Organized results Algebra Michael Artin

Contents

1	Matrices 4				
	1.1	The basic operations	4		
	1.2	Row reduction	10		
	1.3	The matrix transpose	16		
	1.4	Determinants	17		
	1.5	Permutations	21		
	1.6	Other formulas for the determinant	24		
2	Gro	ups	26		
	2.1	Laws of composition	26		
	2.2	Groups and subgroups	28		
	2.3	Subgroups of the additive group of integers	33		
	2.4	Cyclic groups	36		
	2.5	Homomorphisms	37		
	2.6	Isomorphisms	40		
	2.7	Equivalence relations and partitions	42		
	2.8	Cosets	43		
	2.9	Modular arithmetic	45		
	2.10	The correspondence theorem	48		
	2.11	Product groups	49		
	2.12	Quotient groups	51		
3	Vector spaces 53				
	3.2	Fields	53		
	3.3	Vector spaces	55		
	3.4	Bases and dimension	57		
	3.5	Computing with bases	62		
	3.6	Direct sums	64		

	3.7	Infinite-dimensional spaces	67
4	Linear operators		
	4.1	The dimension formula	69
	4.2	The matrix of a linear transformation	70

3

Chapter 1

Matrices

1.1 The basic operations

October 7, 2021

Definition 1.1.1 (Matrices over a field). "A is an $m \times n$ matrix over $(F, +, \cdot)$ " iff $(F, +, \cdot)$ is a field and $m, n \ge 1$ are naturals such that $A: \{1, \ldots, m\} \times \{1, \ldots, n\} \to F$.

"A is a matrix over $(F, +, \cdot)$ " iff there exist m, n such that A is an $m \times n$ matrix over $(F, +, \cdot)$.

Remark 1.1.2. We'll deal with matrix over a given field \mathbb{F} , unless stated otherwise, thus replacing "let A be a matrix over \mathbb{F} " with "let A be a matrix".

We'll denote the set of scalars of $\mathbb F$ by $\mathfrak F.$

We'll write "a is a scalar" to mean that $a \in \mathfrak{F}$.

Abbreviation 1.1.3 (Entries of matrices). For any matrix A of size $m \times n$ and for any $1 \le i \le m$ and any $1 \le j \le n$, we set $A_{i,j} := A_{(i,j)}$.

Lemma 1.1.4 (Size of a matrix). Let A be a matrix. Then there exist unique $m, n \in \mathbb{N}$ such that A is an $m \times n$ matrix.

Lemma 1.1.5 (Zero matrices). Let $m, n \ge 1$ be naturals. Then there exists a unique $m \times n$ matrix A such that for each $1 \le i \le m$ and for each $1 \le j \le n$, we have $A_{i,j} = 0$.

Remark 1.1.6. This allows to denote A by $0_{m \times n}$.

Definition 1.1.7 (Square matrices). "A is a square matrix of size n" iff there A is an $n \times n$ matrix.

"A is a square matrix" iff there exists an n such that A is a square matrix of size n.

Lemma 1.1.8. Let A be a square matrix. Then there exists a unique $n \in \mathbb{N}$ such that A is a square matrix of size n.

Lemma 1.1.9 (Identity matrices). Let $n \ge 1$ be natural. Then there exists a unique square matrix A of size n such that for all $1 \le i, j \le n$, we have $A_{i,j} = 1$ if i = j, and $A_{i,j} = 0$ if $i \ne j$.

Remark 1.1.10. This allows to denote A by I_n .

Lemma 1.1.11 (Operations on matrices). Let A and B be matrices of size $m \times n$ each, and C be a matrix of size $n \times p$ and λ be a scalar. Then there exist unique matrices W, X, Y, Z such that

- (a) (addition) W is an $m \times n$ matrix such that for each $1 \leq i \leq m$ and for each $1 \leq j \leq n$, we have $W_{i,j} = A_{i,j} + B_{i,j}$,
- (b) (negation) X is an $m \times n$ matrix such that for each $1 \leq i \leq m$ and for each $1 \leq j \leq n$, we have $X_{i,j} = -A_{i,j}$,
- (c) (matrix multiplication) Y is an $m \times p$ matrix such that for each $1 \leq i \leq m$ and for each $1 \leq j \leq p$, we have $Y_{i,j} = \sum_{k=1}^{n} A_{i,k}C_{k,j}$, and
- (d) (scalar multiplication) Z is an $m \times n$ matrix such that for each $1 \leq i \leq m$ and for each $1 \leq j \leq n$, we have $Z_{i,j} = \lambda A_{i,j}$.

Remark 1.1.12. This along with Lemma 1.1.4 allows to denote W, X, Y, Z by A + B, -A, AB, λA .

Lemma 1.1.13 (Properties of matrices). Let $m, n, p, q \in \mathbb{N}$, and A, A', A''be $m \times n$ matrices, and B, B' be $n \times p$ matrices and C be a $p \times q$ matrix and λ, μ be scalars. Then $A + A', A'', A' + A'', -A, \lambda A$ are $m \times n$ matrices, and AB, AB', A'B are $m \times p$, and BC is an $n \times q$ matrix, and λB is an $n \times p$ matrix, and

$$A + A' = A' + A,$$

$$(A + A') + A'' = A + (A' + A''),$$

$$0_{m \times n} + A = A,$$

$$(-A) + A = 0_{m \times n},$$

$$(AB)C = A(BC),$$

$$I_mA = AI_n = A,$$

$$A(B + B') = AB + AB',$$

$$(A + A')B = AB + A'B,$$

$$1A = A,$$

$$(\lambda\mu)A = \lambda(\mu A),$$

$$\lambda(A + A') = \lambda A + \lambda A', and$$

$$\lambda(AB) = (\lambda A)B = A(\lambda B).$$

Definition 1.1.14 (Inverses and invertible matrices). "*B* is an inverse of matrix *A*" iff there exists a natural $n \ge 1$ such that *A*, *B* are square matrices of size *n* and $AB = BA = I_n$.

"A is an invertible matrix" iff there exists a B such that B is an inverse of matrix A.

Corollary 1.1.15 (Simple properties of invertible matrices).

- (a) A is an inverse of matrix $B \iff B$ is an inverse of matrix A.
- (b) Let A be an invertible matrix. Then there exists a unique $n \in \mathbb{N}$ such that A is a square matrix of size n.
- (c) Let B be an inverse of matrix A and $n \in \mathbb{N}$ such that A is a square matrix of size n. Then B is also a square matrix of size n.

Lemma 1.1.16 (Uniqueness of inverses). Let A, L, R be square matrices of size n such that $LA = AR = I_n$. Then L = R.

Hence, if A is an invertible matrix, then there exists a unique matrix B such that B is an inverse of A.

Lemma 1.1.17. This allows to denote B by A^{-1} . (n is determined due to Lemma1.1.4.)

Proposition 1.1.18 (Properties of invertible matrices).

- (a) Let A be an invertible matrix. Then A^{-1} is also invertible with $(A^{-1})^{-1} = A$.
- (b) Let A, B be invertible matrices of size n. Then AB is invertible with the inverse being $B^{-1}A^{-1}$.

Remark 1.1.19. The notations like $A_1 + \cdots + A_k$ or $E_1 \cdots E_k$ are explained in the next chapter. They carry the usual meanings.

Proposition 1.1.20 (Inverses of nilpotent matrices). Let A be a matrix of size $n \times n$ and $k \ge 1$ such that $A^k = 0_{n \times n}$. Then I - A is invertible with $(I - A)^{-1} = A^{k-1} + \cdots + I_n$.

Definition 1.1.21. We will denote an $m \times n$ matrix A by $\begin{bmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{n,1} & \dots & A_{m,n} \end{bmatrix}$.

Lemma 1.1.22 (Inverses for 2×2 matrices). Let a, b, c, d be scalars. Then

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = (ad - bc)I_2$$

Also,
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is invertible $\iff ad - bc \neq 0.$

Lemma 1.1.23 (Rows and columns of matrices). Let $m, n \in \mathbb{N}$, and A be an $m \times n$ matrix, and $1 \leq i_0 \leq m$ and $1 \leq j_0 \leq n$. Then there exist unique

an $m \times n$ matrix, and $1 \leq i_0 \leq m$ and $1 \leq j_0 \leq n$. Then there exist unique matrices X, Y of sizes $1 \times n$ and $m \times n$ such that for all $1 \leq i \leq m$ and for all $1 \leq j \leq n$, we have $X_{1,j} = A_{i_0,j}$ and $Y_{i,1} = A_{i,j_0}$.

Remark 1.1.24. This allows to denote X and Y by A_{i_0} and A_{j_0} .

Lemma 1.1.25 (Square matrices with a zero row or column is not invertible). Let A be a square matrix of size n such that there exists a $1 \le k \le n$ so that $A_k = 0_{1 \times n}$ or $A_{,k} = 0_{n \times 1}$. Then A is not invertible.

Corollary 1.1.26 (Nonexistence of inverses for non-square matrices). Let L, A be $n \times m$ and $m \times n$ matrices with m < n. Then $LA \neq I_n$.

Lemma 1.1.27 (Block matrices).

- (a) Let A, B be matrices of sizes $m_A \times n$ and $m_B \times n$. Then there exists a unique matrix C of size $(m_A + m_B) \times n$ such that for each $1 \leq i \leq m_A + m_B$, we have $C_i = A_i$ if $1 \leq i \leq m_A$, and $C_i = B_{i-m_A}$ if $m_A + 1 \leq i \leq m_A + m_B$.
- (b) Let A', B' be matrices of sizes $m \times n_{A'}$ and $m \times n_{B'}$. Then there exists a unique matrix C' of size $m \times (n_{A'} + n_{B'})$ such that for each $1 \leq j \leq n_{A'} + n_{B'}$, we have $C'_{,j} = A'_{,j}$ if $1 \leq j \leq n_{A'}$, and $C'_{,j} = B_{,j-n_{A'}}$ if $1 + n_{A'} \leq j \leq n_{A'} + n_{B'}$.

Remark 1.1.28. This allows to denote C by $\begin{bmatrix} A \\ B \end{bmatrix}$ and C' by $\begin{bmatrix} A' & B' \end{bmatrix}$.

Corollary 1.1.29 (Block matrices). Let P, Q, R, S be matrices of sizes $m_1 \times n_1$ and $m_1 \times n_2$ and $m_2 \times n_1$ and $m_2 \times n_2$. Then $\begin{bmatrix} P & Q \end{bmatrix}$ and $\begin{bmatrix} R & S \end{bmatrix}$ are matrices of sizes $m_1 \times (n_1 + n_1)$ and $m_2 \times (n_1 + n_2)$, and $\begin{bmatrix} P \\ R \end{bmatrix}$ and $\begin{bmatrix} Q \\ S \end{bmatrix}$ are matrices of sizes $(m_1 + m_2) \times n_1$ and $(m_1 + m_2) \times n_2$ such that

$$\begin{bmatrix} P & Q \\ R & S \end{bmatrix} = \begin{bmatrix} P \\ R \end{bmatrix} \begin{bmatrix} Q \\ S \end{bmatrix}.$$

Remark 1.1.30. This allows to denote the last matrix by $\begin{bmatrix} P & Q \\ R & S \end{bmatrix}$.

Lemma 1.1.31 (Block multiplication).

(a) Let A, B, M be matrices of sizes $m_1 \times n$ and $m_2 \times n$ and $n \times p$. Then $\begin{bmatrix} A \\ B \end{bmatrix}$ and M are matrices of sizes $(m_1 + m_2) \times n$ and $n \times p$, and AM, BM are matrices of sizes $m_1 \times p$ and $m_2 \times p$, and

$$\begin{bmatrix} A \\ B \end{bmatrix} M = \begin{bmatrix} AM \\ BM \end{bmatrix}.$$

(b) Let M, A, B be matrices of sizes m × n and n × p₁ and n × p₂. Then M and [A B] are matrices of sizes m × n and n × (p₁+p₂), and MA, MB are matrices of sizes m × p₁ and m × p₂, and

$$M\begin{bmatrix}A & B\end{bmatrix} = \begin{bmatrix}MA & MB\end{bmatrix}.$$

(c) Let P, Q, R, S be matrices of sizes $m \times n_1$ and $m \times n_2$ and $n_1 \times p$ and $n_2 \times p$. Then $\begin{bmatrix} P & Q \end{bmatrix}$ and $\begin{bmatrix} R \\ S \end{bmatrix}$ are matrices of sizes $m \times (n_1 + n_2)$ and $(n_1 + n_2) \times p$, and PR, QS are matrices of sizes $m \times p$, and

$$\begin{bmatrix} P & Q \end{bmatrix} \begin{bmatrix} R \\ S \end{bmatrix} = PR + QS$$

(d) Let P, Q, R, S be matrices of sizes $m_1 \times n$ and $m_2 \times n$ and $n \times p_1$ and $n \times p_2$. Then $\begin{bmatrix} P \\ Q \end{bmatrix}$ and $\begin{bmatrix} R & S \end{bmatrix}$ are matrices of sizes $(m_1 + m_2) \times n$ and

1.1. THE BASIC OPERATIONS

 $n \times (p_1 + p_2)$, and PR, PS, QR, QS are matrices of sizes $m_1 \times p_1$ and $m_1 \times p_2$ and $m_2 \times p_1$ and $m_2 \times p_2$, and

$$\begin{bmatrix} P \\ Q \end{bmatrix} \begin{bmatrix} R & S \end{bmatrix} = \begin{bmatrix} PR & PS \\ QR & QS \end{bmatrix}$$

Corollary 1.1.32 (Multiplication of 2×2 blocks). Let A, B, C, D be $m_1 \times n_1$ and $m_1 \times n_2$ and $m_2 \times n_1$ and $m_2 \times n_2$ matrices, and P, Q, R, S be $n_1 \times p_1$ and $n_1 \times p_2$ and $n_2 \times p_1$ and $n_2 \times p_2$ matrices. Then $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ and $\begin{bmatrix} P & Q \\ R & S \end{bmatrix}$ are $(m_1 + m_2) \times (n_1 + n_2)$ and $(n_1 + n_2) \times (p_1 + p_2)$ matrices, and AP + BR, AQ + BS, CP + DR, CQ + DS are $m_1 \times p_1$ and $m_1 \times p_2$ and $m_2 \times p_1$ and $m_2 \times p_2$ matrices, and

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} P & Q \\ R & S \end{bmatrix} = \begin{bmatrix} AP + BR & AQ + BS \\ CP + DR & CQ + DS \end{bmatrix}.$$

Lemma 1.1.33 (Matrix units). Let $m, n \ge 1$ be naturals and $1 \le i_0 \le m$ and $1 \le j_0 \le n$. Then there exists a unique matrix A of size $m \times n$ such that for all $1 \le i \le m$ and for all $1 \le j \le n$, we have $A_{i,j} = 1$ if $i = i_0$ and $j = j_0$ and $A_{i,j} = 0$ otherwise.

Remark 1.1.34. This allows to denote A by $e_{i,j;m \times n}$.

Lemma 1.1.35 (Multiplication of matrix units). Let $m, n, p \ge 1$ be naturals and $1 \le i \le m$, and $1 \le j, k \le n$ and $1 \le l \le p$. Then

$$e_{i,j;m \times n} e_{k,l;n \times p} = \begin{cases} e_{i,l;m \times p}, & j = k \\ 0_{m \times p}, & j \neq k \end{cases}$$

Lemma 1.1.36 (Multiplication by matrix units). Let X be a matrix of size $m \times n$.

(a) Let $l \ge 1$ be natural, and $1 \le i \le l$ and $1 \le j \le m$. Then for all $1 \le \mu \le l$,

$$(e_{i,j;l\times m}X)_{\mu} = \begin{cases} X_j, & \mu = i\\ 0_{1\times n}, & \mu \neq i \end{cases}$$

(b) Let $p \ge 1$ be natural, and $1 \le i \le n$ and $1 \le j \le p$. Then for all $1 \le \nu \le p$,

$$(Xe_{i,j;n\times p})_{,\nu} = \begin{cases} X_{,i}, & \nu = j \\ 0_{m\times 1}, & \nu \neq j \end{cases}$$

Definition 1.1.37 (Commutativity of matrices). "A, B are commuting matrices" iff there exist m, n such that A is a matrix of size $m \times n$ and B is a matrix of size $n \times m$ such that AB = BA.

Corollary 1.1.38 (Only square matrices commute). Let A, B be commuting matrices. Then there exists a unique $n \in \mathbb{N}$ such that A, B are square matrices of size n.

Lemma 1.1.39 (Commutativity of matrix units). Let $n \ge 1$ be natural and $1 \le i, j, k, l \le n$. Then

$$e_{i,j;n \times n} e_{k,l;n \times n} - e_{k,l;n \times n} e_{i,j;n \times n} = \begin{cases} e_{i,l;n \times n} - e_{k,j;n \times n}, & j = k, l = i \\ e_{i,l;n \times n}, & j = k, l \neq i \\ -e_{k,j;n \times n}, & j \neq k, l = i \\ 0_{n \times n}, & j \neq k, l \neq i \end{cases}$$

Abbreviation 1.1.40 (Trace). For any square matrix A of size n, we set $\operatorname{trace}(A) := \sum_{i=1}^{n} A_{i,i}$.

Proposition 1.1.41 (Properties of trace). Let A, B be $n \times n$ matrices. Then

$$trace(A + B) = trace(A) + trace(B),$$

$$trace(AB) = trace(BA), and$$

$$trace(A^{t}) = trace(A).$$

Corollary 1.1.42. Let A, B be $n \times n$ matrices. Then $AB - BA \neq I_n$.

1.2 Row reduction

October 7, 2021

Lemma 1.2.1 (Rows and columns of matrix products). Let A, B be matrices of sizes $m \times n$ and $n \times p$. Then for all $1 \le i \le 1$ and for all $1 \le j \le p$, we have $(AB)_i = \sum_{k=1}^n A_{i,k}B_k$ and $(AB)_{,j} = \sum_{k=1}^n B_{k,j}A_{,k}$.

Abbreviation 1.2.2 (Elementary matrices). For any $n \ge 1$, and any $1 \le i, j \le n$ and any scalar c, we set

 $\mathcal{E}_{\mathbb{F},n;i\to i+cj} := I_n + c e_{i,j;n\times n},$

$$\mathcal{E}_{\mathbb{F},n;i\leftrightarrow j} := I_n - e_{i,i;n\times n} - e_{j,j;n\times n} + e_{i,j;n\times n} + e_{j,i;n\times n}, \text{ and} \mathcal{E}_{\mathbb{F},n;i\rightarrow ci} := I_n + (c-1)e_{i,i;n\times n}.$$

The above are called "elementary matrices of type (I or II or III) for size n" iff $i \neq j$ and $c \neq 0$.

Remark 1.2.3. Thus $\mathcal{E}_{\mathbb{F},n;i\to i+(-1)i}$ and $\mathcal{E}_{\mathbb{F},n;i\to 0i}$ are not elementary for any i and any n.

