation ∼ on A ⊔ C by

(a) (0, a1) ∼ (0, a2) ⇐⇒ a1 = a2,
(b) (0, a) ∼ (1, c) ⇐⇒ α−1(a) ∩ β−1(c) ̸= ∅, and
(c) (0, c1) ∼ (0, c2) ⇐⇒ c1 = c2.

Then ∼ is an equivalence relation. Then

A ⊔B C ∼= A ⊔B/∼

and the initial objects in Setα,β are isomorphic to

A

B A ⊔C B/∼

C

a 7→
[(0,a)]

α

β

c 7→
[(1
,c)

]

.



Chapter II

Groups, first encounter

1 Definition of groups

April 18, 2022

Definition 1.1. A group (G, ∗) consists of a set G and a binary operation
∗ on it such that

(i) ∗ is associative; and
(ii) there exists an identity e ∈ G such that

(a) e ∗ g = g = g ∗ e for all g ∈ G, and
(b) for each g ∈ G, there exists an inverse h ∈ G such that g ∗ h =

h ∗ g = e.

G is called abelian iff ∗ is commutative too.

Remark. When the operation · on G in (G, ·) is obvious, we’ll not mention
it and will juat write G in place of (G, ·).

Example 1.2 (Commutative but not associative).

(i)
a b

a b a
b a a

(ii) “Midpoint operation”

(iii) (x, y) 7→ |x− y|
(iv) (m,n) 7→ (mmod k2)(nmod k2) for some k ≥ 2

15
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Proposition 1.3 (Groups as sets of morphisms of singleton groupoids). Let
G be a group and ∗ be any object. Then we can define a groupoid G whose
only object is ∗ with HomG(∗, ∗) := G where the morphism composition is
given by the group operation.

Conversely, if G is any groupoid with a single element ∗, then AutG(∗)
forms a group where the group operation is given by the morphism composi-
tion.

Example 1.4 (Some groups).

(i) Trivial groups: Any singleton.

(ii) Some commutative groups:

(a) (R,+) for R = Z,Q,R,C.
(b) (S, ·) for S = {1,−1},Q∗,R∗,C∗,S1.

(iii) AutC(A) for any object in a category C.

Proposition 1.5 (Immediate consequences). Consider a group. Then iden-
tity and inverses are unique. Further,

(gh)−1 = h−1g−1,

(g−1)−1 = g, and

we have the cancellation law:

(ag = ah or ga = ha) =⇒ g = h

Definition 1.6 (Powers). Let G be a group and g ∈ G. Then we define

g0 := e,

gn+1 := gn g for n ≥ 0, and

gn−1 := gn g−1 for n ≤ 0.

Remark. This is a slightly abusive notation: This “redefines” the symbol
g−1 which we already assigned for the inverses. But no harm is done as g−1

now defined is exactly what was before, i.e., the inverse.
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Proposition 1.7 (Properties of powers). Let G be a group and g ∈ G. Then
for any p, q ∈ Z, we have

(gp)−1 = g−p,

gp gq = gp+q, and

(gp)q = gpq.

Result 1.8. Let G be a group such that g2 = e for all g ∈ G. Then G is abelian.

1.1 Multiplication tables for |G| ≤ 4

April 23, 2022

Definition 1.9 (Equivalence of binary operations). Two binary operations
· on X and ∗ on Y are called equivalent iff there exists a bijection ϕ : X → Y
such that

ϕ(x · y) = ϕ(x) ∗ ϕ(y).
Two equivalent binary operations on a same set are called equivalent up

to reordering.

Proposition 1.10. The equivalence of binary operations is an equivalence
relation.

Proposition 1.11. Commutativity, associativity, and the existence of an
identity and inverses get translated via equivalent binary operations.

Proposition 1.12. There are the following possibilities for group operations
(up to reordering):1

G = {e} The trivial operation.

G = {e, a}
e a
a e

G = {e, a, b}
e a b
a b e
b e a

1The row and column corresponding to e are not shown.
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G = {e, a, b, c}
e a b c
a b c e
b c e a
c e a b

and

e a b c
a e c b
b c e a
c b a e

1.2 Theory for finite products and sums

May 11, 2022

Definition 1.13 (Finite products). Let G be a group and a : {1, . . . , n} → G
for an n ≥ 0. Then we define the following:

For k ∈ Z
k∏
i=1

ai :=


e, k < 1(∏k−1

i=1 ai
)
ak, 1 ≤ k ≤ n∏k−1

i=1 ai, k > n

For 1 ≤ α ≤ β ≤ n
β∏
i=α

ai :=

β−α+1∏
i=1

bi,

where b : {1, . . . , β − α + 1} → G with

bi := ai+α−1.

For k, l ∈ Z

l∏
i=k

ai :=

{
e, k > l or k > n or l < 1∏min(n,l)

i=max(1,k) ai, otherwise

Lemma 1.14. Let G be a group and a : {1, . . . , n} → G for an n ≥ 0. The
for any 1 ≤ i0 ≤ n, we have that

i0∏
i=i0

ai = ai0.
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Lemma 1.15. Let G be a group and a : {1, . . . , n} → G for n ≥ 0. Let
1 ≤ k ≤ l ≤ n. Then

l∏
i=k

ai =
(k−1∏
i=1

ai

)−1
l∏

i=1

ai.

Lemma 1.16. Let G be a group and a : {1, . . . , n} → G for an n ≥ 0. Let
1 ≤ k ≤ l ≤ n and k − 1 ≤ m ≤ l. Then

l∏
i=k

ai =
m∏
i=k

ai

l∏
i=m+1

ai.

Lemma 1.17. Let G be a group, and a : {1, . . . ,m} → G and b : {1, . . . , n} →
G for m,n ≥ 0. Let 1 ≤ k ≤ l ≤ m,n such that for all k ≤ i ≤ l, we have
ai = bi. Then

l∏
i=k

ai =
l∏

i=k

bi.

Lemma 1.18. Let G be a group and a : {1, . . . , n} → G for an n ≥ 0. Let
2 ≤ k ≤ l ≤ n. Then

l∏
i=k

ai =
l−1∏

i=k−1

bi

where b : {1, . . . , n− 1} → G such that bi = ai+1.

Proposition 1.19 (Finite sums over abelian groups). Let G be an abelian
group and a : {1, . . . , n} → G for an n ≥ 0. Let p be a bijection on {1, . . . , n}.
Then

n∑
i=1

ai =
n∑
i=1

ap(i).

This allows to define sums on finite sets over abelian groups.

Definition 1.20 (Sums over finite sets in abelian groups). Let G be an
abelian group and a : S → G for a finite set S. Let f : {1, . . . , |S|} → S be a
bijection. Then we define

∑
x∈S

ax :=

|S|∑
i=1

af(i).
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Further, for a subset T ⊆ S, we define∑
x∈T

ax :=
∑
x∈T

bx

where b is the restriction of a.

Lemma 1.21. Let G be an abelian group and a : {1, . . . , n} → G for an
n ≥ 0. Then ∑

i∈{1,...,n}

ai =
n∑
i=1

ai.

Lemma 1.22. Let G be an abelian group and a : S → G for a finite set S.
Then for an x0 ∈ S, we have ∑

x∈{x0}

ax = ax0.

Lemma 1.23. Let G be an abelian group and a : S ∪ T → G for disjoint
finite sets S and T . Then∑

x∈S∪T

ax =
∑
x∈S

ax +
∑
x∈T

ax.

Lemma 1.24. Let G be an abelian group and a : S → G for a finite set S.
Let f : T → S be a bijection. Then∑

y∈S

ay =
∑
x∈T

af(x).

1.3 Basic number theory in Z
April 19, 2022

Definition 1.25 (gcd and lcm). For a, b ̸= 0, we define

lcm(a, b) := min{ positive common multiples of a and b }.

For a ̸= 0 or b ̸= 0, we define

gcd(a, b) := max{ (positive) common divisors of a and b}.
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Proposition 1.26 (Euclid’s division lemma). Let a, b ∈ Z such that b ̸= 0.
Then there exist unique integers q, r such that

a = bq + r with 0 ≤ r < |b|.

Proposition 1.27 (Characterizing lcm). Let a, b ̸= 0 be integers. Then
lcm(a, b) is the unique positive integer such that

(i) lcm(a, b) is a common multiple of a and b; and,

(ii) any common multiple of a and b is a multiple of lcm(a, b).

Proposition 1.28 (Euclidean algorithm). Let a, b ∈ Z with b ̸= 0. Then we
can construct an integer sequence r0, r1, . . . such that

r0 := |b|,
r1 := rem(a, b) and,

rn+1 := rem(rn−1, rn) for n ≥ 1,

where rem is defined by

rem(m,n) :=

{
remainder on dividing m by n, n ̸= 0

0, n = 0
.

Then the sequence r0, r1, . . . has the following properties:

(i) Each ri is a linear integral combination of a and b.

(ii) (a) If ri = 0, then ri+1 = 0.
(b) If ri ̸= 0, then ri−1 < ri.

(iii) Let n be the smallest integer such that rn = 0 and rn+1 = 0. Then for
all 1 ≤ i ≤ n, we have that the

gcd(ri, ri+1) = gcd(ri−1, ri).

Hence, we have that
gcd(a, b) = rn

and that there exist α, β ∈ Z such that

gcd(a, b) = αa+ βb.

Corollary 1.29 (Characterizing gcd). Let a, b ∈ Z with a ̸= 0 or b ̸= 0.
Then gcd(a, b) is the unique positive integer such that
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(i) gcd(a, b) is a common divisor of a and b; and,

(ii) any common divisor of a and b is a divisor of gcd(a, b).

Lemma 1.30. Let a, b ∈ Z such that a | b and b | a. Then |a| = |b|.

Proposition 1.31. For a, b ̸= 0, we have

gcd(a, b) lcm(a, b) = |ab|.