Proposition 1.2.4 (Type II in terms of types I and III). Let $n \ge 1$ and $1 \le i < j \le n$. Then $\mathcal{E}_{\mathbb{F},n;i\leftrightarrow j} = \mathcal{E}_{\mathbb{F},n;j\rightarrow(-1)j} \mathcal{E}_{\mathbb{F},n;i\rightarrow i+1j} \mathcal{E}_{\mathbb{F},n;j\rightarrow j+(-1)i} \mathcal{E}_{\mathbb{F},n;i\rightarrow i+1j}$.

Lemma 1.2.5 (Elementary matrices uniquely determine indices and scalars). Let $n \ge 1$ be natural and $1 \le i, j, k, l \le n$ and c, d be scalars. Then

(a)
$$\mathcal{E}_{\mathbb{F},n;i \to i+cj} = \mathcal{E}_{\mathbb{F},n;k \to k+dk} \implies (c = d \text{ and } (c \neq 0 \implies i = k \text{ and } j = l)),$$

- (b) $\mathcal{E}_{\mathbb{F},n;i\to i+cj} = \mathcal{E}_{\mathbb{F},n;k\leftrightarrow l} \implies (c=0 \text{ and } k=l),$
- (c) $\mathcal{E}_{\mathbb{F},n;i \to i+cj} = \mathcal{E}_{\mathbb{F},n;k \to dk} \implies (c = d 1 \text{ and } (c \neq 0 \implies i = j = k)),$
- (d) $\mathcal{E}_{\mathbb{F},n;i\leftrightarrow j} = \mathcal{E}_{\mathbb{F},n;k\leftrightarrow l} \implies ((i=j \iff k=l) \text{ and } (i\neq j \implies \{i,j\}=\{k,l\})),$
- (e) $\mathcal{E}_{\mathbb{F},n;i\leftrightarrow j} = \mathcal{E}_{\mathbb{F},n;k\rightarrow ck} \implies (c = 1 \text{ and } i = j), and$
- (f) $\mathcal{E}_{\mathbb{F},n;i\to ci} = \mathcal{E}_{\mathbb{F},n;j\to dj} \implies (c = d \text{ and } (c \neq 0 \implies i = j)).$

Example 1.2.6. Let $n \ge 1$ be natural. Then the sets of elementary matrices of type I, II, III of size n are pairwise disjoint.

Lemma 1.2.7 (Multiplication by elementary matrices). Let X be a matrix of size $m \times n$ and c be a scalar. Then

(a) for all $1 \leq i, j \leq m$,

$$(\mathcal{E}_{\mathbb{F},m;i \to i+cj}X)_{k} = \begin{cases} X_{i} + cX_{j}, & k = i \\ X_{k}, & k \neq i \end{cases},$$
$$(\mathcal{E}_{\mathbb{F},m;i \to ci}X)_{k} = \begin{cases} X_{j}, & k = i \\ X_{i}, & k = j \\ X_{k}, & k \neq i, j \end{cases},$$
$$(\mathcal{E}_{\mathbb{F},m;i \to ci}X)_{k} = \begin{cases} cX_{i}, & k = i \\ X_{k}, & k \neq i \end{cases}, and$$

(b) for all $1 \leq i, j \leq n$,

$$(X\mathcal{E}_{\mathbb{F},n;i\to i+cj})_{,k} = \begin{cases} X_{,j} + cX_{,i}, & k=j\\ X_{,k}, & k\neq j \end{cases},$$

$$(X\mathcal{E}_{\mathbb{F},n;i\leftrightarrow j})_{,k} = \begin{cases} X_{,j}, & k=i\\ X_{,i}, & k=j\\ X_{,k}, & k\neq i,j \end{cases}$$
$$(X\mathcal{E}_{\mathbb{F},n;i\rightarrow ci})_{,k} = \begin{cases} cX_{,i}, & k=i\\ X_{,k}, & k\neq i \end{cases}.$$

Lemma 1.2.8 (Elementary matrices are invertible). Let $n \ge 1$ be natural, and $1 \le i, j \le n$ and c be a scalar such that $i \ne j$ and $c \ne 0$. Then

- (a) $\mathcal{E}_{\mathbb{F},n;i\to i+cj}$ is invertible with the inverse being $\mathcal{E}_{\mathbb{F},n;i\to i+(-c)j}$,
- (b) $\mathcal{E}_{\mathbb{F},n;i\leftrightarrow j}$ is invertible with itself being the inverse, and
- (c) $\mathcal{E}_{\mathbb{F},n;i\to ci}$ is invertible with inverse being $\mathcal{E}_{\mathbb{F},n;i\to(1/c)i}$.

October 14, 2021

Lemma 1.2.9 (Commutativity of elementary matrices). Let $n \ge 1$ be natural, and $1 \le i, j, k, l \le n$ and c, d be scalars. Then

(a) $\mathcal{E}_{\mathbb{F},n;i \to i+cj}$ and $\mathcal{E}_{\mathbb{F},n;k \to k+dl}$ commute \iff one of these holds: (*i*) c = 0, (*ii*) d = 0, (iii) i = j = k = l, (iv) $i \neq l$ and $j \neq k$; (b) $\mathcal{E}_{\mathbb{F},n;i \to i+cj}$ and $\mathcal{E}_{\mathbb{F},n;k \leftrightarrow l}$ commute \iff one of these holds: (*i*) c = 0(ii) (j = k or k = i) and (j = l or l = i), (iii) $j \neq k$ and $k \neq i$ and $j \neq l$ and $l \neq i$; (c) $\mathcal{E}_{\mathbb{F},n:i\to i+cj}$ and $\mathcal{E}_{\mathbb{F},n:k\to dk}$ commute \iff one of these holds: (*i*) c = 0, (*ii*) d = 1, (iii) i = j = k. (iv) $j \neq k$ and $k \neq i$; (d) $\mathcal{E}_{\mathbb{F},n;i\leftrightarrow j}$ and $\mathcal{E}_{\mathbb{F},n;k\leftrightarrow l}$ commute \iff one of these holds: (*i*) i = j, (*ii*) k = l, (iii) $i \neq j$ and $k \neq l$ and $\{i, j\} \cap \{k, l\}$ is not a singleton; (e) $\mathcal{E}_{\mathbb{F},n:i\leftrightarrow i}$ and $\mathcal{E}_{\mathbb{F},n:k\rightarrow ck}$ commute \iff one of these holds: (*i*) c = 1,

(ii) i = j = k, (iii) $i \neq k$ and $k \neq j$; (f) $\mathcal{E}_{\mathbb{F},n;i \to ci}$ and $\mathcal{E}_{\mathbb{F},n;j \to dj}$ commute.

October 16, 2021

Definition 1.2.10 (Pivots of a matrix). "(i, j) is a pivot of an $m \times n$ matrix A" iff A is a matrix of size $m \times n$ and $1 \le i \le m$ and $A_i \ne 0_{1 \times n}$ (so that the set $S \ne \emptyset$) and $j = \min(S)$, where $S := \{1 \le j \le n : A_{i,j} \ne 0\}$.

Definition 1.2.11 (Row echelon matrices). "A is an $m \times n$ row echelon matrix" iff A is an $m \times n$ matrix such that the following hold:

- (a) For each $1 \le i < m$, we have $(A_i = 0_{1 \times n} \implies A_{i+1} = 0_{1 \times n})$.
- (b) For each $1 \le i \le m$ and for each $1 \le j \le n$, we have ((i, j) is a pivot of $A \implies A_{i,j} = 1$).
- (c) For each $1 \le i < m$ and for all $1 \le j, j' \le n$, we have ((i, j) and (i + 1, j') are pivots of $A \implies j < j')$.
- (d) For all $1 \le i' < i \le m$ and for all $1 \le j \le n$, we have ((i, j) is a pivot of $A \implies A_{i',j} = 0$.

"A is a row echelon matrix" iff there exist m, n such that A is an $m \times n$ row echelon matrix.

Lemma 1.2.12. Let $R \subseteq \mathbb{N} \times \mathbb{N}$ such that for each $i, j, j' \in \mathbb{N}$,

(a) $(i, j), (i + 1, j') \in R \implies j < j', and$

(b) $i+1 \in \operatorname{dom} R \implies i \in \operatorname{dom} R$.

Then for all $i, i', j, j' \in \mathbb{N}$,

- (a) $i \in \text{dom } R \text{ and } i' \leq i \implies i' \in \text{dom } R, \text{ and }$
- (b) $(i, j), (i', j') \in R$ and $i < i' \implies j < j'$.

Lemma 1.2.13 (Pivots of row echelons). Let A be an $m \times n$ row echelon matrix and (i_0, j_0) be a pivot of A. Then

(a)
$$i_0 \leq j_0$$
, and

(b) $A_{j_0} = e_{i_0,1;m \times 1}$.

Lemma 1.2.14 (Preserving row echelon-ness).

(a) Let A be an $m \times n$ row echelon matrix. Then $\begin{bmatrix} 0_{m,1} & A \end{bmatrix}$ and $\begin{bmatrix} A & 0_{m,1} \end{bmatrix}$ are row echelon matrices.

- (b) Let A, B be matrices of sizes $m \times n$ and $1 \times n$ such that for all $1 \le i \le m$ and for all $1 \le j \le n$, if (i, j) is a pivot for A, then $B_{1,j} = 0$. Then $\begin{bmatrix} [1] & B \\ 0_{m,1} & A \end{bmatrix}$ is a row echelon matrix.
- (c) Let A, B be matrices of sizes $m_1 \times n$ and $m_2 \times n$ such that $\begin{bmatrix} A \\ B \end{bmatrix}$ is a row echelon matrix. Then A, B are each row echelon matrices.
- (d) Let A, B be matrices of sizes $m \times n$ and $n \times 1$ such that $C := \begin{bmatrix} A & B \end{bmatrix}$ is a row echelon matrix. Then A is a row-echelon matrix.

Lemma 1.2.15 (Square row echelons). Let A be a square row echelon matrix of size n. Then $A = I_n$ or $A_n = 0_{1 \times n}$.

Remark 1.2.16. See Proposition 2.1.9 for the precise meaning of $E_1 \cdots E_k$.

Definition 1.2.17 (Row equivalence). "A, B are row equivalent matrices" iff there exist m, n such that A, B are matrices of size $m \times n$ and there exists a $k \ge 1$ and elementary matrices E_1, \ldots, E_k each of size m such that $A = E_1 \cdots E_k B$.

Example 1.2.18. Row equivalence is an equivalence relation on the set of matrices on \mathbb{F} .

Lemma 1.2.19 (Preserving row equivalence).

- (a) Let A, B be $m \times n_1$ and $m \times n_2$ matrices such that A and A' are row equivalent. Then $\begin{bmatrix} A & 0_{m \times 1} \end{bmatrix}$ and $\begin{bmatrix} A' & 0_{m \times 1} \end{bmatrix}$ are row equivalent.
- (b) Let A, A' be m × n₁ matrices and B, B' be m × n₂ matrices such that [A B] and [A' B'] are row equivalent. Then A, A' and B, B' are row equivalent.

Corollary 1.2.20 (Inverses of matrices using row reduction). Let A, B be square matrices of size n such that $\begin{bmatrix} A & I_n \end{bmatrix}$ is row equivalent to $\begin{bmatrix} I_n & B \end{bmatrix}$. Then $AB = BA = I_n$.

Theorem 1.2.21 (Row reduction is possible). Let A be a matrix. Then there exists a row echelon matrix B such that A is equivalent to B.

Lemma 1.2.22 (Equivalent systems of equations). Let A, A' be matrices of size $m \times n$, and B, B' be matrices of size $m \times 1$ and X be a matrix of size $n \times 1$ such that $\begin{bmatrix} A & B \end{bmatrix}$ and $\begin{bmatrix} A' & B' \end{bmatrix}$ are row equivalent. Then $AX = B \iff A'X = B'$. **Proposition 1.2.23** (Solving linear systems using row echelons). Let A, B be matrices of sizes $m \times n$ and $m \times 1$ such that $M := \begin{bmatrix} A & B \end{bmatrix}$ is a row echelon matrix. We have the following cases:

- (a) (i, n + 1) is a pivot of M for some i: Then $AX \neq B$ for any matrix X of size $n \times 1$.
- (b) (i, n + 1) is not a pivot of M for any i: Set $K := \{1 \le i \le m : A_i \ne 0_{1 \times n}\}$ and $L := \{1 \le j \le n : (i, j) \text{ is not a pivot of } A \text{ for any } i\}$. Then there exists a unique function $s : K \to \{1, \ldots, n\}$ such that for each $i \in K$, setting $X := \{1 \le j \le n : A_{i,j} \ne 0\}$, we have $X \ne \emptyset$ and $s(i) = \min(X)$. Further, for any such function s and any matrix X of size $n \times 1$,
 - (i) $L \cap s[K] = \emptyset$, (ii) $L \cup s[K] = \{1, \dots, n\}$, and (iii) $AX = B \iff X_{s(i),1} + \sum_{j \in L, j > s(i)} A_{i,j}X_{j,1} = B'_{i,1}$ for each $i \in K$.

Remark 1.2.24. We'll write $m \times n$ matrix" instead of "matrix of size $m \times n$ " from now on.

Corollary 1.2.25 (More variables than equations). Let m < n be naturals and A be an $m \times n$ matrix. Then there exists an $n \times 1$ matrix X such that $X \neq 0_{n \times 1}$ and $AX = 0_{m \times n}$.

October 17, 2021

Theorem 1.2.26 (Square matrices). Let A be a square matrix of size n. Then the following are equivalent:

- (a) A is row equivalent to I_n .
- (b) There exists a $k \ge 1$ and elementary matrices E_1, \ldots, E_k each of size n such that $A = E_1 \cdots E_k$.
- (c) A is invertible.

Proposition 1.2.27 (A weaker condition for invertibility). Let A, B be square matrices of size n each such that $AB = I_n$. Then $BA = I_n$.

Corollary 1.2.28. Let A, B be $n \times n$ matrices such that AB is invertible. Then A and B are invertible.

Theorem 1.2.29 (Square systems). Let A be a square matrix of size n. Then the following are equivalent:

(a) A is invertible.

- (b) For each $n \times 1$ matrix B, there exists a unique $n \times 1$ matrix X such that AX = B.
- (c) For each $n \times 1$ matrix X, if $AX = 0_{n \times 1}$, then $X = 0_{n \times 1}$.

Proposition 1.2.30 (Left invertible matrices). Let A be an $m \times n$ matrix such that there exists an $n \times m$ matrix L so that $LA = I_n$. Let B be an $m \times 1$ matrix. Then

(a) $m \ge n$, and (b) $(AL)B = B \iff B = AX$ for some $n \times 1$ matrix X. $m \ge n$.

Proposition 1.2.31 (Invertibility of I - AB). Let A, B be $m \times n$ and $n \times m$ matrices such that $I_m - AB$ is invertible. Then $I_n - BA$ is invertible with $(I - BA)^{-1} = I + B(I - AB)^{-1}A$.

1.3 The matrix transpose

October 17, 2021

Lemma 1.3.1 (Transposes). Let A be a matrix. Then there exists a unique matrix B such that there exist $m, n \in \mathbb{N}$ so that A, B are $m \times n$ and $n \times m$ matrices such that for all $1 \leq i \leq m$ and $1 \leq j \leq n$, we have $A_{i,j} = B_{j,i}$.

Remark 1.3.2. This allows to denote B by A^t .

Lemma 1.3.3 (Operations with transpose). Let A, B be $m \times n$ matrices, and C be an $n \times p$ matrix, and λ be a scalar. Then A^t , B^t are $n \times p$ matrices, and C^t is a $p \times n$ matrix, and

$$(A + B)^{t} = A^{t} + B^{t},$$

$$(AC)^{t} = C^{t}A^{t},$$

$$(\lambda A)^{t} = \lambda A^{t}, and$$

$$(A^{t})^{t} = A.$$

Lemma 1.3.4 (Some special transposes).

- (a) Let $m, n \in \mathbb{N}$, and $1 \le i \le m$ and $1 \le j \le n$. Then $(e_{i,j;m \times n})^t = e_{j,i;n \times m}$.
- (b) Let $n \ge 1$ be natural. Then $(I_n)^t = I_n$.

1.4. DETERMINANTS

(c) Let A be an $m \times n$ matrix. Then A^t is an $n \times m$ matrix and (i) $(A^t)_k = (A_{,k})^t$ for each $1 \le k \le n$, and (ii) $(A^t)_l = (A_l)^t$ for each $1 \le l \le m$.

Lemma 1.3.5 (Inverses of transposes). Let A be an invertible matrix. Then A^t is also invertible with $(A^t)^{-1} = (A^{-1})^t$.

Lemma 1.3.6 (Transposes of elementary matrices). Let $n \ge 1$ be natural, and $1 \le i, j \le n$ and c be a scalar. Then

$$(\mathcal{E}_{\mathbb{F},n;i\to i+cj})^t = \mathcal{E}_{\mathbb{F},n;j\to j+ci},$$

$$(\mathcal{E}_{\mathbb{F},n;i\leftrightarrow j})^t = \mathcal{E}_{\mathbb{F},n;i\leftrightarrow j}, and$$

$$(\mathcal{E}_{\mathbb{F},n;i\to ci})^t = \mathcal{E}_{\mathbb{F},n;i\to ci}.$$

1.4 Determinants

October 18, 2021

Lemma 1.4.1 (Submatrices). Let A be an $m \times n$ matrix, and $1 \leq i_0 \leq m$ and $1 \leq j_0 \leq n$ such that $m, n \geq 2$. Then $m - 1, n - 1 \geq 1$ and there exists a unique $(m - 1) \times (n - 1)$ matrix B such that for all $1 \leq i \leq m - 1$ and $1 \leq i \leq n - 1$,

$$B_{i,j} = \begin{cases} A_{i,j}, & i < i_0, j < j_0 \\ A_{i,j+1}, & i < i_0, j \ge j_0 \\ A_{i+1,j}, & i \ge i_0, j < j_0 \\ A_{i+1,j+1}, & i \ge i_0, j \ge j_0 \end{cases}$$

Remark 1.4.2. This (along with Lemma 1.1.4) allows to denote B by $A_{\langle i_0, j_0 \rangle}$.

Lemma 1.4.3 (Determinant function). Then there exists a unique function \mathcal{F} on $\bigcup_{n\geq 1}\mathfrak{F}^{\operatorname{Mat}(n,n;\mathbb{F})}$ such that for all $f \in \bigcup_{n\geq 1}\mathfrak{F}^{\operatorname{Mat}(n,n;\mathbb{F})}$, there exists a $k\geq 1$ such that $f: \operatorname{Mat}(k,k;\mathbb{F}) \to \mathfrak{F}$ and $\mathcal{F}(f): \operatorname{Mat}(k+1,k+1;\mathbb{F}) \to \mathfrak{F}$ so that for all $(k+1) \times (k+1)$ matrices A, we have that for all $1 \leq \nu \leq k+1$, we have that $A_{\langle \nu, 1 \rangle}$ is a $k \times k$ matrix, and

$$(\mathcal{F}(f))(A) = \sum_{\nu=1}^{k+1} (-1)^{\nu+1} A_{\nu,1} f(A_{\langle \nu, 1 \rangle}).$$

Hence, there exists a unique function Det: $\mathbb{N} \setminus \{0\} \to \bigcup_{n \geq 1} \mathfrak{F}^{\operatorname{Mat}(m,n;\mathbb{F})}$ such that

- (a) Det₁: Mat(1,1; \mathbb{F}) $\rightarrow \mathfrak{F}$ such that Det₁(A) = A_{1,1} for all 1 × 1 matrices A, and
- (b) for each $n \ge 1$, we have that $\operatorname{Det}_{n+1} = \mathcal{F}(\operatorname{Det}_n)$.

Hence, for any square matrix B, there exists a unique $x \in \mathfrak{F}$ such that there exists an $n \ge 1$ so that B is an $n \times n$ matrix and $x = \text{Det}_n(B)$.

Remark 1.4.4. This allows to denote x by det(B).

Corollary 1.4.5 (Determinant of I_n). Let $n \ge 1$. Then $det(I_n) = 1$.

October 19, 2021

Definition 1.4.6 (Matrices differing in only one row). "A and B are $m \times n$ matrices differing in only k-th row" iff A, B are $m \times n$ matrices, and $1 \le k \le m$ and for all $1 \le i \le m$, if $i \ne k$, then $A_i = B_i$.

Definition 1.4.7 (Matrices differing in only one column). "A and B are $m \times n$ matrices differing in only k-th column" iff A, B are $m \times n$ matrices, and $1 \leq k \leq n$ and for all $1 \leq j \leq n$, if $j \neq k$, then $A_{,j} = B_{,j}$.

Lemma 1.4.8 (k-th row sum). Let A, B be $m \times n$ matrices differing in k-th row. Then there exists a unique $m \times n$ matrix C such that for each $1 \leq i \leq m$, we have $C_i = A_i = B_i$ if $i \neq k$ and $C_i = A_i + B_i$ if i = k.

Remark 1.4.9. This (and Lemma 1.1.4) allow to denote C by $A +_k B$.

Lemma 1.4.10 (k-th column sum). Let A, B be $m \times n$ matrices differing only in k-th column. Then there exists a unique matrix C such that for each $1 \leq j \leq n$, we have $C_{,j} = A_{,j} = B_{,j}$ if $j \neq k$ and $C_{,j} = A_{,j} + B_{,j}$ if j = k.

Remark 1.4.11. This (and Lemma 1.1.4) allow to denote C by $A +_{k} B$.

Lemma 1.4.12. Let A, B be $m \times n$ matrices differing only in k-th column. Then A^t , B^t are $n \times m$ matrices differing only in k-th row, and $(A +_{,k} B)^t = A^t +_k B^t$.

Definition 1.4.13 (Determinant-like functions). " δ is a determinant-like function on $n \times n$ matrices" iff $\delta \colon \operatorname{Mat}(n, n; \mathbb{F}) \to \mathfrak{F}$ such that the following hold:

- (a) $\delta(I_n) = 1$.
- (b) (i) For any $n \times n$ matrix A, for any scalar c and for any $1 \le i \le n$, we have that $\delta(\mathcal{E}_{\mathbb{F},n;i\to ci}A) = c\delta(A)$.

18

1.4. DETERMINANTS

- (ii) For any $n \times n$ matrices A, B differing in only *i*-th row, $\delta(A+_iB) = \delta(A) + \delta(B)$.
- (c) For any $n \times n$ matrix A, if there exists a $1 \le i < n$ such that $A_i = A_{i+1}$, then $\delta(A) = 0$.

Lemma 1.4.14. Let A, B be $m \times n$ matrices, and $1 \leq i, j \leq m$, and c be a scalar such that for each $1 \leq k \leq m$, we have $B_k = A_k$ if $k \neq i$ and $B_k = A_j$ if k = i. Then A and $\mathcal{E}_{\mathbb{F},n;i\to ci}B$ differ only in *i*-th rows and we have $\mathcal{E}_{\mathbb{F},n;i\to i+cj}A = A_{+i} \mathcal{E}_{\mathbb{F},n;i\to ci}B$.

Lemma 1.4.15. Let δ be a determinant-like function for $n \times n$ matrices, and A be an $n \times n$ matrix, and $1 \leq i < n$, and $1 < j \leq n$, and c be a scalar. Then

(a) $\delta(\mathcal{E}_{\mathbb{F},n;i\to i+c(i+1)}A) = \delta(\mathcal{E}_{\mathbb{F},n;j\to j+c(j-1)}A) = \delta(A)$, and (b) $\delta(\mathcal{E}_{\mathbb{F},n;i\leftrightarrow i+1}A) = \delta(\mathcal{E}_{\mathbb{F},n;j\leftrightarrow i-1}A) = -\delta(A)$.

Lemma 1.4.16. Let δ be a determinant-like function on $n \times n$ matrices, and A be an $m \times n$ matrix and $1 \leq i < j \leq n$ such that $A_i = A_j$. Then

(a) there exists a $k \ge 1$, and matrices E_1, \ldots, E_k , and a $1 \le i_0 < m$ such that for each $1 \le l \le k$, there exists a $1 \le a < m$ so that $E_l = \mathcal{E}_{\mathbb{F},n;a\leftrightarrow a+1}$, and $(E_1\cdots E_kA)_{i_0} = (E_1\cdots E_kA)_{i_0+1}$, and (b) $m = n \implies \delta(A) = 0$.

Theorem 1.4.17 (Properties of determinant-like functions). Let δ be a determinant-like function on $n \times n$ matrices, and A be an $n \times n$ matrix, and c be a scalar, and $1 \leq i, j \leq n$ such that $i \neq j$. Then

$$\begin{split} \delta(\mathcal{E}_{\mathbb{F},n;i \to i+cj}A) &= \delta(A), \\ \delta(\mathcal{E}_{\mathbb{F},n;i \leftrightarrow j}A) &= -\delta(A), \\ \delta(\mathcal{E}_{\mathbb{F},n;i \to ci}A) &= c\delta(A), \\ A_i &= 0_{1 \times n} \implies \delta(A) = 0, \text{ and} \\ A_i &= cA_j \implies \delta(A) = 0. \end{split}$$

Corollary 1.4.18 (Determinants of elementary matrices). Let δ be a determinantlike function on $n \times n$ matrices, A be an $n \times n$ matrix, and E be an elementary matrix of size n, and c be a scalar and $1 \le i, j \le n$ such that $i \ne j$. Then

$$\delta(\mathcal{E}_{\mathbb{F},n;i\to i+cj}) = 1,$$

$$\delta(\mathcal{E}_{\mathbb{F},n;i\leftrightarrow j}) = -1,$$

$$\delta(\mathcal{E}_{\mathbb{F},n;i\to ci}) = c, and$$

$$\delta(EA) = \delta(E)\delta(A).$$

Theorem 1.4.19 (Determinants are multiplicative). Let δ be a determinantlike function on $n \times n$ matrices and A, B be $n \times n$ matrices. Then $\delta(AB) = \delta(A)\delta(B)$.

Theorem 1.4.20 (Uniqueness of determinant). Let $n \ge 1$. Then Det_n is the only determinant-like function on $n \times n$ matrices.

Proposition 1.4.21 (Further properties of determinants). Let A be a square matrix of size n. Then the following hold:

(a) (i) A is invertible $\iff \det(A) \neq 0$.

(ii) A is invertible $\implies \det(A) \neq 0$ and $\det(A^{-1}) = (\det(A))^{-1}$.

- (b) A^t is a square matrix of size n and $det(A^t) = det(A)$.
- (c) For any scalar c and for any $1 \le i, j \le n$ such that $i \ne j$,
 - (i) (1) $\det(A\mathcal{E}_{\mathbb{F},n;i\to ci}) = c \det(A),$
 - (2) for any square matrix B of size n differing from A only in the i-th column, $\det(A +_{,i} B) = \det(A) + \det(B)$,
 - (ii) (1) $\det(A\mathcal{E}_{\mathbb{F},n;i\to i+cj}) = \det(A),$ (2) $\det(A\mathcal{E}_{\mathbb{F},n;i\leftrightarrow j}) = -\det(A),$ (3) $\det(A\mathcal{E}_{\mathbb{F},n;i\to ci}) = c \det(A),$ (4) $A_{,i} = 0_{n\times 1} \Longrightarrow \det(A) = 0, and$ (5) $A_{,i} = cA_{,j} \Longrightarrow \det(A) = 0.$

Proposition 1.4.22 (Determinants of tridiagonal matrices). Let a, b, c be scalars and for all $n \ge 1$, let A_n be an $n \times n$ matrix such that for all $1 \le i, j \le n$,

$$A_{i,j} = \begin{cases} a, & i = j \\ b, & j = i+1 \\ c, & i = j+1 \end{cases}$$

Then for all $n \ge 1$, $\det(A_{n+1}) = a \det(A_{n+1}) - bc \det(A_n)$.

Proposition 1.4.23 (Determinants of block diagonals). Let A, B, D be $m \times m$ and $m \times n$ and $n \times n$ matrices. Then $\det \begin{pmatrix} \begin{bmatrix} A & B \\ 0_{n \times m} & D \end{bmatrix} = \det(A) \det(D)$.

Corollary 1.4.24. Let A, B, C, D be $n \times n$ matrices such that A is invertible and AC = CA. Then $det \begin{pmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \end{pmatrix} = det(AD - CB)$. **Proposition 1.4.25** (Vandermonde determinant). Let $n \in \mathbb{N}$, and t_0, \ldots, t_n be scalars and A be the $(n+1) \times (n+1)$ matrix such that $A_{i,j} = (t_{j-1})^{i-1}$ for all $1 \leq i, j \leq n+1$. Then $\det(A) = \prod_{k=0}^{n-1} (\prod_{l=k+1}^{n} (t_l - t_k))$.

Remark 1.4.26. We write " t_i 's are distinct" to abbreviate that t is injective.

Corollary 1.4.27. Let $n \in \mathbb{N}$ and $t_0, \ldots, t_n, b_0, \ldots, b_n$ be scalars such that t_i 's are distinct. Then there exist unique a_0, \ldots, a_n such that $a_0 + \ldots + a_n(t_i)^n = b_i$ for all $0 \le i \le n$.

Remark 1.4.28. From this, it follows that a polynomial of degree n can not have n + 1 distinct roots. That is, it has at most n distinct roots.

1.5 Permutations

October 22, 2021

Definition 1.5.1 (Permutations). "*p* is a permutation on *S*" iff $p: S \to S$ and *p* is a bijection.

Lemma 1.5.2 (Permuting entries by p permutes indices by p^{-1}). Let $n \ge 1$, and p be a permutation on $\{1, \ldots, n\}$ and X, Y be $n \times 1$ matrices such that $X_{i,1} = Y_{p(i),1}$ for all $1 \le i \le n$. Then for all $1 \le i \le n$, we have $Y_{i,1} = X_{p^{-1}(i),1}$.

Lemma 1.5.3 (Permutation matrices). Let $n \ge 1$ and p be a permutation on $\{1, \ldots, n\}$. Then there exists a unique $n \times n$ matrix P such that for any $n \times 1$ matrix X, we have $X_{i,1} = (PX)_{p(i),1}$ for all $1 \le i \le n$.

Remark 1.5.4. This allows to denote P by PerMat(p). (Functions uniquely determine their domains.)

Definition 1.5.5 (Permutation matrices). "*P* is the permutation matrix for *p* on $\{1, \ldots, n\}$ " iff $n \ge 1$, and *p* is a permutation on $\{1, \ldots, n\}$ and $P = \operatorname{PerMat}(p)$.

"*P* is an $n \times n$ permutation matrix" iff there exists a *p* such that *P* is the permutation matrix for *p* on $\{1, \ldots, n\}$.

Lemma 1.5.6 (Rows and columns of permutation matrices). Let P be the permutation matrix for p on $\{1, \ldots, n\}$. Then $P_{k} = e_{p(k),1;,n\times 1}$ and $P_{k} = e_{1,p^{-1}(k);1\times n}$ for all $1 \leq k \leq n$.

Corollary 1.5.7 (Permutation matrix for identity). Let $n \ge 1$. Then I_n is the permutation matrix for $\iota_{\{1,\ldots,n\}\to\{1,\ldots,n\}}$.

Corollary 1.5.8 (Permutation matrices permuting rows and columns). Let P be the permutation matrix for p on $\{1, \ldots, n\}$ and A, B be $n \times m$ and $m \times n$ matrices. Then for all $1 \le i \le n$, we have $(PA)_{p(i)} = A_i$ and $(BP)_{p(i)} = B_{i}$.

Proposition 1.5.9 (Characterizing permutation matrices). Let P be an $n \times n$ matrix. Then P is an $n \times n$ permutation matrix \iff for each $1 \le k \le n$, there exist $1 \le i, j \le n$ such that $P_k = e_{1,j;1 \times n}$ and $P_{,k} = e_{i,1;n \times 1}$.

Lemma 1.5.10. Let $n \ge 1$ and P be the permutation matrix for p on $\{1, \ldots, n+1\}$. Then $P_{\langle p(1), 1 \rangle}$ is an $n \times n$ permutation matrix.

Proposition 1.5.11 (Dtereminants of permutation matrices). Let P be an $n \times n$ permutation matrix. Then $\det(P) = 1$ or $\det(P) = -1$.

Proposition 1.5.12 (Matrices of permutation compositions). Let P, Q be the permutation matrices for p, q each on $\{1, \ldots, n\}$. Then PQ is the permutation matrix for $p \circ q$ on $\{1, \ldots, n\}$.

Lemma 1.5.13 (Inverses of permutation matrices). Let P be the permutation matrix for p on $\{1, \ldots, n\}$. Then

(a) P is invertible,
(b) P⁻¹ = P^t, and
(c) P⁻¹ is the permutation matrix for p⁻¹ on {1,...,n}.

Lemma 1.5.14 (Transpositions). Let $n \in \mathbb{N}$ and $1 \leq i, j \leq n$. Then there exists a unique function $f \colon \{1, \ldots, n\} \to \{1, \ldots, n\}$ such that for all $1 \leq k \leq n$,

$$f(k) = \begin{cases} j, & k = i \\ i, & k = j \\ k, & k \neq i, j \end{cases}$$

Remark 1.5.15. This allows to denote f by $\tau_{n:i\leftrightarrow j}$.

Definition 1.5.16 ((Proper) transpositions). "*T* is a (proper) transposition on $\{1, \ldots, n\}$ " iff $n \in \mathbb{N}$ and there exist $1 \leq i, j \leq n$ such that $(i \neq j \text{ and})$ $T = \tau_{n;i\leftrightarrow j}$. **Lemma 1.5.17** (Transpositions are permutations). Let $n \in \mathbb{N}$ and T be a transposition on $\{1, \ldots, n\}$. Then T is a permutation on $\{1, \ldots, n\}$.

Lemma 1.5.18 (Permutation matrices for transpositions). Let $n \ge 1$ and $1 \le i, j \le n$. Then $\operatorname{PerMat}(\tau_{n;i\leftrightarrow j}) = \mathcal{E}_{\mathbb{F},n;i\leftrightarrow j}$.

Remark 1.5.19. We don't define empty function composition.

Proposition 1.5.20 (Permutations as transposition compositions). Let $n \in \mathbb{N}$ and p be a permutation on $\{1, \ldots, n\}$. Then there exists a $k \geq 1$ and transpositions T_1, \ldots, T_k on $\{1, \ldots, n\}$ such that $p = T_1 \circ \cdots \circ T_k$.

Abbreviation 1.5.21 (Signs of permutations). For any $n \ge 1$ and for any permutation p on $\{1, \ldots, n\}$, we set sign(p) := det(PerMat(p)).

Proposition 1.5.22 (Odd and even permutations). Let $n \ge 1$, and $k \ge 1$ and T_1, \ldots, T_k be proper transpositions on $\{1, \ldots, n\}$. Set $p := T_1 \circ \cdots \circ T_k$. Then p is a permutation on $\{1, \ldots, n\}$, and

(a) k is even \implies sign(p) = 1, and (b) k is odd \implies sign(p) = -1.

Lemma 1.5.23 (Cycles). Let $n, k \in \mathbb{N}$ such that $k \leq n$. Then there exists a unique function $p: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ such that for each $1 \leq i \leq n$,

$$p(i) = \begin{cases} i+1, & i < k \\ 1, & i = k \\ i, & i > k \end{cases}$$

Remark 1.5.24. This allows to denote p by $(1 \cdots k)_n$.

Corollary 1.5.25. Let $n, k \in \mathbb{N}$ such that $k \leq n$. Set $p := (1 \cdots k)_n$. Then

(a)
$$p \in S_n$$
, and
(b) $k = 0$ or $k = 1 \implies p = \iota_{\{1,\dots,n\} \to \{1,\dots,n\}}$

Lemma 1.5.26 (Sign of cycles). Let $1 < k \leq n$ and set $p := (1 \cdots k)_n$. Then

(a) $p = \tau_{n;1\leftrightarrow 2} \circ \cdots \circ \tau_{n;k-1\leftrightarrow k}$, and

1.6 Other formulas for the determinant

October 24, 2021

Proposition 1.6.1 (Expanding det on arbitrary rows and columns). Let $n \ge 1$, and A be an $(n + 1) \times (n + 1)$ matrix and $1 \le i_0, j_0 \le n + 1$. Then

$$\det(A) = \sum_{i=1}^{n+1} (-1)^{i+j_0} A_{i,j_0} \det(A_{\langle i,j_0 \rangle})$$
$$= \sum_{j=1}^{n+1} (-1)^{i_0+j} A_{i_0,j} \det(A_{\langle i_0,j \rangle}).$$

Lemma 1.6.2 (Embedding permutations doesn't change sign). Let $n \ge 1$, and p be a permutation on $\{1, \ldots, n\}$ and $q: \{1, \ldots, n+1\} \rightarrow \{1, \ldots, n+1\}$ such that for each $1 \le i \le n+1$,

$$q(i) = \begin{cases} p(i), & i \le n \\ n+1, & i = n+1 \end{cases}.$$

Then q is a permutation on $\{1, \ldots, n+1\}$ and sign(p) = sign(q).

Lemma 1.6.3. Let $n \ge 1$, and p be a permutation on $\{1, ..., n\}$ and $q: \{1, ..., n+1\} \rightarrow \{1, ..., n+1\}$ such that for all $1 \le i \le n+1$,

$$q(i) = \begin{cases} 1, & i = 1\\ p(i-1) + 1, & i > 1 \end{cases}.$$

Then q is a permutation on $\{1, \ldots, n+1\}$ and sign(p) = sign(q).