Definition 1.32 (Coprimes). a, b ∈ Z, not both zero, are called coprime iff
gcd(a, b) = 1.

Proposition 1.33 (Bézout’s lemma). Let a, b ∈ Z. Then the following are
equivalent:

(i) gcd(a, b) = 1.

(ii) a | bc =⇒ a | c.
(iii) a | c and b | c =⇒ ab | c.

Definition 1.34 (Primes). p ∈ Z is called prime iff p ̸= ±1 and its only
divisors are ±1 and ±p.

Corollary 1.35 (Characterizing primes). Let p ∈ Z{−1, 1}. Then p is prime
if and only if

p | ab =⇒ p | a or p | b.

Proposition 1.36 (Unique factorization). Let a ∈ Z\{−1, 0, 1}. Then there
exist primes p1, . . . , pn for n ≥ 1 such that

a = p1 · · · · · pn.

Further, if q1, . . . , qi, r1, . . . , rj be primes for i, j ≥ 1 such that

q1 · · · · · qi = r1 · · · · · rj,

then i = j, and after possibly rearranging, we have that

qk = ±rk.

Remark. We don’t need to define “empty products” for the above.
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Proposition 1.37. Let a, b ∈ Z \ {−1, 0, 1}. Then there exist naturals r, m,
n, primes p1, . . . , pm, q1, . . . , qn > 0 and naturals α1, . . . , αm, β1, . . . , βn such
that

(i) |a| = pα1
1 · · · pαm

m and |b| = qβ11 · · · qβnn ,

(ii) i ̸= j =⇒ pi ̸= pj and qi ̸= qj,

(iii) i ≤ r =⇒ pi = qi, and

(iv) i, j > r =⇒ pi ̸= qj.

Proposition 1.38 (Divisors of an integer). Let n ≥ 1. Let p1, . . . , pn > 0 be
primes and α1, . . . , αn > 0 be naturals. Then the divisors of ±pα1

1 · · · pαn
n are

precisely of the form
±pβ11 · · · pβnn

for naturals 0 ≤ βi ≤ αi.

Proposition 1.39. Let a, b ∈ Z such that a ̸= 0 and a ̸ | b. Then there exists
a prime p, naturals m,n ≥ 0 and r, s ∈ Z such that

(i) a = pmr and b = pns,

(ii) m > n, and

(iii) p ̸ | r and p ̸ | s.

1.4 Order

April 20, 2022

Definition 1.40. Let G be a group. Then we define

|G| :=

{
#(G), G is finite

∞, G is infinite
.

For g ∈ G, we define |g| as follows: Let S := {n > 0 : gn = e}. Then

|g| :=

{
min(S), S ̸= ∅
∞, S = ∅

.

Proposition 1.41. Let G be a group and g, h ∈ G. Then

|gh| = |hg|.
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Proposition 1.42. Let G be a group and g ∈ G. Then for n ∈ Z, we have

gn = e ⇐⇒ |g| divides n.

Proposition 1.43. For a group G and a g ∈ G, we have that

|g| ≤ |G|.

Proposition 1.44 (For powers). Let G be a group and g ∈ G such that
|g| <∞. Let m ∈ Z. Then

|gm| = |g|
gcd(m, |g|)

.

Proposition 1.45. Let G be a group and g, h ∈ G such that gcd(|g|, |h|) = 1.
Let a, b ∈ Z with ga = hb. Then

ga = e = hb.

Proposition 1.46 (For commuting elements). Let G be a group and g, h ∈ G
such that gh = hg and |g|, |h| <∞. Then |gh| <∞ and

|gh| divides lcm(|g|, |h|).

Further, if gcd(|g|, |h|) = 1, then

|gh| = |g||h|.

Proposition 1.47. Let G be a group and g be an element of “maximal finite
order” that commutes with all other elements of G. Then for any h ∈ G,

|h| <∞ =⇒ |h| divides |g|.

Remark. S3 shows that commutativity of g is required.

Result 1.48. Let G be a finite group. Then we can partition G as

G = {e} ∪ {g ∈ G : |g| = 2} ∪ {g ∈ G : |g| > 2}︸ ︷︷ ︸
even number of elements

.
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Result 1.49 (Order 2 elements in abelian groups). Let G be a finite abelian
group. Then ∏

g∈G

g =
∏
|g|=2

g.

Example 1.50 (|gh| has no relation with |g|, |h|). For g :=

(
0 −1
1 0

)
and

h :=

(
0 1
−1 −1

)
, we have that

|g| = 4, |h| = 3, |gh| =∞.

Also see Corollary 2.9.

Definition 1.51 (Generators). Let G be a group and S ⊆ G. Then the
subset of G formed by all the finite (possibly empty) products of elements S
and their inverses is called the set generated by S. We’ll denote it by ⟨S⟩ or
by ⟨g1, . . . gn⟩ when S = {g1, . . . , gn}.

Proposition 1.52. Let G be a group and S ⊆ G. Then ⟨S⟩ is a group (with
the inherited operation).