Proposition 1.6.4 (Complete expansion of det). Let $n \ge 1$ and A be an $n \times n$ matrix. Then

$$\det(A) = \sum_{p \in X} \operatorname{sign}(p) A_{1,p(1)} \cdots A_{n,p(n)}$$

where $X := \{p : p \text{ is a permutation on } \{1, \ldots, n\}\}.$

Lemma 1.6.5 (Co-factor matrix). Let A be an $n \times n$ matrix. Then there exists a unique $n \times n$ matrix C such that

(a)
$$n = 1 \implies C = [1]$$
, and
(b) $n > 1 \implies C_{i,j} = (-1)^{i+j} \det(A_{\langle j,i \rangle})$ for all $1 \le i, j \le n$.

Remark 1.6.6. This allows to denote C by cof(A).

Theorem 1.6.7 (Inverse using co-factor matrix). Let A be an $n \times n$ matrix. Then $A \operatorname{cof}(A) = \operatorname{cof}(A)A = \det(A)I_n$.

Remark 1.6.8. We'll write $x = \pm k$ for abbreviating "x = k or x = -k".

Example 1.6.9. Let A be an invertible matrix with integer entries. Then A^{-1} has integer entries $\iff \det(A) = \pm 1$.

Chapter 2

Groups

2.1 Laws of composition

October 28, 2021

Definition 2.1.1 (Identity). "e is an identity for + on S" iff S is a set, and $+: S \times S \to S$, and $e \in S$ and e + x = x + e = x for each $x \in S$.

"+ on S has an identity" iff there is an e such that e is an identity for + on S.

Lemma 2.1.2 (Uniqueness of identity). Let + on S have an identity. Then there exists a unique e such that e is the identity for + on S.

Remark 2.1.3. This allows to denote e by Id₊. (S determined by +.)

Definition 2.1.4 (Inverses). "a is an inverse of b for + on S with identity" iff + on S has an identity, and $b \in S$ and $a + b = b + a = Id_+$.

"b is invertible for + on S" iff there exists an a such that a is an inverse of b for + on S with identity.

Definition 2.1.5 (Associativity). "+ on S is associative" iff S is a set and $+: S \times S \to S$ and (a + b) + c = a + (b + c) for all $a, b, c \in S$.

Lemma 2.1.6 (Uniqueness of inverses). Let + on S have an identity and be associative and $a, l, r \in S$. Then

- (a) $a + l = a + r \implies l = r$, and
- (b) a is invertible for + on $S \implies$ there exists a unique b such that b is the inverse of a.

Remark 2.1.7. This allows to denote b by $Inv_+(a)$.

Lemma 2.1.8 (Inverses of products and inverses). Let + on S have an identity and be associative, and $a, b \in S$ be invertible. Then a+b and $Inv_+(a)$ are invertible with

$$Inv_+(a+b) = Inv_+(b) + Inv_+(a), and$$
$$Inv_+(Inv_+(a)) = a.$$

Proposition 2.1.9 (Strings for associative operations). Let + on S be associative. Then there exists a unique function $\mathcal{F} \colon \mathbb{N} \setminus \{0\} \to \bigcup_{n \geq 1} S^{(S^{\{1,\dots,n\}})}$ such that

- (a) $\mathcal{F}_m: S^{\{1,\dots,m\}} \to S$ for each $m \ge 1$,
- (b) $\mathcal{F}_1(a) = a \text{ for each } a \in S^{\{1,...,1\}}, \text{ and }$
- (c) for all $1 \leq i < m$ and for each $b \in S^{\{1,\dots,m-i\}}$ such that $b_k = a_{k+i}$ for each $1 \leq k \leq m-i$, we have $\mathcal{F}_m(a) = \mathcal{F}_i(a \circ \iota_{\{1,\dots,i\} \to \{1,\dots,m\}}) + \mathcal{F}_{m-i}(b)$.

Remark 2.1.10. This allows to denote $\mathcal{F}_m(a)$ by $a_1 + \cdots + a_m$ for each $a \in S^{\{1,\dots,m\}}$ and for each $m \geq 1$. (S and m are determined by a.)

This also allows, for each $a \in S$ and for each $m \geq 1$, to denote $\mathcal{F}_m(b)$ by $\operatorname{Iter}_{+,m}(a)$ where b is the unique function (determined by a and m) such that $b \colon \{1, \ldots, m\} \to S$ so that $b_k = a$ for all $1 \leq k \leq m$.

Lemma 2.1.11 (Adding constant strings, and strings of a string). Let + on S be associative, and $a \in S$ and $r, s \ge 1$. Then $rs, r + s \ge 1$, and

$$Iter_{+,r}(a) + Iter_{+,s}(a) = Iter_{+,r+s}(a), and$$
$$Iter_{+,s}(Iter_{+,r}(a)) = Iter_{+,rs}(a).$$

Lemma 2.1.12. Let + on S be associative and have an identity, and $a \in S$. Then there exists a unique function $f \colon \mathbb{N} \to S$ such that for each $n \in \mathbb{N}$,

$$f((a,n)) = \begin{cases} \mathrm{Id}_+, & n = 0\\ \mathrm{Iter}_{+,n}(a), & n \ge 1 \end{cases}$$

Remark 2.1.13. This allows to set f(n) by $\text{IterId}_{+,n}(a)$ for each $n \in \mathbb{N}$.

Corollary 2.1.14. Let + on S be associative and have an identity, and $a \in S$, and $n \in \mathbb{N}$. Then

- (a) IterId_{+,n}(Id₊) = Id₊,
- (b) IterId_{+,0} $(a) = Id_+$, and
- (c) $n \ge 1 \implies \text{IterId}_{+,n}(a) = \text{Iter}_{+,n}(a)$.

Lemma 2.1.15. Let + on S have an identity and be associative, and $a \in S$, and $r, s \in \mathbb{N}$. Then $rs, r + s \in \mathbb{N}$ and analogue of Lemma 2.1.11 holds.

Lemma 2.1.16. Let + on S have an identity and be associative, and $a \in S$ be invertible. Then there exists a unique function $f: \mathbb{Z} \to S$ such that for each $p \in \mathbb{Z}$,

$$f(p) = \begin{cases} \text{IterId}_{+,p}(a), & p \ge 0\\ \text{Iter}_{+,-p}(\text{Inv}_{+}(a)) & p < 0 \end{cases}.$$

Remark 2.1.17. This allows to denote f(p) by $\operatorname{Itr}_{+,p}(a)$ for each $p \in \mathbb{Z}$.

Corollary 2.1.18. Let + on S be associative and have an identity, and $a \in S$ be invertible and $n \in \mathbb{N}$. Then

- (a) $\operatorname{Itr}_{+,n}(a) = \operatorname{IterId}_{+,n}(a),$
- (b) $\operatorname{Itr}_{+,-1}(a) = \operatorname{Inv}_{+}(a)$, and
- (c) IterId_{+,n}(a) is invertible and Itr_{+,-n}(a) = Inv₊(IterId_{+,n}(a)).

Lemma 2.1.19. Let + on S have an identity and be associative, and $a \in S$ be invertible and $r, s \in \mathbb{Z}$. Then $r + s, rs \in \mathbb{Z}$ and analogue of Lemma 2.1.11 holds.

Lemma 2.1.20 (Restriction of binary operations). Let G be a set, and $:: G \times G \to G$ and $H \subseteq G$ such that $a \cdot b \in H$ for each $a, b \in H$. Then there exists a unique function $*: H \times H \to H$ such that $a * b = a \cdot b$ for all $a, b \in H$.

Remark 2.1.21. This allows to denote * by \cdot_{H} . (This is poor notation if ordered pairs are considered as Kuratowski pairs.)

2.2 Groups and subgroups

October 29, 2021

Definition 2.2.1 (Groups). " (G, \cdot) is a group" iff \cdot on G has an identity and is associative, and each $a \in G$ is invertible.

Proposition 2.2.2. Let + on S be associative and have an identity. Set $G := \{x \in S : x \text{ is invertible for } + \text{ on } S\}$. Then $(G, +_G)$ is a group.

28

Proposition 2.2.3. Let (G, \cdot) be a group, and $a, b \in G$ and $n \in \mathbb{Z}$. Then Iter_{.,n} $(a \cdot b) = \text{Id.} \iff \text{Iter}_{.,n}(b \cdot a) = \text{Id.}$.

Definition 2.2.4 (Finite groups). " (G, \cdot) is a finite group" iff (G, \cdot) is a group and G is a finite set.

Definition 2.2.5 (Abelian groups). " (G, \cdot) is an abelian group" iff (G, \cdot) is a group and $a \cdot b = b \cdot a$ for all $a, b \in G$.

Corollary 2.2.6 (A condition for commuting elements). Let (G, \cdot) be a group and $a, b \in G$ such that $\text{Iter}_{,2}(a) = \text{Iter}_{,2}(b) = \text{Iter}_{,2}(ab) = \text{Id}_{..}$ Then $a \cdot b = b \cdot a$.

Proposition 2.2.7 (Cancellation law). Let (G, \cdot) be a group and $a, b, c \in G$. Then

- (a) $(ab = ac \text{ or } ba = ca) \implies b = c, and$
- (b) $(ab = a \text{ or } ba = a) \implies b = \text{Id}_{..}$

Abbreviation 2.2.8 (General linear, symmetric and alternating groups). For any $n \ge 1$, we set $\operatorname{GL}_n(\mathbb{F}) := \{A \in \operatorname{Mat}(n, n; \mathbb{F}) : A \text{ is invertible}\}$ and for any $m \in \mathbb{N}$, we set $S_m := \{p \in \{1, \ldots, m\}^{\{1, \ldots, m\}} : p \text{ is bijective}\}$ and $A_m := \{p \in S_m : \operatorname{sign}(p) = 1\}.$

Lemma 2.2.9 (Cardinality of S_n). Let $n \in \mathbb{N}$. Then $\#(S_n) = n!$.

Example 2.2.10 (Groups). For any $m, n \in \mathbb{N}$ such that $n \ge 1$, we have that (S_m, \circ) and $(GL_n(\mathbb{F}), matrix multiplication)$ are groups.

Example 2.2.11 (Characterizing S_3). Set x := (123), and y := (12). Then, in multiplicative notation,

$$x, y \neq 1,$$

 $x^{3} = 1,$
 $y^{2} = 1,$
 $yx = x^{2}y, and$
 $S_{3} = \{1, x, x^{2}, y, xy, x^{2}y\}$

Definition 2.2.12 (Subgroups). "*H* is a subgroup of (G, \cdot) " iff the following hold:

(a) $H \subseteq G$.

- (b) $a \cdot b \in H$ for each $a, b \in H$.
- (c) (H, \cdot_H) is a group.

Proposition 2.2.13 (An equivalent condition for being a subgroup). Let (G, \cdot) be a group and H be a set. Then H is a subgroup of $(G, \cdot) \iff$ the following hold:

- (a) $H \subseteq G$.
- (b) $a \cdot b \in H$ for all $a, b \in H$.
- (c) Id. $\in H$.
- (d) Inv.(a) $\in H$ for each $a \in H$.

Proposition 2.2.14 (Subgroups of subgroups). Let H be a subgroup of (G, \cdot) and K be a subgroup of (H, \cdot_H) . Then K is a subgroup of (H, \cdot) .

Proposition 2.2.15 (Intersection of subgroups). Let H and K be subgroups of (G, \cdot) . Then $H \cup K$ is a subgroup of (G, \cdot) .

Lemma 2.2.16 (Trivial subgroups). Let (G, \cdot) be a group. Then G, {Id.} are subgroups of (G, \cdot) .

Definition 2.2.17 (Proper subgroups). "*H* is a proper subgroup of (G, \cdot) " iff *H* is a subgroup of (G, \cdot) , and $H \neq G$ and $H \neq \{\text{Id.}\}$.

Abbreviation 2.2.18 (Special linear groups). For any $n \ge 1$, we set $SL_n(\mathbb{F}) := \{A \in GL_n(\mathbb{F}) : \det(A) = 1\}.$

Example 2.2.19 (Examples of subgroups).

- (a) $SL_n(\mathbb{F})$ is a subgroup of $(GL_n(\mathbb{F}), matrix multiplication)$ for any $n \geq 1$.
- (b) $\{z \in \mathbb{C} : |z| = 1_{\mathbb{R}}\}$ is a subgroup of $(\mathbb{C}, complex multiplication)$.
- (c) The set of upper triangular matrices is a subgroup of $(GL_n(\mathbb{F}), matrix multiplication)$ for each $n \ge 1$.
- (d) Let $1 \leq r < n$. Then $\left\{ \begin{bmatrix} A & B \\ 0_{(n-r) \times r} & D \end{bmatrix} : A \in \operatorname{GL}_r(\mathbb{F}), D \in \operatorname{GL}_{n-r}(\mathbb{F}) \right\}$ is a subgroup of $(\operatorname{GL}_n(\mathbb{F}), matrix multiplication)$.

Definition 2.2.20 (Subgroups generated by sets). "*H* is a smallest subgroup of (G, \cdot) generated by *S*" iff *H* is the minimal set such that $S \subseteq H$ and *H* is a subgroup of (G, \cdot) .

Corollary 2.2.21 (Uniqueness of the subgroups generated by sets). Let H, H' be subgroups of (G, \cdot) generated by S. Then H = H'.

30

Example 2.2.22. The group generated by a subset contains exactly all the finite products (including empty products which evaluate to identity) of the elements of U and their inverses.

Proposition 2.2.23 (Product set of subgroups being a subgroup). Let H, K be subgroups of (G, \cdot) . Set $A := \{h \cdot k : h \in H, k \in K\}$ and $B := \{k \cdot h : k \in K, h \in H\}$. Then A is a subgroup of $(G, \cdot) \iff A = B$.

Proposition 2.2.24 (Type I and type III generate $\operatorname{GL}_n(\mathbb{F})$). Let $n \geq 1$. Then $\operatorname{GL}_n(\mathbb{F})$ is the smallest subgroup of $\operatorname{GL}_n(\mathbb{F})$ generated by $\{E \in \operatorname{Mat}(n, n; \mathbb{F}) : E \text{ is type I or type III elementary matrix of size } n\}$.

Proposition 2.2.25 (Type I generates $SL_n(\mathbb{F})$). Let $n \ge 1$. Then $SL_n(\mathbb{F})$ is the smallest subgroup of $GL_n(\mathbb{F})$ generated by $\{E \in Mat(n, n; \mathbb{F}) : E \text{ is a type I elementary matrix of size}\}$

Proposition 2.2.26 ((Proper) transpositions generate S_n). Let $n \in \mathbb{N}$. Then S_n is the smallest subgroup of S_n generated by $\{p \in S_n : p \text{ is a proper transposition}\}$.

Proposition 2.2.27 (3-cycles generate A_n). Let $n \ge 3$. Then A_n is the smallest subgroup of S_n generated by $\{p \circ (1 \cdots 3)_n \circ p^{-1} : p \in S_n\}$.

Abbreviation 2.2.28 (Subgroups generated by singletons). For any group (G, \cdot) and any $x \in G$, we set $\langle x \rangle_{\cdot} := { Itr_{\cdot,m}(x) : m \in \mathbb{Z} }.$

Lemma 2.2.29. Let (G, \cdot) be a group and $x \in G$. Then $\langle x \rangle_{\cdot}$ is the smallest subgroup of (G, \cdot) generated by $\{x\}$.

Definition 2.2.30 (Path connections in subsets of \mathbb{R}^k). "*a* and *b* are connected in *S* of \mathbb{R}^{k} " iff $k \geq 1$, and $a, b \in \mathbb{R}^k$, and $S \subseteq \mathbb{R}^k$, and there exists a $\phi: [0_{\mathbb{R}}, 1_{\mathbb{R}}] \to \mathbb{R}^k$ such that

(a) $\phi(0_{\mathbb{R}}) = a$ and $\phi(1_{\mathbb{R}}) = b$,

- (b) ϕ is conitnuous, and
- (c) $\phi(x) \in S$ for all $0_{\mathbb{R}} \leq x \leq 1_{\mathbb{R}}$.

Definition 2.2.31 (Path-connected subsets). "S is path-connected in \mathbb{R}^{k} " iff S is a set such that for every $a, b \in S$, we have that a and b are connected in S of \mathbb{R}^{k} .

Proposition 2.2.32 (Path connections form an equivalence relation). Let $k \ge 1$, and $S \subseteq \mathbb{R}^k$ and $a \in S$. Set $R := \{(a, b) : a \text{ and } b \text{ are connected in } S \text{ of } \mathbb{R}^k\}$. Then

- (a) R is an equivalence relation on S, and
- (b) $[a]_R$ is path-connected in \mathbb{R}^k .

Example 2.2.33 (Examples of path-connected subsets). $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ and $\{(x, y) \in \mathbb{R}^2 : xy = 0\}$ are path-connected in \mathbb{R}^2 , whereas $\{(x, y) \in \mathbb{R}^2 : xy = 1\}$ is not.

Remark 2.2.34. From Definition 2.2.35 to Example 2.2.39, we'll fix an $n \ge 1$ and a bijection $f: \{1, \ldots, n\} \times \{1, \ldots, n\} \rightarrow \{1, \ldots, n^2\}$.

We'll set g to be the unique function $g: \operatorname{Mat}(n, n; \mathbb{R}) \to \mathbb{R}^{n^2}$ such that $g(A)_{f((i,j))} = A_{i,j}$ for any $A \in \operatorname{Mat}(n, n; \mathbb{R})$ and for all $1 \leq i, j \leq n$. We'll also shorten $\operatorname{GL}_n(\mathbb{R}, +, \operatorname{real multiplication})$ to $\operatorname{GL}_n(\mathbb{R})$.

Definition 2.2.35 (Path connections in subsets of $\operatorname{GL}_n(\mathbb{R})$). "A and B are connected in S of $\operatorname{GL}_n(\mathbb{R})$ " iff $S \subseteq \operatorname{GL}_n(\mathbb{R})$, and g(A) and g(B) are connected in g[S] of $g[\operatorname{GL}_n(\mathbb{R})]$.

"S is path-connected in $\operatorname{GL}_n(\mathbb{R})$ " iff S is a set such that for every $A, B \in S$, we have that A and B are connected in S of $\operatorname{GL}_n(\mathbb{R})$.

Example 2.2.36 (Connected components are normal subgroups). Let G be a subgroup of $(GL_n(\mathbb{R}), matrix multiplication)$, and A and B, and C and D be connected in G of $GL_n(\mathbb{R})$. Then

- (a) AC and BD are connected in G of $GL_n(\mathbb{R})$, and
- (b) $\{M \in \operatorname{GL}_n(\mathbb{R}) : M \text{ and } I_n \text{ are connected in } G \text{ of } \operatorname{GL}_n(\mathbb{R})\}\$ is a normal subgroup of $(\operatorname{GL}_n(\mathbb{R}), matrix multiplication).$

Proposition 2.2.37 (SL_n(\mathbb{R}) is path-connected). SL_n(\mathbb{R}) is path-connected in GL_n(\mathbb{R}).

Example 2.2.38 (Generators of $GL_n(\mathbb{R})$). $GL_n(\mathbb{R})$ is the smallest subgroup of $(GL_n(\mathbb{R}), matrix multiplication)$ generated by $\{E \in Mat(n, n; \mathbb{R}) : (E \text{ is type } I \text{ elementary } m \mathcal{E}_{\mathbb{F},n;i \to ci} \text{ for some } c > 0 \text{ and some } 1 \leq i \leq n) \text{ or } (E = I_n - 2e_{1,1})\}.$

Example 2.2.39 (GL_n(\mathbb{R})'s connected subsets). Let $A \in GL_n(\mathbb{R})$. Set

 $\begin{aligned} X &:= \{B \in \operatorname{GL}_n(\mathbb{R}) : \det(B) > 0\}, \\ Y &:= \{B \in \operatorname{GL}_n(\mathbb{R}) : \det(B) < 0\}, \\ W &:= \{B \in \operatorname{GL}_n(\mathbb{R}) : B \text{ and } I_n \text{ are connected in } \operatorname{GL}_n(\mathbb{R}) \text{ of } \operatorname{GL}_n(\mathbb{R})\}, \text{ and} \\ Z &:= \{B \in \operatorname{GL}_n(\mathbb{R}) : B \text{ and } I_n - 2e_{1,1} \text{ are connected in } \operatorname{GL}_n(\mathbb{R}) \text{ of } \operatorname{GL}_n(\mathbb{R})\}. \end{aligned}$

Then

- (a) X = W and Y = Z,
- (b) $\{X, Y\}$ is a partition of $GL_n(\mathbb{R})$,
- (c) W and Z are path-connected in $GL_n(\mathbb{R})$, and
- (d) P and Q are not connected in $\operatorname{GL}_n(\mathbb{R})$ of $\operatorname{GL}_n(\mathbb{R})$ for any $P \in W$ and any $Q \in Z$.

2.3 Subgroups of the additive group of integers

October 29, 2021

Lemma 2.3.1 (Euclid's division lemma for \mathbb{Z}). Let $a, b \in \mathbb{Z}$ such that $b \neq 0$. Then there exist unique $q, r \in \mathbb{Z}$ such that $0 \leq r < |b|$ and a = bq + r.

Abbreviation 2.3.2. For any $a \in \mathbb{Z}$, we set $\mathbb{Z}a := \{ka : k \in \mathbb{Z}\}$.

Corollary 2.3.3.

(a) Let $a \in \mathbb{Z}$. Then $\mathbb{Z}a = \mathbb{Z}(-a) = \mathbb{Z}(|a|)$. (b) $\mathbb{Z}1 = \mathbb{Z}$. (c) $\mathbb{Z}0 = \{0\}$.

Lemma 2.3.4 (Strings in $(\mathbb{Z}, +)$). Let $m, n \in \mathbb{Z}$. Then $Itr_{+,m}(n) = mn$.

Corollary 2.3.5 (a generates $\mathbb{Z}a$). Let $a \in \mathbb{Z}$. Then $\mathbb{Z}a = \langle a \rangle_+$.

Lemma 2.3.6. Let $a, b \ge 0$ such that $\mathbb{Z}a = \mathbb{Z}b$. Then a = b.

Theorem 2.3.7 (Characterizing subgroups of \mathbb{Z}). Let S be a subgroup of $(\mathbb{Z}, +)$. Then, setting $X := \{m \in S : m > 0\}$

- (a) $X = \emptyset \implies S = \{0\}, and$
- (b) $X \neq \emptyset \implies S = \mathbb{Z}(\min(X)).$

Abbreviation 2.3.8. For any $a, b \in \mathbb{Z}$, we set $\mathbb{Z}a + \mathbb{Z}b := \{x + y : x \in \mathbb{Z}a, y \in \mathbb{Z}b\}$.

Lemma 2.3.9 (a, b generate $\mathbb{Z}a + \mathbb{Z}b$). Let $a, b \in \mathbb{Z}$. Then $\mathbb{Z}a + \mathbb{Z}b$ is the smallest subgroup of (G, \cdot) generated by $\{a, b\}$.

Lemma 2.3.10 (gcd). Let $a, b \in \mathbb{Z}$ such that not both are zero. Then there exists a unique m > 0 such that $\mathbb{Z}a + \mathbb{Z}b = \mathbb{Z}m$.

Remark 2.3.11. This allows to denote m by gcd(a, b).

Corollary 2.3.12. Let $a, b \in \mathbb{Z}$ such that not both are zero. Then |a|, |b| are not both zero and gcd(a, b) = gcd(|a|, |b|).

Proposition 2.3.13 (Euclid's algorithm). Let $a, b \in \mathbb{N}$ not both be zero. Then there exist unique functions $A, B: \mathbb{N} \to \mathbb{N}$ such that $A_0 = \max(a, b)$, and $B_0 = \min(a, b)$ and for all $n \in \mathbb{N}$,

$$(A_{n+1}, B_{n+1}) = \begin{cases} (B_n, remainder \ on \ dividing \ A_n \ by \ B_n), & B_n \neq 0\\ (A_n, 0), & B_n = 0 \end{cases}$$

Further, for any such functions A, B, the following hold:

- (a) For each $n \in \mathbb{N}$,
 - (i) $A_n > 0$ and $B_n \ge 0$,
 - (*ii*) $B_n \neq 0 \implies B_{n+1} < B_n$, and
 - (*iii*) $\mathbb{Z}A_n + \mathbb{Z}B_n = \mathbb{Z}a + \mathbb{Z}b.$
- (b) Setting $K := \{n \in \mathbb{N} : B_n = 0\}$, we have $K \neq \emptyset$. Set $N := \min(K)$. Also, $A_n = A_N$ and $B_n = 0$ for each $n \ge N$.

(c)
$$gcd(a,b) = A_N$$

Definition 2.3.14 (Divisors). "*a* is a divisor of *b*" or "*a* divides *b*" or *b* is a multiple of *a*" iff $a, b \in \mathbb{Z}$ and $b \in \mathbb{Z}a$.

Lemma 2.3.15 (Quotients). Let m divide n such that $m \neq 0$. Then there exists a unique $q \in \mathbb{Z}$ such that n = qm.

Remark 2.3.16. This allows to denote q by n/m.

Proposition 2.3.17 (Characterizing gcd). Let $a, b, d \in \mathbb{Z}$ such that a, b are not both zero. Then

- (a) gcd(a, b) is a divisor of a, b,
- (b) d is a divisor of a, $b \implies d$ is a divisor of gcd(a, b), and
- (c) gcd(a, b) = ra + sb for some $r, s \in \mathbb{Z}$.

Proposition 2.3.18 (gcd of quotients). Let $a, b, k \in \mathbb{Z}$ such that a, b are not both zero and k divides both a and b. Set d := gcd(a, b). Then

- (a) k divides d and $k \neq 0$,
- (b) $\mathbb{Z}(a/k) + \mathbb{Z}(b/k) = \mathbb{Z}(d/k)$, and

(c) gcd(a,b) = d/|k|.

Definition 2.3.19 (Co-primes). "a, b are co-primes" iff $a, b \in \mathbb{Z}$ and $\mathbb{Z}a + \mathbb{Z}b = \mathbb{Z}$.

Proposition 2.3.20 (Characterizing co-primes). Let $a, b \in \mathbb{Z}$. Then the following are equivalent:

- (a) a, b are co-primes.
- (b) There exist $r, s \in \mathbb{Z}$ such that ra + rb = 1.
- (c) For any d > 0, if d divides a, b, then d = 1.

Definition 2.3.21 (Primes). "p is a prime" iff $p \in \mathbb{Z}$, and $p \neq 1$, and $p \neq -1$ and for any a, if a divides p, then $a \in \{1, -1, p, -p\}$.

Corollary 2.3.22. 0 is not prime.

Proposition 2.3.23. Let p be a prime and $a, b \in \mathbb{Z}$ such that p divides ab. Then p divides a or p divides b.

Lemma 2.3.24 (lcm). Let $a, b \in \mathbb{Z} \setminus \{0\}$. Then there exists a unique m > 0 such that $\mathbb{Z}a \cap \mathbb{Z}b = \mathbb{Z}m$.

Remark 2.3.25. This allows to denote m by lcm(a, b).

Proposition 2.3.26 (Characterizing lcm). Let $a, b, m \in \mathbb{Z}$ such that a, b are each nonzero. Then

- (a) lcm(a, b) is a positive multiple of a, b, b
- (b) m is a multiple of a, b and $m > 0 \implies m$ is a multiple of lcm(a, b).

Proposition 2.3.27 (lcm of quotients). Let $a, b, k \in \mathbb{Z}$ such that $a, b \neq 0$ and k divides both a and b. Set m := lcm(a, b). Then

- (a) k divides m and $k \neq 0$,
- (b) $\mathbb{Z}(a/k) \cap \mathbb{Z}(b/k) = \mathbb{Z}(m/k)$, and
- (c) $\operatorname{lcm}(a/k, b/k) = m/|k|$.

Lemma 2.3.28. Let $a, b \ge 0$ such that a divides b and b divides a. Then a = b.

Proposition 2.3.29 (Product of gcd and lcm). Let $a, b \ge 1$. Then gcd(a, b) lcm(a, b) = ab.

Corollary 2.3.30. Let m, n > 0 and $k \in \mathbb{Z}$ such that n divides mk. Then n divides $m \operatorname{gcd}(n, k)$.

Corollary 2.3.31 (lcm of co-primes). Let $r, s \ge 1$ be co-primes. Then lcm(r, s) = rs.

2.4 Cyclic groups

October 29, 2021

Definition 2.4.1 (Cyclic groups). " (G, \cdot) is a cyclic group" iff (G, \cdot) is a group and there exists an $a \in G$ such that $\langle x \rangle = G$.

Corollary 2.4.2 (Cyclic groups are abelian). Let (G, \cdot) be a cyclic group. Then (G, \cdot) is an abelian group.

Example 2.4.3. (S_3, \circ) is non-abelian and non-cyclic.

Proposition 2.4.4 (Subgroups of cyclic groups). Let (G, \cdot) be a cyclic group and H be a subgroup of (G, \cdot) . Then (H, \cdot_H) is a cyclic group.

Definition 2.4.5 (Order of elements). "x has order n in (G, \cdot) " iff $(, \cdot)$ is a group and, setting $S := \{m > 0 : \operatorname{Itr}_{,m}(x) = \operatorname{Id}_{\cdot}\}$, we have $S \neq \emptyset$ and $n = \min(S)$.

Proposition 2.4.6 (Finite groups have finite orders). Let (G, \cdot) be a finite group and $x \in G$. Then there exists a unique $n \ge 1$ such that x has order n in (G, \cdot) .

Remark 2.4.7. We write P(i)'s are distinct for each $i \in X$ " to mean that there exists a set Y and a function $f: X \to Y$ such that f(i) = P(i) for each $x \in X$, and that any such f is injective.

Proposition 2.4.8 (Cyclic subgroups). Let (G, \cdot) be a group, and $x \in \mathbb{G}$, and $r, s \in \mathbb{Z}$ and $n \geq 1$. Set $S := \{k \in \mathbb{Z} : \text{Itr}_{k}(x) = \text{Id}_{k}\}$. Then

- (a) S is a subgroup of $(\mathbb{Z}, +)$,
- (b) $x^r = x^s \iff r s \in S$, and
- (c) the following are equivalent:
 - (i) $S = \mathbb{Z}n$. (ii) $\langle x \rangle_{\cdot} = \{ \operatorname{Itr}_{\cdot,i}(x) : 0 \leq i < n \}$ and $\operatorname{Itr}_{\cdot,i}(x)$'s are distinct for $0 \leq i < n$.
 - (iii) $\langle x \rangle_{\cdot}$ has n elements.
 - (iv) x has order n in (G, \cdot) .

Proposition 2.4.9 (Order of x^k). Let x have order n in (G, \cdot) and $k \in \mathbb{Z}$. Then x^k has order n / gcd(n, k) in (G, \cdot) .
Proposition 2.4.10 (Elements with no finite order). Let (G, \cdot) be a group and $a \in G$. Then $\langle a \rangle_{\cdot}$ is a finite set \iff there exists an $n \in \mathbb{Z} \setminus \{0\}$ such that Iter.,n(a) = Id..

Proposition 2.4.11 (Characterizing groups with no proper subgroups). Let (G, \cdot) be a group. Then there are no proper subgroups of $(G, \cdot) \iff G$ is a finite set such that #(G) = 1 or #(G) is prime.

Example 2.4.12 (Order of elements in S_4).

n	Number of elements of order n in S_4
1	1
2	9
3	8
4	6

Example 2.4.13 (Product of finite ordered elements need not be finite ordered). Let b be a nonzero scalar. Then $\begin{bmatrix} 1 & b \\ 0 & -1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ have order 2 in (GL_n(F), matrix multiplication), but $\left(\begin{bmatrix} 1 & b \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right)^n \neq I_n$ for any $n \ge 1$.

2.5 Homomorphisms

October 30, 2021

Definition 2.5.1 (Homomorphisms). " ϕ is a homomorphism from (G, \cdot) to (G', *)" iff $(G, \cdot), (G', *)$ are groups, and $\phi: G \to G'$ and $\phi(a \cdot b) = \phi(a) * \phi(b)$ for all $a, b \in G$.

Example 2.5.2 (Homomorphisms).

- (a) For any $n \ge 1$, we have that det is a homomorphism from $(GL_n(\mathbb{F}), matrix multiplication)$ to $(\mathfrak{F} \setminus \{0\}, field multiplication)$.
- (b) For any $n \ge 1$, we have that sign is a homomorphism from (S_n, \circ) to $(\{-1, 1\}, field multiplication).$
- (c) exp is a homomorphism from $(\mathbb{R}, +)$ to $(\mathbb{R} \setminus \{0_{\mathbb{R}}\}, real multiplication)$.
- (d) Let (G, \cdot) be a group and $a \in G$. Then $n \mapsto \operatorname{Itr}_{,n}(a)$ is a homomorphism from $(\mathbb{Z}, +)$ to (G, \cdot) .

(e) $x \mapsto |x|$ is a homomorphism from $(\mathbb{C} \setminus \{0_{\mathbb{C}}\}, \text{ complex multiplication})$ to $(\mathbb{R} \setminus \{0_{\mathbb{R}}\}, \text{ real multiplication}).$

Lemma 2.5.3 (Trivial and inclusion homomorphisms).

- (a) Let (G, \cdot) , (G', *) be groups and $\phi: G \to G'$ such that $\phi(a) = \mathrm{Id}_*$ for all $a \in G$. Then ϕ is a homomorphism from (G, \cdot) to (G', *).
- (b) Let H be a subgroup of (G, \cdot) . Then $\iota_{H \to G}$ is a homomorphism from (H, \cdot_H) to (G, \cdot) .

Proposition 2.5.4 (Properties of homomorphisms). Let ϕ be a homomorphism from (G, \cdot) to (G', *). Then

- (a) for all $k \ge 1$ and for all functions $a: \{1, \ldots, k\} \to G$, we have $\phi(a_1 \cdot \cdots \cdot a_k) = (\phi \circ a)_1 \ast \cdots \ast (\phi \circ a)_k$.
- (b) $\phi(\mathrm{Id.}) = \mathrm{Id}_*$, and
- (c) $\phi(\text{Inv.}(a)) = \text{Inv}_*(\phi(a))$ for all $a \in G$.

Abbreviation 2.5.5 (Kernels). For any homomorphism ϕ from (G, \cdot) to (G, *), we set ker_{*} $(\phi) := \phi^{-1}[\{\mathrm{Id}_*\}].$

Proposition 2.5.6 (Images and kernels form subgroups). Let ϕ be a homomorphism from (G, \cdot) to (G', *). Then $\phi[G]$ and ker_{*}(ϕ) are subgroups of (G', *) and (G, \cdot) respectively.

Proposition 2.5.7 (Subgroup conservation under homomorphisms). Let ϕ be a homomorphism from (G, \cdot) to (G', *) and H be a subgroup of (G, \cdot) . Then $\phi[H]$ is a subgroup of (G', *).

Abbreviation 2.5.8 (Cosets). For any subgroup H of (G, \cdot) and any $a \in G$, we set $coset(a \cdot H) := \{a \cdot h : h \in H\}$ and $coset(H \cdot a) := \{h \cdot a : h \in H\}$.

Example 2.5.9 (Solutions of linear systems). Let A, B be $m \times n$ and $m \times 1$ matrices. Set $S := \{X \in Mat(n, 1; \mathbb{F}) : AX = B\}$ and $W := \{X \in Mat(n, 1; \mathbb{F}) : AX = 0_{m \times 1}\}$. Then

(a) W is a subgroup of $(Mat(n, 1; \mathbb{F}), +)$, and

(b) $S = \emptyset$ or $S = \text{coset}(X_0 + W)$ for some $n \times 1$ matrix X_0

Lemma 2.5.10. Let H be a subgroup of (G, \cdot) and $a, b \in G$. Then $\text{Inv.}(a) \cdot b \in H \iff b \in \text{coset}(a \cdot H)$.

Proposition 2.5.11 (Properties of kernels). Let ϕ be a homomorphism from (G, \cdot) to (G', *) and $a, b \in G$. Then, setting $K := \ker_*(\phi)$ the following are equivalent:

(a) $\phi(a) = \phi(b)$. (b) Inv.(a) $\cdot b \in K$. (c) $b \in \operatorname{coset}(a \cdot K)$. (d) $\operatorname{coset}(a \cdot K) = \operatorname{coset}(b \cdot K)$.

Corollary 2.5.12 (Injectivity and kernels). Let ϕ be a homomorphism from (G, \cdot) to (G', *). Then ϕ is injective $\iff \ker_*(\phi) = \{ \mathrm{Id}_{\cdot} \}.$

Lemma 2.5.13 (Conjugation). Let (G, \cdot) be a group and $g \in G$. Then there exists a unique function $f: G \to G$ such that $f(x) = g \cdot x \cdot \text{Inv}(g)$ for all $x \in G$.

Remark 2.5.14. This allows to denote f by conj_{.,q}.

Proposition 2.5.15 (Conjugation is a homomorphism). Let (G, \cdot) be a group and $g \in G$. Then $\operatorname{conj}_{\cdot,q}$ is a homomorphism from (G, \cdot) to (G, \cdot) .

Corollary 2.5.16 (Subgroup conservation under conjugation). Let H be a subgroup of (G, \cdot) and $g \in G$. Then $\operatorname{conj}_{\cdot,a}[H]$ is a subgroup of (G, \cdot) .

Definition 2.5.17 (Normal subgroups). "N is a normal subgroup of (G, \cdot) " iff N is a subgroup of (G, \cdot) and $\operatorname{conj}_{,g}[N] \subseteq N$ for all $g \in G$.

Example 2.5.18. In Example 2.2.11, the subgroup $\langle y \rangle$ of S_3 is not normal.