Proposition 1.53 (The subgroup ⟨g⟩). Let G be a group and g ∈ G. Then

⟨g⟩ = {. . . , g−1, g0, g1, . . .}

and if |g| <∞, then
⟨g⟩ = {g0, . . . , g|g|−1}.

Hence,
|⟨g⟩| = |g|.

2 Examples of groups

April 24, 2022
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2.1 Symmetric groups

Notation. In an algebraic structure composed of morphisms, the algebraic
product fg means the categorical product gf . When talking of an algebraic
structure, we’ll give precedence to the group notation.

Definition 2.1 (Symmetric groups). Let A be a set. Then we define the
group of permutations of the symmetric group of A to be the set

SA := AutSet(A).

If A = {1, . . . , n} for n ≥ 0, then we denote it by Sn.

Proposition 2.2. Sn is non-abelian ⇐⇒ n ≥ 3.

Proposition 2.3 (Generating S3). Let

x :=

(
1 2 3
2 1 3

)
and y :=

(
1 2 3
3 1 2

)
.

Then

|x| = 2,

|y| = 3,

yx = xy2, and

S3 = ⟨x, y⟩.

(These relations define a group uniquely.)

Proposition 2.4 (Permutation matrices). Consider Sn for n ≥ 1. Associate
to each σ ∈ Sn a matrix Mσ given by

(Mσ)i,j := δj,σ(i).

Then we have
Mστ =MσMτ .
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2.2 Dihedral groups

Proposition 2.5 (Category of rigid motions). There exists a category C
defined by the following:

Objects Subsets of R2.

Morphisms HomC(A,B) is the set of all bijections f on R such that f(A) ⊆
B.

Compositions Given by function composition.

If f : A→ B is an isomorphism in C, then f(A) = B.

Definition 2.6 (Dihedral groups). Let n ≥ 2. Then group formed by the
set of automorphisms of an n-sided polygon2 centered at the origin in R2 in
the category above in Proposition 2.5 is called the dihedral group D2n, and
its elements are called the symmetries.

Result 2.7 (Non-rigorous results). Consider a regular n-gon, for n ≥ 2, centered
at the origin.

(i) D2n contains 2n elements: n reflections and n rotations.

(ii) Once we have labelled the vertices by 1, . . . , n, we have the canonical
injective assignment D2n → Sn. (This will not be surjective unless n ≤ 3).

(iii) Any such assignment is a homomorphism.

Remark. D4 has more elements than S2. D6 and S3 are “same”. For n > 3,
D2n is a proper “subset” of Sn.

Proposition 2.8 (Generating D2n). Let n ≥ 3. Let σ, τ ∈ D2n correspond
respectively to the reflection about a line joining the vertex “1” to the origin
and the “smallest rotation”. Then these correspond to x, y ∈ Sn given by

x(i) :=

{
n− 1, i ≤ n− 1

n, i = n
and y(i) :=

{
i+ 1, i ≤ n− 1

1, i = n
.

2A polygon is not just its points, but also contains its “interior”.
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Then we have

|x| = 2,

|y| = n, and

yx = xy−1.

It follows that e, y, . . . , yn−1, x, xy, x, . . . , xyn−1 are distinct.
The same relations hold with σ and τ replaced with x and y respectively.

Hence
D2n = ⟨σ, τ⟩.

(The above four relations uniquely determine a group for any n ≥ 1.)

Remark. This enables us to define D1 also, which is the “same” as a group
with two elements.

Corollary 2.9. For n ≥ 1, there exists a group G and g, h ∈ G such that
|g| = 2 = |h| and |gh| = n.

Proposition 2.10 (Commuting elements). Let n ≥ 3 be even. Then the
only commuting element in D2n is τn/2 (using Proposition 2.8’s notation),
which is the half-rotation.
If n is odd, then there’s no commuting element.

2.3 Cyclic groups

Notation. The set of equivalence classes of the relation congruence modulo
n, for n ∈ Z, is denoted as Z/nZ or Cn. (We’re allowing for negative n’s.)
Note that Z/0Z ∼= Z ∼= C0.

Remark. Since Z/nZ = Z/(−n)Z, we’ll only consider n ≥ 0.

Proposition 2.11. Z/nZ has |n| elements for n ̸= 0:

Z/nZ = {0, . . . , n− 1}

For n = 0,
|Z/0Z| =∞ with i = {i}.
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Proposition 2.12 (Making Z/nZ a group). Let n ∈ Z. Then we can define
+ on Z/nZ so that

a+ b = a+ b.

This operation makes Z/nZ an abelian group with identity being 0 and the
inverse of a being −a and

|1| =

{
|n|, n ̸= 0

∞, n = 0
and hence, ⟨1⟩ = Z/nZ.

Proposition 2.13 (Orders in Z/nZ). For n ̸= 0 and m ∈ Z, the order of m
in Z/nZ is given by

|m| = |n|
gcd(m,n)

.

In Z/0Z,

|m| =

{
1, m = 0

∞, m ̸= 0
.