Proposition 2.5.19 (Intersections of cosets). Let H, K be subgroups of (G, \cdot) and $x, y \in G$. Then

- (a) H is a normal subgroup of $(G, \cdot) \implies H \cap K$ is a normal subgroup of (K, \cdot_H) , and
- (b) there exists a $z \in G$ such that $\operatorname{coset}(x \cdot H) \cap \operatorname{coset}(y \cdot K) = \operatorname{coset}(z \cdot (H \cap K)).$

Definition 2.5.20 (Centers of groups). "Z is the center of (G, \cdot) " iff (G, \cdot) is agroup and $Z = \{a \in G : a \cdot g = g \cdot a \text{ for all } g \in G\}.$

Example 2.5.21 (Examples of centers).

- (a) For each $n \geq 3$, the center of (S_n, \circ) is $\{\iota_{\{1,\dots,n\}\to\{1,\dots,n\}}\}$.
- (b) For each $n \ge 1$, the center of $(GL_n(\mathbb{F}), matrix multiplication)$ is $\{\lambda I_n : \lambda \text{ is a nonzero scalar}\}.$

Corollary 2.5.22.

(a) Let Z be the center of (G, \cdot) . Then Z is a normal subgroup of (G, \cdot) .

- (b) Let (G, \cdot) be an abelian group and H be a subgroup of (G, \cdot) . Then H is a normal subgroup of (G, \cdot) .
- (c) Let ϕ be a homomorphism from (G, \cdot) to (G', *). Then ker_{*} (ϕ) is a normal subgroup of (G, \cdot) .

Proposition 2.5.23 (A condition for a set to be a group). Let (G, \cdot) be a group, and G' be a set, and $*: G' \times G' \to G'$ and $\phi: G \to G'$ be surjective such that $\phi(a \cdot b) = \phi(a) * \phi(b)$ for all $a, b \in G$. Then

- (a) (G', *) is a group,
- (b) $\operatorname{Id}_* = \phi(\operatorname{Id}_{\cdot}),$
- (c) $\operatorname{Inv}_*(\phi(a)) = \phi(\operatorname{Inv}_{\cdot}(a))$ for all $a \in G$,
- (d) (G, \cdot) is a cyclic group $\implies (G', *)$ is a cyclic group, and
- (e) (G, \cdot) is an abelian group $\implies (G', *)$ is an abelian group.

2.6 Isomorphisms

October 31, 2021

Definition 2.6.1 (Isomorphisms). " ϕ is an isomorphism from (G, \cdot) to (G', *)" iff ϕ is a homomorphism from (G, \cdot) to (G', *) and ϕ is a bijection.

Example 2.6.2 (Examples of isomorphisms).

- (a) exp is an isomorphism from $(\mathbb{R}, +)$ to $(\mathbb{R}^+, real multiplication)$.
- (b) Let (G, \cdot) be a group and $a \in G$ such that a has infinite order. Then $n \mapsto \text{Itr}_{n}(a)$ is an isomorphism from $(\mathbb{Z}, +)$ to $(\langle a \rangle_{\cdot}, \cdot)$.
- (c) For each $n \ge 1$, we have that $p \mapsto \operatorname{PerMat}(p)$ is an isomorphism from (S_n, \circ) to $(\{\operatorname{PerMat}(p) : p \in S_n\}, matrix multiplication).$
- (d) For each $n \geq 1$, we have that $x \mapsto I_n + xe_{n \times n;1,n}$ is an isomorphism from $(\mathfrak{F}, +)$ to $(\{\mathcal{E}_{\mathbb{F},n;1 \to 1+cn} : c \text{ is a scalar}\}, matrix multiplication}).$

Definition 2.6.3 (Automorphisms). " ϕ is an automorphism on (G, \cdot) " iff ϕ is an isomorphism from (G, \cdot) to (G, \cdot) .

Example 2.6.4 (Examples of automorphisms).

- (a) For any group (G, \cdot) , identity map and conjugation by any element are automorphisms on it.
- (b) $A \mapsto (A^t)^{-1}$ is an automorphism on $(\operatorname{GL}_n(\mathbb{F}), \operatorname{matrix} multiplication)$ for each $n \ge 1$.

2.6. ISOMORPHISMS

(c) There are 6 automorphisms on (S_3, \circ) .

Proposition 2.6.5 $(x \mapsto x^2 \text{ on finite groups})$. Let (G, \cdot) be a finite group and $\phi: G \times G \to G$ such that $\phi(x) = \text{Iter}_{,2}(x)$ for each $x \in G$. Then ϕ is an automorphism on $(G, \cdot) \iff (G, \cdot)$ is an abelian group and there is no a such that a has order 2 in (G, \cdot) .

Definition 2.6.6 (Isomorphic groups). " (G, \cdot) and (G', *) are isomorphic groups" iff there exists a ϕ such that ϕ is an isomorphism from (G, \cdot) to (G', *).

Proposition 2.6.7 (Isomorphic cyclic groups). Let (G, \cdot) and (G', *) be cyclic groups such that one of the following holds:

- (a) G and G' are finite sets such that #(G) = #(G').
- (b) G and G' are infinite sets.

Then (G, \cdot) and (G', *) are isomorphic groups.

Proposition 2.6.8 (Homomorphisms between cyclic groups). Let ϕ be a homomorphism from (G, \cdot) to (G', *), and $a \in G$ such that $\langle a \rangle = G$. Then the following hold:

- (a) ϕ is a surjection $\iff \langle \phi(a) \rangle = G'$.
- (b) If G is a finite set, then
 - (i) ϕ is injective $\iff \phi$ is surjective, and
 - (ii) ϕ is injective and $\#(G) \ge 2 \implies \phi(a) \neq \mathrm{Id}_*$.
- (c) If G is an infinite set, then
 - (i) ϕ is injective $\iff \phi(a) \neq \mathrm{Id}_*$, and
 - (ii) ϕ is surjective $\implies \phi$ is injective.

Definition 2.6.9 (Semigroups, their generators and their isomorphisms). " (S, \cdot) is a semigroup" iff \cdot on S has an identity and is associative.

"s is a generator of the semigroup (S, \cdot) " iff (S, \cdot) is a semigroup and $S = {\text{IterId}_{.m}(s) : m \ge 0}.$

" ϕ is a semigroup isomorphism from (S, \cdot) to (S', *)" iff $\phi: S \to S'$ is a bijection and $\phi(a \cdot b) = \phi(a) * \phi(b)$ for all $a, b \in S$.

" (S, \cdot) and (S', *) are isomorphic semigroups" iff there exists a ϕ such that ϕ is a semigroup isomorphism from (S, \cdot) to (S', *).

Lemma 2.6.10. Let s be a generator of the semigroup (S, \cdot) and S be a finite set. Set n := #(S). Then

- (a) $S = { \text{IterId}_{,m}(s) : 0 \le m < n },$
- (b) IterId_{.,n}(s) = Id. \iff (S, ·) is a group,
- (c) IterId_{.,n}(s) = IterId_{.,i}(s) for some $2 \le i < n$ and t is a generator of the semigroup $(S, \cdot) \implies s = t$, and
- (d) IterId_{.,n}(s) = s and t is a generator of the semigroup $(S, \cdot) \implies$ IterId_{.,n}(t) = t.

Proposition 2.6.11 (Classification of semigroups generated by single element). Let s, t be generators of semigroups $(S, \cdot), (S', *)$. Then

- (a) S, T have n elements and $0 \leq i < j = n$ such that $\text{IterId}_{,n}(s) = \text{IterId}_{,i}(s)$ and $\text{IterId}_{,n}(t) = \text{IterId}_{,j}(t) \implies (S, \cdot)$ and (S', *) are not isomorphic semigroups, and
- (b) S is an infinite set \implies (S, \cdot) and $(\mathbb{N}, +)$ are isomorphic semigroups.

Proposition 2.6.12 (Finite semigroups with cancellation). Let (S, \cdot) be a semigroup such that S is a finite set and for all $a, b \in S$ let $a \cdot b = a \cdot c \implies b = c$ hold. Then (S, \cdot) is a group.

2.7 Equivalence relations and partitions

November 3, 2021

Definition 2.7.1 (Relation induced by conjugation). "*R* is the relation on (G, \cdot) induced by conjugation" iff (G, \cdot) is a group and $R = \{(a, b) \in G \times G : b = g \cdot a \cdot \text{Inv}(g) \text{ for some } g \in G\}.$

Proposition 2.7.2 (Conjugation is an equivalence relation). Let R be the relation on (G, \cdot) induced by conjugation. Then R is an equivalence relation on G.

Definition 2.7.3 (Relations and partitions induced by functions). "*R* is the relation on *X* induced by $f: X \to Y$ " iff $f: X \to Y$ and $R = \{(a, b) \in X \times X : f(a) = f(b)\}$.

" \mathcal{C} is the partition induced by $f: X \to Y$ " iff $f: X \to Y$ and $\mathcal{C} = \{f^{-1}[\{y\}]: y \in Y\} \setminus \{\emptyset\}.$

Proposition 2.7.4 (Equivalence relations induced by functions). Let R be the relation on X and C be the partition, both induced by $f: X \to Y$ and let $x \in X$. Then

2.8. COSETS

- (a) R is an equivalence relation on X and $C = \{ [x]_R : x \in R \},\$
- (b) $[x]_R = f^{-1}[\{f(x)\}], and$
- (c) there exists a unique function $g: f[X] \to \mathcal{C}$ such that $g(y) = f^{-1}[\{y\}]$ for all $y \in f[X]$; further, any such function g is a bijection.

Corollary 2.7.5 (Partitions induced by homomorphisms). Let ϕ be a homomorphism from (G, \cdot) to (G', *), and C be the partition induced by $\phi: G \to G'$, and $f \in C$, and $a \in G$ such that $a \in f$ and set $K := \ker_*(\phi)$. Then

- (a) $f = \operatorname{coset}(a \cdot K)$, and
- (b) $\mathcal{C} = \{ \operatorname{coset}(a \cdot K) : a \in G \}.$

2.8 Cosets

November 4, 2021

Remark 2.8.1. We'll work with only left cosets. Analogues of all the results also hold for right cosets.

Proposition 2.8.2 (Cosets of a subgroup form a partition). Let H be a subgroup of (G, \cdot) and set $R := \{(a, b) \in G \times G : \text{Inv.}(a) \cdot b \in H\}$ and $\mathcal{C} := \{\text{coset}(a \cdot H) : a \in G\}$. Then R is an equivalence relation on G and $\mathcal{C} = \{[x]_R : x \in G\}$, and $[a]_R = \text{coset}(a \cdot H)$ for all $a \in G$.

Proposition 2.8.3 (A condition for a set to be subgroup). Let (G, \cdot) be a group and $S \subseteq G$ such that $1 \in S$ and $\{\{a \cdot x : x \in S\} : a \in G\}$ is a partition of G. Then S is a subgroup of (G, \cdot) .

Lemma 2.8.4 (Cosets of a subgroup are equinumerous). Let H be a subgroup of (G, \cdot) and $a \in G$. Then there exists a bijection from H to $coset(a \cdot H)$.

Abbreviation 2.8.5 (Index of subgroups). For any subgroup H of (G, \cdot) , such that $A := \{ \text{coset}(a \cdot H) : a \in G \}$ is a finite set, we set $[(G, \cdot) : H] := #(A)$.

Proposition 2.8.6 (Intersection of finite index subgroups). Let H, K be subgroups of (G, \cdot) such that { $coset(a \cdot H) : a \in G$ } and { $coset(a \cdot K) : a \in G$ } are finite sets. Then { $coset(a \cdot (H \cap K)) : a \in G$ } is a finite set.

Corollary 2.8.7. Let H be a subgroup of (G, \cdot) such that $[(G, \cdot) : H] = 2$. Then H is a normal subgroup of (G, \cdot) . **Corollary 2.8.8** (Counting formula). Let H be a subset of a group (G, \cdot) such that G is a finite set. Then H and $\{\text{coset}(a \cdot H) : a \in G\}$ are finite sets, and $\#(G) = [(G, \cdot) : H] \#(H)$.

Theorem 2.8.9 (Lagrange's theorem). Let H be a subset of (G, \cdot) such that G is a finite set. Then H is a finite set and #(H) divides #(G).

Corollary 2.8.10 (Order divides #(G)). Let a have order n in (G, \cdot) such that G is a finite set. Then n divides #(G).

Corollary 2.8.11 (Groups with prime number of elements). Let (G, \cdot) be a group, and $a \in G \setminus {\text{Id.}}$, and p > 0 be prime such that G has p elements. Then a has order p in (G, \cdot) and $\langle a \rangle = G$.

Proposition 2.8.12 (Groups with prime-power number of elements). Let (G, \cdot) be a group, and p > 0 be prime and $k \ge 1$ such that G has p^k elements. Then

- (a) there exists an a such that a has order p in (G, \cdot) , and
- (b) if there exists exactly one subgroup H of (G, \cdot) such that H contains p elements, then there exists an a such that a has order p^l for some $1 < l \leq k$.

Proposition 2.8.13 (Groups with prime-product elements). Let (G, \cdot) be a group and $p, q \geq 2$ be primes such that G has pq elements. Let $x, y \in G$ such that $x \neq \text{Id.}$ and $y \notin \langle a \rangle$, and let H be a subgroup of (G, \cdot) such that $x, y \in H$. Then H = G.

Example 2.8.14 (Subgroups of S_3). The subgroups of (S_3, \circ) are $\langle 1 \rangle$, $\langle x \rangle$, $\langle y \rangle$, $\langle xy \rangle$, $\langle x^2y \rangle$ and S_3 .

Proposition 2.8.15 (Groups with 35 elements). Let (G, \cdot) be a group such that G has 35 elements. Then there exist $a, b \in G$ such that a, b have orders 5, 7 in (G, \cdot) .

Corollary 2.8.16 (Counting formula for homomorphisms). Let ϕ be a homomorphism from (G, \cdot) to (G', *) and set $K := \ker_*(\phi)$. Then

(a) there exists a bijection from $\{\operatorname{coset}(a \cdot K) : a \in G\}$ to $\phi[G]$, and

(b) G and $\phi[G]$ are finite sets $\implies K$ is a finite set and $\#(G) = \#(K)\#(\phi[G])$.

Example 2.8.17 (Half of S_n is even). Let $n \ge 2$. Then $\#(A_n) = n!/2$.

Lemma 2.8.18. Let $f: X \to Y$ and f[X] have n elements. Then there exists a function $x: \{1, \dots, n\} \to X$ such that $f[X] = x[\{1, \dots, n\}].$

Lemma 2.8.19. Let H be a subgroup of (G, \cdot) , and $A \subseteq G$ such that $\bigcup_{a \in A} \operatorname{coset}(a \cdot H)$ is a subgroup of (G, \cdot) . Then $\operatorname{coset}(g \cdot (\bigcup_{a \in A} \operatorname{coset}(a \cdot H))) = \bigcup_{a \in A} \operatorname{coset}((g \cdot a) \cdot H)$.

Proposition 2.8.20 (Indices are multiplicative). Let H, K be subgroups of (G, \cdot) such that G is a finite set and $K \subseteq H$. Then K is a subgroup of (H, \cdot_H) , and $\{\text{coset}(a \cdot K) : a \in G\}$ and $\{\text{coset}(a \cdot H) : a \in G\}$ and $\{\text{coset}(b \cdot_H H) : b \in H\}$ are finite sets and $[(G, \cdot) : K] = [(G, \cdot) : H][(H, \cdot_H) : K].$

Lemma 2.8.21 (Sufficient conditions for a group being finite). Let (G, \cdot) , (G', *) be groups. Then G is a finite set if one of the following holds:

- (a) There exists a subgroup H of (G, \cdot) such that H and $\{coset(a \cdot H) : a \in G\}$ are finite sets.
- (b) There exists a homomorphism ϕ from (G, \cdot) to (G', *) such that ker_{*} (ϕ) and $\phi[G]$ are finite sets.
- (c) There exist subgroups H, K of (G, \cdot) such that $K \subseteq H$, and K and $\{\operatorname{coset}(a \cdot H) : a \in G\}$ and $\{\operatorname{coset}(b \cdot K) : b \in H\}$ are finite sites.

Lemma 2.8.22. Let H be a subgroup of (G, \cdot) and $g, g' \in G$ such that $\operatorname{coset}(g \cdot H) = \operatorname{coset}(H \cdot g')$. Then $\operatorname{coset}(g \cdot H) = \operatorname{coset}(g' \cdot H)$ and $\operatorname{coset}(H \cdot g) = \operatorname{coset}(H \cdot g')$.

Proposition 2.8.23 (Equivalent conditions for a normal subgroup). Let H be a subgroup of (G, \cdot) . Then the following are equivalent:

- (a) H is a normal subgroup of (H, \cdot) .
- (b) $\operatorname{conj}_{\cdot,q}[H] = H$ for all $g \in G$.
- (c) $\operatorname{coset}(g \cdot H) = \operatorname{coset}(H \cdot g)$ for all $g \in G$.
- (d) For each $g \in G$, there exists a $g' \in G$ such that gH = Hg'.

Corollary 2.8.24. Let $n \ge 1$ and H be the unique subgroup of (G, \cdot) such that #(H) = n. Then H is a normal subgroup of (G, \cdot) .

2.9 Modular arithmetic

November 7, 2021

Abbreviation 2.9.1 ($\mathbb{Z}/\mathbb{Z}n$). For any $n \in \mathbb{Z}$, we set $\mathbb{Z}/\mathbb{Z}n := {\text{coset}(a + \mathbb{Z}n) : a \in \mathbb{Z}}.$

Definition 2.9.2 (Equality mod n). We write " $a \equiv b \mod n$ " iff $a, b \in \mathbb{Z}$ and n divides a - b.

Proposition 2.9.3 (mod *n* equivalence relation). Let $n \in \mathbb{Z}$ and set $R := \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a \equiv b \mod n\}$. Then *R* is an equivalence relation on \mathbb{Z} , and $\mathbb{Z}/\mathbb{Z}n = \{[a]_R : a \in \mathbb{Z}\}, and [a]_R = \operatorname{coset}(a + \mathbb{Z}n)$ for each $a \in \mathbb{Z}$.

Proposition 2.9.4 (Cardinality of $\mathbb{Z}/\mathbb{Z}n$). Let $n \geq 1$. Then $\mathbb{Z}/\mathbb{Z}n = \{ \text{coset}(a + \mathbb{Z}n) : 0 \leq a < n \}$ and $\text{coset}(a + \mathbb{Z}n)$'s are distinct for each $0 \leq a < n$.

Lemma 2.9.5 (Sum and products of equivalent integers). Let $n \in \mathbb{Z}$, and $a \equiv a' \mod n$ and $b \equiv b' \mod n$. Then $a + b \equiv a' + b' \mod n$ and $ab \equiv a'b' \mod n$.