Corollary 2.14 (Generating Cn). For n ̸= 0 and m ∈ Z, we have that

⟨m⟩ = Z/nZ ⇐⇒ gcd(m,n) = 1.

Proposition 2.15 (Multiplication on Z/nZ). Let n ≥ 1. Then we can define
multiplication on Z/nZ such that

ab = ab.

Proposition 2.16 (Multiplicative group). For n ∈ Z, the set

(Z/nZ)∗ := {m : gcd(m,n) = 1}
forms a group under multiplication.
For prime p, we have that

|(Z/pZ)∗| = |p| − 1.

Definition 2.17 (Euler’s Φ-function). It is defined by assigning n ≥ 1 to

Φ(n) := |(Z/nZ)∗|.
Proposition 2.18. For odd n ≥ 1, the function

(Z/nZ)→ (Z/2nZ)
m 7→ 2m+ n

is a bijection, and hence
Φ(n) = Φ(2n).
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3 The category Grp and its morphisms

April 27, 2022

Lemma 3.1 (Product and coproducts of morphisms). Let C be a category
with (co)products. Let f : A → C and g : B → D. Then fixing products
A×B and C ×D with relevant morphisms, there exists a unique morphism
f × g : A×B → C ×D such that the diagram

A C

A×B C ×D

B D

f

f×g

g

commutes.
Similarly, we have f ⊔ g such that the diagram

A C

A×B C ×D

B D

f

f⊔g

g

commutes.
Further, (whenever defined) we have

f2f1 × g2g1 = (f2 × g2)(f1 × g1), and
f2f1 ⊔ g2g1 = (f2 ⊔ g2)(f1 ⊔ g1).

In Set, with the usual definitions of products and coproducts, we have

(f × g)(a, b) = (f(a), g(b)), and

(f ⊔ g)(x) =

{
(0, f(a)), x = (0, a)

(1, g(b)), x = (1, b)
.

Proposition 3.2 (Grp). There exists a category Grp whose objects are groups
such that the sets HomGrp

(
(G,mG), (H,mH)

)
consist of the commutative di-
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agrams in Set of the form

G×G H ×H

G H

ϕ×ϕ

mG mH

ϕ

,

with compositions given as

G×G H ×H K ×K

G H K

ϕ×ϕ

mG

(ψ◦ψ)×(ψ◦ϕ)

ψ×ψ

mH mK

ϕ

ψ◦ϕ

ψ

.

Proposition 3.3 (Ab). There is a full subcategory Ab of Grp whose objects
are abelian groups.

Example 3.4. Trivial groups are zero objects in Grp.

3.1 Group homomorphisms

Definition 3.5 (Group homomorphisms). Let G, H be groups. Then a
function ϕ : G→ H is called a group homomorphism iff

ϕ(ab) = ϕ(a)ϕ(b).

Corollary 3.6. Morphisms in Grp are precisely group homomorphisms.

Remark. Characterizing Grp morphisms in terms of the set-theoretic group
homomorphisms allows to work with diagrams in Set instead of Grp.

Corollary 3.7 (Immediate consequences). Let ϕ : G→ H be a group homo-
morphism. Then
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(i) ϕ(eG) = eH , and

(ii) ϕ(a−1) = ϕ(a)−1, i.e. the following diagram commutes:

G H

G H

ϕ

g 7→g−1 h7→h−1

ϕ

(iii) |g| <∞ =⇒ |ϕ(g)| <∞ and |ϕ(g)| divides |g|.

Example 3.8. HomGrp(G,H) are pointed sets with a distinguished trivial ho-
momorphism.

Definition 3.9 (Group actions). Let G be a group and A be an object of a
category C. Then any homomorphism

G→ AutC(A)

is called a group action of G on A.

Example 3.10. The groups D2n (rotations + reflections) and Cn (rotations)
act on the vertices of regular n-gons (or more precisely, the set {1, . . . , n}).

Proposition 3.11 (Exponential maps). Let G be a group and g ∈ G. Then
ϵg : Z→ G defined by

a 7→ ga

is a homomorphism which is surjective ⇐⇒ g generates G.

Example 3.12. The canonical functions πn : Z → Z/nZ are group homomor-
phisms.

Example 3.13. Let G be a group. Then the map G → AutGrp(G) given by
g 7→ γg such that

γg(a) = gag−1

is a homomorphism which is trivial if and only if G is abelian.
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Proposition 3.14 (Cm → G homomorphisms). Let m ∈ Z and G be a
group. Let Cm = ⟨a⟩.

m = 0 Then each ϕ : a 7→ g ∈ G determines a homomorphism.

m ̸= 0 Then we have the following correspondence:

{g ∈ G : |g| <∞ and |g| divides m}
g

←→
{ homomorphisms ϕ : Cm → G}

ϕ : a 7→ g

Proposition 3.15 (Cm → Cn homomorphisms). Let m,n ∈ Z. Let Cm =
⟨a⟩ and Cn = ⟨b⟩.

m = 0 Then each ϕ : a 7→ bk determines a homomorphism for 0 ≤ k <
n.

m ̸= 0, n = 0 Then only homomorphism is the trivial one.

m,n ̸= 0 Then we have the following correspondence:

{0 ≤ k < |n| : n | km}
k

←→
{ homomorphisms ϕ : Cm → Cn}

ϕ : a 7→ bk

Proposition 3.16 (Z/mZ → Z/nZ ring homomorphisms). Let m,n ∈ Z
and ϕ : Z/mZ→ Z/nZ be a homomorphism such that

[1]m 7→ [k]n for some k ∈ Z.

Then it preserves multiplication if and only if

k(k − 1) ≡ 0 (mod n).

Example 3.17 (Special case when k = 1). If m,n ̸= 0. Then the ring homo-
morphism πmn : [1]m 7→ [1]n is characterized by the commutativity of the following
diagram:

Z

Z/mZ Z/nZ

πm πn

πm
n
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3.2 Group isomorphisms

Proposition 3.18 (Isomorphisms in Grp). Let G, H be groups. Then (ϕ,G,H)
is an isomorphism in Grp ⇐⇒ ϕ : G → H is a bijective group homomor-
phism.

Corollary 3.19. Group isomorphisms preserve commutativity and orders.

Example 3.20. AutGrp(Z/2Z× Z/2Z) ∼= S3.

Example 3.21 (Non-isomorphic groups). None of the following groups are iso-
morphic:

(i) Z
(ii) Q
(iii) R

Further, Q ≇ Q>0 and R∗ ≇ C∗.

Definition 3.22 (Cyclic groups). Groups isomorphic to Cn (for any n ∈ Z)
are called cyclic groups.

Proposition 3.23 (⟨g⟩ is cyclic). Let G be a group and g ∈ G.

|g| <∞ Then ⟨g⟩ ∼= C|g|.

|g| =∞ Then ⟨g⟩ ∼= C0.

Example 3.24 (Cyclic groups in Sn). Let 1 ≤ d ≤ n and define ϕ : Z/dZ→ Sn
by

ϕr(i) :=


d− r + i, 1 ≤ i ≤ r

i− r, r < i ≤ d

i, d < i ≤ n

for 0 ≤ r < d.

Then ϕ is an injective homomorphism.

Proposition 3.25 (Cn → Cn group isomorphisms). Let n ∈ Z and Cn = ⟨a⟩.
Then the homomorphism Cn → Cn determined by

a 7→ ak

is an isomorphism if and only if

gcd(n, k) = 1.
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Corollary 3.26 (Characterizing Euler’s Φ-function). For n ≥ 1, we have
that

Φ(n) = |AutGrp(Cn)|.

Proposition 3.27 ((Z/pZ)∗ is cyclic). Let p > 0 be prime. Assume that
xd = 1 has at most d solutions in Z/pZ for 1 ≤ d ≤ p. Then

AutGrp(Cp) ∼= (Z/pZ)∗ ∼= Cp−1.

Corollary 3.28 (Wilson’s theorem). From Proposition 3.27, we can deduce
that any integer p > 1 is prime if an only if

(p− 1)! ≡ −1 (mod p).

3.3 Products of groups

Proposition 3.29 (Products in Grp). Let (G,mG) and (H,mH) be groups.
Then the operation (

(g, h), (g′, h′)
)
7→ (gg′, hh′)

makes G×H a group.
πG : G×H → G and πH : G×H → H are group homomorphisms.

Define

ΠG :=
(
πG, (G×H,mG×H), (G,mG)

)
, and

ΠH :=
(
πH , (G×H,mG×H), (H,mH)

)
.

Then
(G,mG)

(G×H,mG×H)

(H,mH)

ΠG

ΠH

is a final object in Grp(G,mG),(H,mH): If ϕ : K → G and ψ : K → H are group
homomorphisms, then the unique morphism (K,mK) → (G × H,mG×H) is
determined by the group homomorphism σ : K → G×H given by

σ(k) :=
(
ϕ(k), ψ(k)

)
.
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Example 3.30 (G × H ∼= G ≠⇒ H = {e}). Consider G := HN for any
nontrivial H.

Example 3.31. Q ≇ G×H for nontrivial G, H.

Proposition 3.32 (Cyclicity of Cm × Cn). Let m,n ∈ Z. Then

Cm × Cn is cyclic ⇐⇒ gcd(m,n) = 1.

Corollary 3.33. The group G×H is abelian ⇐⇒ G and H are.

Proposition 3.34. Ab has the same products as Grp.

Proposition 3.35 (Fibered products in Grp). Grp has fibered products: For
homomorphisms ϕ : G→ H and ψ : K → H,

G

P H

H

ϕπG

πK ψ

where P is the group formed by the fibered product of G, H in Set and the
operation

(g1, h1)(g2, h2) := (g1g2, h1h2)

is a final object in Grpϕ,ψ.