Corollary 2.9.6 (Operations on $\mathbb{Z}/\mathbb{Z}n$). Let $n \in \mathbb{Z}$ and $A, B \in \mathbb{Z}/\mathbb{Z}n$. Then there exist unique $C, D \in \mathbb{Z}/\mathbb{Z}n$ such that for all $a, b \in \mathbb{Z}$ so that $A = \operatorname{coset}(a + \mathbb{Z}n)$ and $B = \operatorname{coset}(b + \mathbb{Z}n)$, we have $C = \operatorname{coset}((a + b) + \mathbb{Z}n)$ and $D = \operatorname{coset}((ab) + \mathbb{Z}n)$.

Remark 2.9.7. This allows to denote C and D by $A +_n B$ and $A \cdot_n B$. (Since sets (here as cosets) are not functions (here as matrices), no notational collision.)

Corollary 2.9.8. Let $n \in \mathbb{Z}$ and $a, b \in \mathbb{Z}$. Then $(\operatorname{coset}(a + \mathbb{Z}n)) +_n(\operatorname{coset}(b + \mathbb{Z}n)) = \operatorname{coset}((a + b) + \mathbb{Z}n)$ and $(\operatorname{coset}(a + \mathbb{Z}n)) \cdot_n(\operatorname{coset}(b + \mathbb{Z}n)) = \operatorname{coset}((ab) + \mathbb{Z}n)$.

Corollary 2.9.9 ($\mathbb{Z}/\mathbb{Z}n$ forms a ring). Let $n \in \mathbb{Z}$ and $A, B, C \in \mathbb{Z}/\mathbb{Z}n$. Then

$$(A +_n B) +_n C = A +_n (B +_n C),$$

$$A +_n B = B +_n A,$$

$$A +_n \operatorname{coset}(0 + \mathbb{Z}n) = A,$$

$$A +_n D = \operatorname{coset}(0 + \mathbb{Z}n) \text{ for some } D \in \mathbb{Z}/\mathbb{Z}n$$

$$(A \cdot_n B) \cdot_n C = A \cdot_n (B \cdot_n C),$$

$$A \cdot_n B = B \cdot_n A,$$

$$A \cdot_n \operatorname{coset}(1 + \mathbb{Z}n) = A, \text{ and}$$

$$A \cdot_n (B +_n C) = (A \cdot_n B) +_n (A \cdot_n C).$$

Proposition 2.9.10. Let $n \in \mathbb{Z}$. Then $2a \equiv 1 \mod n$ for some $a \in Z \iff n$ is odd.

Example 2.9.11. Let $n \ge 0$ and $a: \{0, \ldots, n\} \to \{0, \ldots, 9\}$. Then $(a_0 10^0 + \cdots + a_n 10^n) \equiv (a_0 + \cdots + a_n) \mod 9$.

Proposition 2.9.12 (Chinese remainder theorem). Let $a, b, u, v \in \mathbb{Z}$ such that not both of a, b are zero and gcd(a, b) = 1. Then there exists an $x \in Z$ such that $x \equiv u \mod a$ and $x \equiv v \mod b$.

Abbreviation 2.9.13 $(a \mod b)$. For any $a, b \in \mathbb{Z}$ such that $b \neq 0$, we set $a \mod b :=$ remainder on dividing a by b.

Proposition 2.9.14 (Properties of $a \mod b$). Let $n, a, b \in \mathbb{Z}$ such that $n \neq 0$. Then

(a) $a \mod n = b \mod n \iff a \equiv b \mod n$,

- (b) $a \equiv (a \mod n) \mod n$, and hence $(a \mod n) \mod n = a \mod n$,
- (c) $(a+b) \mod n = ((a \mod n) + (b \mod n)) \mod n$, and

(d) $(ab) \mod n = ((a \mod n)(b \mod n)) \mod n$.

Corollary 2.9.15. Let $n, k \in \mathbb{Z}$ such that $n \neq 0$ and $k \geq 0$ and $a \colon \{1, \ldots, n\} \rightarrow \mathbb{Z}$. Then

- (a) $(a_1 + \dots + a_k) \mod n = ((a_1 \mod n) + \dots + (a_k \mod n)) \mod n$, and
- (b) $(a_1 \cdots a_k) \mod n = ((a_1 \mod n) \cdots (a_k \mod n)) \mod n.$

Lemma 2.9.16. Let $n, a \in \mathbb{Z}$ such that $n \neq 0$. Then $\operatorname{coset}((a \mod n) + \mathbb{Z}n) = \operatorname{coset}(a + \mathbb{Z}n)$.

Example 2.9.17 (Ring isomorphism between $\mathbb{Z}/\mathbb{Z}n$ and $\{0, \ldots, n-1\}$). Let $n \geq 1$. Then $a \mapsto \operatorname{coset}(a + \mathbb{Z}n)$ is an isomorphism from $(\{0, \ldots, n-1\}, addition \mod n)$ to $(\mathbb{Z}/\mathbb{Z}n, +_n)$. Also, for any $0 \leq a, b < n$, we have $\operatorname{coset}((ab \mod n) + \mathbb{Z}n) = \operatorname{coset}(a + \mathbb{Z}n) \cdot_n \operatorname{coset}(b + \mathbb{Z}n)$

Corollary 2.9.18 ($\mathbb{Z}/\mathbb{Z}n$ is cyclic). Let $n \in \mathbb{Z}$. Then ($\mathbb{Z}/\mathbb{Z}n, +_n$) is a cyclic group.

Example 2.9.19 (Automorphisms on $\mathbb{Z}/\mathbb{Z}n$). Let $n \ge 1$. Set $\mathcal{G} := (\{0, \ldots, n-1\}, addition \mod n)$ and ϕ be a homomorphism from \mathcal{G} to \mathcal{G} . Then ϕ is an automorphism on $\mathcal{G} \iff \gcd(\phi(1), n) = 1$.

Example 2.9.20 (Order of a k-cycle). Let $1 \le k \le n$ and $l \ge 1$. Then

(a) for all
$$1 \le i \le n$$
, we have $((1 \cdots k)_n)^l(i) = \begin{cases} ((i+l-1) \mod k) + 1, & i \le k \\ i, & i > k \end{cases}$
(b) order of $(1 \cdots k)_n$ in (S_n, \circ) is k.

2.10 The correspondence theorem

November 9, 2021

Lemma 2.10.1 (Restriction of a homomorphism). Let ϕ be a homomorphism from (G, \cdot) to (G', *) and H be a subgroup of (G, \cdot) . Then $\phi \circ \iota_{H \to G}$ is a homomorphism from (H, \cdot_H) to (G', *), and $\ker_*(\phi \circ \iota_{H \to G}) = (\ker_*(\phi)) \cap H$.

Proposition 2.10.2. Let ϕ be a homomorphism from (G, \cdot) to (G', *) and H be a subgroup of (G, \cdot) such that H and G' are finite sets and gcd(#(H), #(G')) = 1. Then $H \subseteq ker_*(\phi)$.

Example 2.10.3 (Subgroups of S_n with odd cardinality). Let $n \in \mathbb{N}$ and H be a subgroup of (S_n, \circ) such that #(H) is odd. Then $H \subseteq A_n$

Proposition 2.10.4 (Inverse images of subgroups under homomorphisms). Let ϕ be a homomorphism from (G, \cdot) to (G', *) and H' be a subgroup of (G', *). Then

- (a) $\ker_*(\phi) \subseteq \phi^{-1}[H'],$
- (b) $\phi^{-1}[H']$ is a subgroup of (G, \cdot) ,
- (c) H' is a normal subgroup of $(G', *) \implies \phi^{-1}[H']$ is a normal subgroup of (G, \cdot) , and
- (d) ϕ is surjective and $\phi^{-1}[H']$ is a normal subgroup of $(G, \cdot) \implies H'$ is a normal subgroup of (G', *).

Lemma 2.10.5. Let ϕ be a homomorphism from (G, \cdot) to (G', *) and $H' \subseteq G'$ such that ϕ is a surjection and $\phi^{-1}[H']$ is a subgroup of (G, \cdot) . Then H' is a subgroup of (G', *).

Theorem 2.10.6 (Correspondence theorem). Let ϕ be a homomorphism from (G, \cdot) to (G', *) such that ϕ is surjective, and let H, H' be subgroups of $(G, \cdot), (G', *)$ such that ker_{*} $(\phi) \subseteq H$. Set $K := \text{ker}_{*}(\phi)$. Then the following hold:

(a) (i) $\phi[H]$ is a subgroup of (G', *).

2.11. PRODUCT GROUPS

(ii) $\phi^{-1}[H']$ is a subgroup of (G, \cdot) and $K \subseteq \phi^{-1}[H']$.

- (b) $\phi^{-1}[\phi[H]] = H$ and $\phi[\phi^{-1}[H']] = H'$.
- (c) (i) H is a normal subgroup of $(G, \cdot) \iff \phi[H]$ is a normal subgroup of (G', *).
 - (ii) H' is a normal subgroup of $(G', *) \iff \phi^{-1}[H']$ is a normal subgroup of (G, \cdot) .
- (d) (i) H is a finite set $\iff \phi[H]$ and K are finite sets.
 - (ii) $\phi^{-1}[H']$ is a finite set $\iff H'$ and K are finite sets.
- (e) (i) $H, K, \phi[H]$ are finite sets $\implies \#(H) = \#(\phi[H]) \#(K)$. (ii) $\phi^{-1}[H'], K, H'$ are finite sets $\implies \#(\phi^{-1}[H']) = \#(H') \#(K)$.
- (f) (i) There exists a bijection between $\{ coset(a \cdot H) : a \in G \}$ and $\{ coset(a' * \phi[H]) : a' \in G' \}$.
 - (ii) There exists a bijection between $\{ coset(a \cdot \phi^{-1}[H']) : a \in G \}$ and $\{ coset(a' * H') : a' \in G' \}.$

2.11 Product groups

November 11, 2021

Lemma 2.11.1. Let (G, \cdot) , (G', *) be groups. Then there exists a unique function $f: (G \times G') \times (G \times G') \rightarrow (G \times G')$ such that $f(((a, a'), (b, b'))) = (a \cdot b, a' * b')$ for all $a, b \in G$ and for all $a', b' \in G'$.

Remark 2.11.2. This allows to denote f by $\binom{P}{\cdot *}$.

Proposition 2.11.3 (Product groups). Let (G, \cdot) , (G', *) be groups. Set $\star := \binom{P}{\cdot *}$ Then

- (a) $(a, a') \star (b, b') = (a \cdot b, a' \star b')$ for all $a, b \in G$ and all $a', b' \in G'$,
- (b) $(G \times G', \star)$ is a group,
- (c) $\operatorname{Id}_{\star} = (\operatorname{Id}_{\cdot}, \operatorname{Id}_{*}), and$
- (d) $\operatorname{Inv}_{\star}((a, a')) = (\operatorname{Inv}_{*}(a), \operatorname{Inv}_{*}(a'))$ for all $a \in G$ and all $a' \in G'$.

Proposition 2.11.4 (Orders in product groups). Let x, y have rders r, s in (G, \cdot) , (G', *). Then (x, y) has order rs in $(G \times G', \binom{P}{\cdot, *})$.

Proposition 2.11.5 (Product of subgroups). Let H be a subgroup of (G, \cdot) and H' be a subgroup of (G', *). Then $H \times H'$ is a subgroup of $(G \times G', \binom{P}{\cdot, *})$.

Proposition 2.11.6 (Product of isomorphic groups). Let (G, \cdot) , (G', \cdot') and (H, *), (H', *') be isomorphic groups. Then $(G \times H, \binom{P}{\cdot, *})$ and $(G' \times H', \binom{P}{\cdot, *'})$ are isomorphic groups.

Proposition 2.11.7 (Factors of a product group). Let (G, \cdot) , (G', *) be groups. Set $\star := \binom{P}{\cdot *}$. Then

- (a) (i) (G, \cdot) and $(G \times \{\mathrm{Id}_*\}, \star_{G \times \{\mathrm{Id}_*\}})$ are isomorphic, (ii) (G', *) and $(\{\mathrm{Id}_*\} \times G', \star_{\{\mathrm{Id}_*\} \times G'})$ are isomorphic,
- (b) (i) $\pi_{G \times G' \to G}$ is a homomorphism from $(G \times G', \star)$ to (G, \cdot) and ker. $(\pi_{G \times G' \to G}) =$ {Id.} $\times G'$, and
 - (ii) $\pi_{G \times G' \to G'}$ is a homomorphism from $(G \times G', \star)$ to (G', \star) and $\ker_*(\pi_{G \times G' \to G'}) = G \times {\mathrm{Id}_*}.$

Proposition 2.11.8 (Center of a product group). Let Z, Z' be centers of $(G, \cdot), (G', *)$. Then $Z \times Z'$ is the center of $(G \times G', \binom{P}{\cdot, *})$.

Proposition 2.11.9 (Products of cyclic groups with co-prime cardinalities). Let (G, \cdot) , (G', *) be cyclic groups such that G, G' are finite sets and #(G), #(G') are co-primes. Then $(G \times G', \begin{pmatrix} P \\ \cdot \cdot * \end{pmatrix})$ is a cyclic group.

Proposition 2.11.10 ($C_2 \times C_2$ is not cyclic). Let (G, \cdot) be a cyclic group such that G is a finite set and #(G) = 2. Then $(G \times G, \binom{P}{\cdot, \cdot})$ is not a cyclic group.

Proposition 2.11.11 (Product of infinite cyclic groups). $(\mathbb{Z} \times \mathbb{Z}, \binom{P}{+,+})$ is not a cyclic group.

Proposition 2.11.12 (Properties of product groups). Let H, K be subgroups of (G, \cdot) and $f: H \times K \to G$ such that $f((h, k)) = h \cdot k$ for all $h \in H$ and all $k \in K$. Then

- (a) f is injective $\iff H \cap K = \text{Id.},$
- (b) f is a homomorphism from $\left(H \times K, \left(\begin{smallmatrix} P \\ \cdot, \cdot \end{smallmatrix}\right)_{H \times K}\right)$ to $(G, \cdot) \iff hk = kh$ for all $h \in H$ and all $k \in K$,
- (c) *H* is a normal subgroup of $(G, \cdot) \implies f[H \times K]$ is a subgroup of (G, \cdot) , and
- (d) f is an isomorphism from $\left(H \times K, \begin{pmatrix} P \\ \ddots \end{pmatrix}_{H \times K}\right)$ to $(G, \cdot) \iff$ the following hold:
 - (i) $H \cap K = {\mathrm{Id}}.$
 - (ii) $f[H \times K] = G$.
 - (iii) H, K are normal subgroups of (G, \cdot) .

Proposition 2.11.13 (Classification of groups with cardinality 4). Let (G, \cdot) be a finite group such that #(G) = 4. Then exactly one of the following holds:

- (a) (G, \cdot) is a cyclic group.
- (b) There exists a cyclic group (H, *) such that H is a finite set with #(H) = 2 and (G, \cdot) is isomorphic to $(H \times H, \binom{P}{*,*})$.

Example 2.11.14 (A condition for the group to contain an element of prime-product order). Let $p, q \ge 2$ be primes such that $p \ne q$. Let x, y have orders p, q in (G, \cdot) such that $\langle x \rangle_{,,} \langle y \rangle_{,}$ are normal subgroups of (G, \cdot) . Set $\star := \binom{P}{,,}$ and $H := \langle x \rangle_{,} \times \langle y \rangle_{,}$ and $K := \{a \cdot b : a \in \langle x \rangle_{,,} b \in \langle y \rangle_{,}\}$. Then

- (a) K is a subgroup of (G, \cdot) ,
- (b) $(a,b) \mapsto a \cdot b$ is an isomorphism from (H, \star_H) to (K, \cdot_K) , and
- (c) $x \cdot y$ has order pq in (G, \cdot) .

Example 2.11.15. Let H be a subgroup of (G, \cdot) and ϕ be a homomorphism from (G, \cdot) to (H, \cdot_H) such that $\phi \circ \iota_{H \to G} = \iota_{H \to H}$. Then $(a, b) \mapsto a \cdot b$ is a bijection from $H \times \ker_H(\phi)$ to G.

2.12 Quotient groups

November 11, 2021

Abbreviation 2.12.1 (Quotient set). For a normal subgroup N of (G, \cdot) , we set $(G, \cdot)/N := \{ \operatorname{coset}(a \cdot N) : a \in G \}.$

Lemma 2.12.2 (Operation on quotient sets). Let N be a normal subgroup of (G, \cdot) . Then there exists a unique function $f: ((G, \cdot)/N) \times ((G, \cdot)/N) \rightarrow (G, \cdot)/N$ such that $f((\operatorname{coset}(a \cdot N), \operatorname{coset}(b \cdot N))) = \operatorname{coset}((a \cdot b) \cdot N)$ for all $a, b \in G$.

Remark 2.12.3. This allows to denote f by $\begin{pmatrix} Q \\ N \end{pmatrix}$.

Proposition 2.12.4 (Operation on quotient groups coincides with product of cosets). Let N be a normal subgroup of (G, \cdot) . Set $\star := \begin{pmatrix} Q \\ \cdot, N \end{pmatrix}$. Then for any $A, B \in (G, \cdot)/N$, we have $A \star B = \{a \cdot b : A \in A, b \in B\}$.

Proposition 2.12.5 (Only normal groups form quotient groups). Let H be a subgroup of (G, \cdot) such that H is not a normal subgroup of (G, \cdot) . Then there exist $x, y \in G$ such that $\{a \cdot b : a \in \operatorname{coset}(x \cdot H), b \in \operatorname{coset}(y \cdot H)\} \neq$ $\operatorname{coset}(z \cdot H)$ for any $z \in G$.

Proposition 2.12.6 (Quotient groups). Let N be a normal subgroup of (G, \cdot) . Set $\star := \begin{pmatrix} Q \\ \cdot N \end{pmatrix}$. Then

- (a) $\operatorname{coset}(a \cdot N) \star \operatorname{coset}(b \cdot N) = \operatorname{coset}((a \cdot b) \cdot N)$ for all $a, b \in G$,
- (b) $((G, \cdot)/N, \star)$ is a group,
- (c) $\mathrm{Id}_{\star} = N$, and
- (d) $\operatorname{Inv}_{\star}(\operatorname{coset}(a \cdot N)) = \operatorname{coset}(\operatorname{Inv}_{\cdot}(a) \cdot N)$ for each $a \in G$.

Example 2.12.7. Let $n \ge 2$. Set $H := \{A \in \operatorname{GL}_n(\mathbb{F}) : A \text{ is upper triangular with diagonal ent} and <math>K := \{\mathcal{E}_{\mathbb{F},n;1 \to 1+cn} : c \text{ is a scalar}\}$. Let $A, B \in H$. Then

- (a) H is a subgroup of $(GL_n(\mathbb{F}), matrix multiplication),$
- (b) K is a normal subgroup of (H, matrix multiplication),
- (c) A, B lie in some same coset of $K \iff A$, B (possibly) differ only in (1, n)-th entry, and
- (d) K is the center of H.