3.4 Coproducts of groups

Example 3.36 (The coproduct of C2 and C3 in Grp). Let G = ⟨x, y⟩ be the
group defined by the relations

|x| = 2, and

|y| = 3.
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Then G is a coproduct of C2 and C2 in Grp. More precisely,

C2

G

C3

i

j

where

i(xk) = xk for 0 ≤ k < 2,

j(xk) = yk for 0 ≤ k < 3

is an initial object in GrpC2,C3
.3

Proposition 3.37 (Coproducts in Ab). Let (G,mG) and (H,mH) be abelian
groups. Then ιG : G→ G×H and ιH : H → G×H defined by

ιG(g) := (g, eH), and

ιH(h) := (eG, h)

are group homomorphisms.
Define

IG :=
(
ιG, (G,mG), (G×H,mG×H)

)
, and

IH :=
(
ιH , (H,mH), (G×H,mG×H)

)
.

Then
(G,mG)

(G×H,mG×H)

(H,mH)

IG

IH

is an initial object in Ab(G,mG),(H,mH): If ϕ : G→ K and ψ : H → K are group
homomorphisms, then the unique morphism (G × H,mG×H) → (K,mK) is
determined by the group homomorphism σ : G×H → K given by

σ(g, h) := ϕ(g)ψ(h).
3Usual abuse of notation.
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Notation. When G × H is seen as a coproduct (when G, H are abelian),
we write that as G⊕H or G ∗H.

Example 3.38 (A coproduct in Ab needn’t be so in Grp). There’s no homo-
morphism C2 × C3 → S3 that corresponds to homomorphisms (as defined in
Example 3.24) C2 → S3 and C2 → S3.

4 Free groups

April 5, 2022

Proposition 4.1 (Category FA). Let A be a set. Then there exists a category
FA whose objects are set-functions A → G for groups G.4, morphisms are
commutative diagrams (in Set) of the form

A

G1 G2

j1 j2

ϕ

where j1, j2 are set-functions and ϕ is a group homomorphism. The compo-
sitions are given in the obvious manner.

Definition 4.2 (Free groups). A free group F (A) of a set A is (the group
component of) an initial object of the category FA.

Proposition 4.3.

(i) F (∅) ∼= {e}.
(ii) F ({a}) ∼= Z.

4.1 Constructing F (A)

Let A be a set. Let A′ be an equinumerous but disjoint set with the corre-
spondence given by

a 7→ inv(a).

4Apparently, we can form a class out of union over classes.
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We define the following “inverse” on A ∪ A′:

α 7→ α−1 :=

{
inv(α), α ∈ A
inv−1(α), α ∈ A′

Lemma 4.4.

(i) (α−1)−1 = α.

(ii) α ∈ A ⇐⇒ α−1 ∈ A′.

(iii) α ∈ A′ ⇐⇒ α−1 ∈ A.

Let W (A) be the set of all “words” of finite length (possibly of length
zero)5 whose “letters”6 are taken from A ∪ A′.

An occurrence of the pattern “α, α−1” for α ∈ A ∪ A′ in a word is called
its reduction point.

We define the following operations on W (A):

Concatenation: (w1, w2) 7→ w1 ∗ w2. This concatenates the words.

Lemma 4.5.

(i) Concatenation is associative.

(ii) (α1, . . . , αn) = (α1) ∗ · · · ∗ (αn).

Inverse: w 7→ ι(w). For w = (α1, . . . , αn), we define ι(w) := (α−1
n , . . . , α−1

1 ).

Lemma 4.6. For w ∈ W (A), we have that ι(ι(w)) = w.

Elementary reduction: w 7→ r(w). Take a word w ∈ W (A). If there
exists a reduction point in w (in which case, w is called reducible),
then r returns the word in W (A) omitting the first reduction point
from left. Otherwise (here w is called irreducible), r returns w as it
is.

Lemma 4.7.

(i) If w1 has a reduction point, then r(w1 ∗ w2) = r(w1) ∗ w2.

(ii) If w1 is irreducible and w2 is reducible, then r2(w1 ∗ w2) = r(w1 ∗
r(w2)).

5More precisely, finite sequences.
6More precisely, the elements of the sequence.
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(iii) For a word w ∈ W (A) of length n ≥ 0, we have that r⌊
n
2
⌋(w) is

irreducible.

Reduction: w 7→ R(w) := r⌊
n
2
⌋(w).

Lemma 4.8.

(i) R(r(w)) = R(w).

(ii) R(r(w1) ∗ w2) = R(w1 ∗ w2) = R(w1 ∗ r(w2)).

We define F (A) to be the set im(R) with the following “multiplication”:

w1w2 := R(w1 ∗ w2)

Lemma 4.9.

(i) F (A) is closed under ι.

(ii) For w ∈ F (A), we have w ι(w) = () = ι(w)w.

Proposition 4.10. F (A) forms a group with the above multiplication with
the identity given by the empty word, and the inverse of w given by ι(w).

Lemma 4.11. Let f : A → G be a set-function for a group G. Define a
set-function ϕ̃ : W (A)→ G by

ϕ̃(α) :=

{
f(α), α ∈ A
(f(α−1))−1, α ∈ A′ , and

ϕ̃(α1, . . . , αn) := ϕ̃(α1) · · · ϕ̃(αn).

Then this function satisfies

ϕ̃(w1 ∗ w2) = ϕ̃(w1)ϕ̃(w2), and

ϕ̃(r(w)) = ϕ̃(w).

Moreover, the restriction of ϕ̃ to F (A) is a group homomorphism.

Proposition 4.12. (j, F (A)) is an initial object in FA, where j : A→ F (A)
is the ‘canonical’ injection.
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4.2 Free abelian groups

May 10, 2022

Proposition 4.13 ((Fab)A). Let A be a set. Then there exists a full subcate-
gory (Fab)A of FA whose objects are set-functions A→ H for abelian groups
H.

Definition 4.14 (Free abelian groups). The initial objects of (Fab)A, denoted
by F ab(A) are called free abelian groups.

Proposition 4.15 (Groups HA and H⊕A). Let A be a set and G a group.
Then the set GA forms a group with the following operation:

(fg)(a) := f(a)g(a)

Further, the set

G⊕A := {α ∈ GA : α(a) ̸= 0 for finitely many a ∈ A}

forms a group with the inherited operation.
GA and G⊕A are abelian if G is.

Proposition 4.16. For a group G and n ≥ 0, we have that

Gn ∼= G⊕{1,...,n}.

Proposition 4.17 (Constructing free abelian groups). Let A be a set. Then
the group Z⊕A along with the set-function j : A→ Z⊕A given by

ja(x) :=

{
0, x ̸= a

1, x = a

is an initial object in (Fab)A.



Errata

1

Clarification 1.1 (p. 17).

(i) At the end of the first paragraph, it’s written that the “same con-
siderations [of definition up to isomorphism] apply to products and
quotients”. For the Cartesian product, this is plausible. But what ever
was the problem with quotients?

(ii) In footnote 12, “fibered” flavors of products and disjoint unions are
talked about. Put a reference to Exercise 5.12.

Clarification 1.2 (p. 19). Clarify the meaning of ‘pointed set’ in the penul-
timate paragraph.

2

Math 2.1 (p. 47). In Proposition 1.13, it should be that m > 0 and not
m ≥ 0 for lcm(m, |g|)/m (or even lcm(m, |g|)!) to make sense. However,
for the expression involving gcd, there’s no such problem, and the statement
holds for m = 0 too.

Suggestion 2.1 (p. 49). In Exercise 1.15, commutativity of the entire group
can be replaced by the weaker condition that g should commute with all the
elements.

Math 2.2 (p. 52). In the third-to-last paragraph, “(thereby excluding trans-
lations as possible symmetries)” is not correct.

Math 2.3 (p. 55). In the last paragraph, well-definedness of (Z/nZ)∗ need
not be checked. It’s well-defined as it is.

42
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Math 2.4 (p. 57). Exercise 2.4: In the hint, to show that the relations
really determine D2n, the claim that any product xi1yi2 . . . equals xiyj does
not suffice. Instead, 2n distinct elements must be shown to be generated
from x, y.

Typo 2.1. Exercise 2.15: Inconsistency in using ϕ and Φ.

Math 2.5 (p. 58). Exercise 2.18: d ≥ 1 must be mentioned.

Suggestion 2.2 (p. 62). It’d be helpful to note that despite the identical
notations, the function ϕG × ϕH in the proof of Proposition 3.4 is not the
same as the “function product” (ϕ × ϕ on p. 58) in defining the group
homomorphisms.

Typo 2.2 (p. 62). In the paragraph after the proof, it’s written “. . . so the
reader will have to deal with them on his or her own.” If the author cares
for the LGBTQIA+ inclusion, “his or her” should be replaced (or appended)
with “their”.

Typo 2.3 (p. 63). Exercise 3.3: There is no §3.6 in the book, that is
referenced.
Exercise 3.9: It should be “fibered” prodocts and not fiber products.

Math 2.6 (p. 66). Example 4.2: Mention n ̸= 0.

Math 2.7 (p. 69). Exercise 4.11: Mention that 1 ≤ d ≤ p. Also, the
equation “xd = 1” must more precisely be written as “xd = [1]p”.
Similarly for Exercise 4.12’s “x3 − 9 = 0”.

Suggestion 2.3 (p. 73). At the top, the definition of r is incomplete in a
subtle way: Add that r returns w as it is if there are no patterns of aa−1 or
a−1a.

Math 2.8 (p. 74). Several issues with the proof of Proposition 5.2:

(i) It should be commented that the compatibility of φ̃ with juxtaposition

φ̃(ww′) = φ̃(w)φ̃(w′)

is indeed possible.

(ii) The proof is divided in two parts:
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(a) A group homomorphism φ is uniquely determined by demanding
the commutativity of the diagram, that fixes φ’s values over single
letters (and their inverses).

(b) If φ : F (A)→ G is a function such that it agrees with φ̃ on reduced
words, then φ is a group homomorphism.

However, in the latter part, it was never shown that such a φ exists! It
should be commented that we can take this φ to be the restriction of
φ̃ on F (A).
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