Proposition 2.12.8 (A condition for a subset to be a normal subgroup). Let (G, \cdot) be a group and P be a partition of G such that for any $A, B \in P$, there exists a $C \in P$ such that $\{a \cdot b : a \in A, b \in B\} \subseteq C$. Let $N \in P$ such that $1 \in N$. Then

- (a) N is a normal subgroup of (G, \cdot) , and
- (b) $P = \{ \operatorname{coset}(a \cdot N) : a \in G \}.$

Corollary 2.12.9. Let N be a normal subgroup of (G, \cdot) and $\phi: G \to (G, \cdot)/N$ such that $\phi(a) = \operatorname{coset}(a \cdot N)$ for all $a \in G$. Set $\star := \begin{pmatrix} Q \\ \cdot N \end{pmatrix}$. Then

- (a) ϕ is a surjection,
- (b) ϕ is a homomorphism from (G, \cdot) to $((G, \cdot)/N, \star)$,
- (c) $\ker_{\star}(\phi) = N$, and
- (d) for all $a, b \in G$ such that $a \cdot b \in N$, we have $\phi(a) \star \phi(b) = N$.

Theorem 2.12.10 (First isomorphism theorem). Let ϕ be a homomorphism from (G, \cdot) to (G', *) such that ϕ is surjective. Set $K := \ker_*(\phi)$. Then there exists a unique function $\psi: (G, \cdot)/N \to G'$ such that $\psi(\operatorname{coset}(a \cdot K)) = \phi(a)$ for all $a \in G$. Further, any such function ψ is an isomorphism from $((G, \cdot)/N, \binom{Q}{K})$ to (G', *).

Chapter 3

Vector spaces

3.2 Fields

November 23, 2021

Definition 3.2.1 (Fields). " $(F, +, \cdot)$ is a field" iff each of the following hold:

- (a) (F, +) is an abelian group.
- (b) $\cdot: F \times F \to F$.
- (c) $a \cdot b \in F \setminus {\mathrm{Id}_+}$ for all $a, b \in F \setminus {\mathrm{Id}_+}$.
- (d) $(F \setminus {\mathrm{Id}_+}, \cdot_F)$ is an abelian group.
- (e) $a \cdot (b+c) = (a \cdot b) + (a \cdot b)$ for all $a, b, c \in F$.

Remark 3.2.2. We'll always assume (unless otherwise stated) the precedence of "multiplicative symbols" over "additive symbols", so that $a \cdot b + c$ will mean $(a \cdot b) + c$ and not $a \cdot (b + c)$.

Lemma 3.2.3 (Properties of fields). Let $(F, +, \cdot)$ be a field, and $a \in F$ and $r \in \mathbb{Z}$. Then

(a) $\operatorname{Id}_{+} \neq \operatorname{Id}_{+}$, (b) $a \cdot \operatorname{Id}_{+} = \operatorname{Id}_{+} \cdot a = \operatorname{Id}_{+}$, (c) \cdot on F is associative and commutative, (d) $a \cdot \operatorname{Id}_{-} = \operatorname{Id}_{-} \cdot a = a$, (e) $\operatorname{Inv}_{+}(\operatorname{Id}_{-}) \cdot a = \operatorname{Inv}_{+}(a)$, and (f) $\operatorname{Iter}_{+,r}(a) = \operatorname{Iter}_{+,r}(\operatorname{Id}_{-}) \cdot a$.

Lemma 3.2.4. Let p be prime and $a, b \in Z$ such that $ab \equiv 0 \mod p$. Then $a \equiv 0 \mod p$ or $b \equiv 0 \mod p$.

Theorem 3.2.5 (Prime fields). Let p be prime. Then $(\mathbb{Z}/\mathbb{Z}p, +_p, \cdot_p)$ is a field.

Abbreviation 3.2.6 (Prime fields). Let p be prime. Then we set $\mathbb{F}_p := (\mathbb{Z}/\mathbb{Z}p, +_p, \cdot_p).$

Example 3.2.7. (GL₂(\mathbb{F}_2), matrix multiplication) is isomorphic to (S₃, \circ).

Definition 3.2.8 (Field characteristic). "*p* is a characteristic of $(F, +, \cdot)$ " iff, $(F, +, \cdot)$ is a field and setting $S := \{m > 0 : \text{Iter}_{+,m}(\text{Id.}) = \text{Id}_{+}\}$ one of the following holds:

- (a) $S = \emptyset$ and p = 0.
- (b) $S \neq \emptyset$ and $p = \min(S)$.

Lemma 3.2.9 (Permissible characteristics). Let p be the characteristic of $(F, +, \cdot)$. Then p = 0 or p is prime.

Definition 3.2.10 (Primitive roots). "r is a primitive root of $(F, +, \cdot)$ " iff $(F, +, \cdot)$ is a field and $\langle r \rangle_{\cdot} = F \setminus {\mathrm{Id}_{+}}$.

Example 3.2.11 (Some primitive roots).

- (a) 3, 5 are the primitive roots of \mathbb{F}_7 .
- (b) 2, 6, 7, 8 are the primitive roots of \mathbb{F}_{11} .

Proposition 3.2.12 (Fermat's and Wilson's theorems). Let p > 0 be prime and $(\mathbb{Z}/\mathbb{Z}p \setminus \{\mathbb{Z}p\}, +_p, \cdot_p)$ be a cyclic group. Let $a \in \mathbb{Z}$. Then

- (a) $a^p \equiv a \mod p$, and
- (b) $(p-1)! \equiv -1 \mod p$.

Proposition 3.2.13 ($\{a + \sqrt{nb} : a, b \in \mathbb{F}\}$ is a field). Let $(F, +, \cdot)$ be a field and $n \in F \setminus \{a \cdot a : a \in F\}$. Let $\oplus, \odot : F \times F \to F$ such that for all $a, b, c, d \in F$, we have $(a, b) \oplus (c, d) = (a + c, b + d)$ and $(a, b) \odot (c, d) = (a \cdot c + n \cdot b \cdot d, a \cdot d + b \cdot c)$. Then $(F \times F, \oplus, \odot)$ is a field.

Proposition 3.2.14 ($\{a + \sqrt{nb} + \sqrt[3]{nc} : a, b, c \in \mathbb{F}\}$ is a field). Let $(F, +, \cdot)$ be a field and $n \in F \setminus \{a \cdot a \cdot a : a \in F\}$. Let $\oplus, \odot : F \times F \times F \to F$ such that for all $a, b, c, a', b', c' \in F$, we have $(a, b, c) \oplus (a', b', c') = (a + a', b + b', c + c')$ and $(a, b, c) \odot (a', b', c') = (a \cdot a' + n \cdot b \cdot c' + n \cdot c \cdot b', a \cdot b' + b \cdot a' + n \cdot c \cdot c', a \cdot c' + b \cdot b' + c \cdot a')$. Then $(F \times F \times F, \oplus, \odot)$ is a field.

Example 3.2.15 (A field with non-prime order and infinite characteristic). $\left\{ \begin{array}{c} 0_{2\times 2}, I_2, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \right\} \text{ forms a field with entries in } \mathbb{F}_2.$

3.3 Vector spaces

November 23, 2021

Definition 3.3.1 (Vector spaces). " $(V, (F, \oplus, \odot), +, \cdot)$ is a vector space" iff the following hold:

- (a) (V, +) is an abelian group.
- (b) (F, \oplus, \odot) is a field.
- (c) $: F \times V \to V.$
- (d) $\mathrm{Id}_{\odot} \cdot v = v$ for all $v \in V$.
- (e) $(a \odot b) \cdot v = a \cdot (b \cdot v)$ for all $a, b \in F$ and all $v \in V$.
- (f) $(a \oplus b) \cdot v = (a \cdot v) + (b \cdot v)$ for all $a, b \in F$ and all $v \in V$.
- (g) $a \cdot (v + w) = (a \cdot v) + (a \cdot w)$ for all $a \in F$ and all $v, w \in V$.

Example 3.3.2 (Examples of vector spaces). In the following, the vector addition and scalar multiplication are defined usually.

- (a) $Mat(m, n; \mathbb{F})$ over \mathbb{F} for any $m, n \geq 1$.
- (b) \mathbb{C} over $(\mathbb{R}, +, real multiplication)$.
- (c) Set of polynomials of degree at most n with coefficients in \mathfrak{F} over \mathbb{F} .
- (d) Set of continuous functions on \mathbb{R} over $(\mathbb{R}, +, real multiplication)$.

Lemma 3.3.3 (Properties of vector spaces). Let $(V, (F, \oplus, \odot), +, \cdot)$ be a vector space and $v \in V$. Then

- (a) $\mathrm{Id}_{\oplus} \cdot v = \mathrm{Id}_+$, and
- (b) $\operatorname{Inv}_{\oplus}(\operatorname{Id}_{\odot}) \cdot v = \operatorname{Inv}_{+}(v).$

Remark 3.3.4. For any $m \geq 1$ and any field $\mathbb{F} := (F, \cdot, +)$, we'll abbreviate $(\operatorname{Mat}(m, 1; \mathbb{F}), \mathbb{F}, \tilde{+}, \tilde{\cdot})$ as " F^m over \mathbb{F} ", where $\tilde{+}$ and $\tilde{\cdot}$ are the susal operations of matrix addition and scalar multiplication respectively on $\operatorname{Mat}(m, 1; \mathbb{F})$.

Proposition 3.3.5 (F^m is a vector space). Let $m \ge 1$ and $\mathbb{F} := (F, +, \cdot)$ be a field. Then F^m over \mathbb{F} is a vector space.

Proposition 3.3.6 (Linear combinations in F^m). Let $m \ge 1$ and $\mathbb{F} := (F, +, \cdot)$ be a field. Let $n \ge 1$, and $v_1, \ldots, v_n \in \operatorname{Mat}(m, 1; \mathbb{F})$ and $x_1, \cdots, x_n \in F$. Let $A \in \operatorname{Mat}(m, n; \mathbb{F})$ such that $A_{,j} = v_j$ for all $1 \le j \le n$, and $X \in \operatorname{Mat}(m, 1; \mathbb{F})$ such that $X_{i,1} = x_i$ for all $1 \le i \le m$. Then $x_1v_1 + \cdots + x_nv_n = AX$.

Lemma 3.3.7 (Restriction of scalar multiplication). Let F, V be sets and $:: F \times V \to V$. Let $W \subseteq V$ such that $c \cdot w \in W$ for all $c \in F$ and all $w \in W$. Then there exists a unique function $*: F \times W \to W$ such that $c * w = c \cdot w$ for all $c \in F$ and all $w \in W$.

Remark 3.3.8. This allows to denote * by \cdot_W . (Poor notation since possible collision with the notation for restriction of binary operations (besides the case when ordered pairs are considered as Kuratowski pairs); when V = F such that the above condition is fulfilled, then \cdot is also a binary operation and $W \subseteq F$ is closed under \cdot .)

So, we will follow the convention that if \cdot is the scalar multiplication for some vector space, then \cdot_W will always denote the above.

Definition 3.3.9 (Subspace). "W is a subspace of $(V, (F, \oplus, \odot), +, \cdot)$ " iff $(V, (F, \oplus, \odot), +, \cdot)$ is a vector space and the following hold:

- (a) $w + v \in W$ for all $w, v \in W$.
- (b) $c \cdot w \in W$ for each $c \in F$ and for each $w \in W$.
- (c) $(W, (F, \oplus, \odot), +_W, \cdot_W)$ is a vector space.

Corollary 3.3.10 (An equivalent condition for being a subspace). Let $(V, (F, \oplus, \odot), +, \cdot)$ be a vector space and W be a set. Then W is a subspace of $(V, (F, \oplus, \odot), +, \cdot)$ \iff the following hold:

- (a) $W \subseteq V$.
- (b) $w_1 + w_2 \in W$ for all $w_1, w_2 \in W$.
- (c) $c \cdot w \in W$ for all $c \in F$ and all $w \in W$.
- (d) $\mathrm{Id}_+ \in W$.

Proposition 3.3.11 (Subspaces of subspaces). Let W be a subspace of $(V, (F, \oplus, \odot), +, \cdot)$ and U be a subspace of $(W, (F, \oplus, \odot), +_W, \cdot_W)$. Then U is a subspace of $(V, (F, \oplus, \odot), +, \cdot)$.

Proposition 3.3.12 (Intersection of subspaces). Let U and W be subspaces of $(V, (F, \oplus, \odot), +, \cdot)$. Then $U \cap W$ is a subspace of $(V, (F, \oplus, \odot), +, \cdot)$.

Definition 3.3.13 (Proper subspaces). "W is a proper subspace of $(V, (F, \oplus, \odot), +, \cdot)$ " iff W is a subspace of $(V, (F, \oplus, \odot), +, \cdot)$ and $W \neq {\mathrm{Id}_+}, V$.

Example 3.3.14 (Proper subspaces of \mathbb{F}^2). Let W be a set and W_1 , W_2 be proper subspaces of $(Mat(2, 1; \mathbb{F}), \mathbb{F}, matrix addition, scalar multiplication)$. Then

3.4. BASES AND DIMENSION

- (a) W is a proper subspace of $(Mat(2, 1; \mathbb{F}), \mathbb{F}, matrix addition, scalar multiplication)$ \iff there exists a $w \in W \setminus \{Id_+\}$ such that $W = \{c \cdot w : c \in F\},$
- (b) $\{c \cdot w : c \in F\} = W_1$ for all $w \in W_1 \setminus \{\mathrm{Id}_+\},\$
- (c) there exists a bijection between W_1 and W_2 , and
- (d) $W_1 \neq W_2 \implies W_1 \cap W_2 = \{ \mathrm{Id}_+ \}.$

Example 3.3.15 (Number of proper subspaces of \mathbb{F}^2). Let \mathbb{F} have *n* scalars. Then there are *n*+1 proper subspaces of (Mat(2, 1; \mathbb{F}), \mathbb{F} , matrix addition, scalar multiplication).

Definition 3.3.16 (Isomorphisms). " ϕ is an isomorphism from $(V, +, \cdot)$ to $(V', +', \cdot')$ over (F, \oplus, \odot) " iff $(V, (F, \oplus, \odot), +, \cdot)$ and $(V', (F, \oplus, \odot), +', \cdot')$ are vector spaces the following hold:

- (a) $\phi: V \to V'$ is a bijection.
- (b) $\phi(v+w) = \phi(v) + \phi(w)$ for all $v, w \in V$.
- (c) $\phi(c \cdot v) = c \cdot \phi(v)$ for all $c \in F$ and all $v \in V$.

Definition 3.3.17 (Isomorphic vector spaces). " $(V, +, \cdot)$ and $(V', +', \cdot')$ are isomorphic over (F, \oplus, \odot) " iff there exists a ϕ such that ϕ is an isomorphism from $(V, +, \cdot)$ to $(V', +', \cdot')$ over (F, \oplus, \odot) .

Example 3.3.18 (Examples of isomorphic vector spaces). In the following, vector addition and scalar multiplication are defined in the usual way.

- (a) $Mat(m, n; \mathbb{F})$ is isomorphic to $Mat(mn, 1; \mathbb{F})$ over \mathbb{F} .
- (b) $(a, b) \mapsto a + bi$ is an isomorphism from \mathbb{R}^2 to \mathbb{C} over $(\mathbb{R}, +, real multiplication)$.

3.4 Bases and dimension

November 30, 2021

Definition 3.4.1 (Span). For any vector space $(V, \mathbb{F}, +, \cdot)$ and $S \subseteq V$, $\mathcal{U} := \{U \subseteq V : S \subseteq V \text{ and } U \text{ is a subspace of } (V, \mathbb{F}, +, \cdot)\} \neq \emptyset$, and we set $\operatorname{span}_{\mathbb{F},+,\cdot}(S) := \bigcap \mathcal{U}$.

Corollary 3.4.2 (Spans are minimal subspaces). Let $(V, \mathbb{F}, +, \cdot)$ be a vector space and $S \subseteq V$. Then $\operatorname{span}_{\mathbb{F},+,\cdot}(S)$ is a subspace of $(V, \mathbb{F},+,\cdot)$ and for any subspace W of $(V, \mathbb{F},+,\cdot)$ such that $S \subseteq W$, we have that $S \subseteq W$.

Corollary 3.4.3 (Span of \emptyset). Let $(V, \mathbb{F}, +, \cdot)$ be a vector space. Then $\operatorname{span}_{\mathbb{F},+,\cdot}(\emptyset) = {\operatorname{Id}_+}.$

Remark 3.4.4. From now on, for a set X which has on itself an associative binary operation +, and for a function $f: \{1, \dots, n\} \to X$ for $n \ge 1$, we'll set $f(1) + \dots + f(n)$ to be the obvious object.

If + has an identity too, then n = 0 will also be allowed.

Proposition 3.4.5 (Characterizing span). Let $(V, \mathbb{F}, +, \cdot)$ be a vector space and $S \subseteq V$. Then $\operatorname{span}_{\mathbb{F},+,\cdot}(S) = \bigcup_{n \in \mathbb{N}} \{\operatorname{span}_{\mathbb{F},+,\cdot}(\{v_1,\ldots,v_n\}) : v : \{1,\cdots,n\} \to S \text{ is an injection}\}.$

Proposition 3.4.6 (Spans of finite sets). Let $\mathbb{F} := (F, \oplus, \odot)$ be a field and $(V, \mathbb{F}, +, \cdot)$ be a vector space. Let $n \in \mathbb{N}$ and $v_1, \ldots, v_n \in V$. Then $\operatorname{span}_{\mathbb{F},+,\cdot}(\{v_1, \cdots, v_n\}) = \{x_1 \cdot v_1 + \cdots + x_n \cdot v_n : x_1, \ldots, x_n \in F\}.$

Abbreviation 3.4.7 (Column space of matrices). For any field $\mathbb{F} := (F, \oplus, \odot)$, and any $m, n \geq 1$ and any $A \in \operatorname{Mat}(m, n; \mathbb{F})$, we set $\operatorname{colSpan}_{\mathbb{F}}(A) := \operatorname{span}_{\mathbb{F},\tilde{+},\tilde{-}}(\{A_{,1},\ldots,A_{,n}\})$ where $\tilde{+}$ and $\tilde{\cdot}$ are the matrix addition and matrix multiplication respectively on $\operatorname{Mat}(m, 1; \mathbb{F})$.

Corollary 3.4.8 (Consistency of linear system). Let \mathbb{F} be a field, and $m, n \ge 1$ and $A \in \operatorname{Mat}(m, n; \mathbb{F})$ and $B \in \operatorname{Mat}(m, 1; \mathbb{F})$. Then $B \in \operatorname{colSpan}_{\mathbb{F}}(A) \iff$ there exists an $X \in \operatorname{Mat}(n, 1; \mathbb{F})$ such that AX = B.

Definition 3.4.9 (Independent and dependent sets). "L of $(V, (F, \oplus, \odot), +, \cdot)$ is independent" or "L is independent in $(V, (F, \oplus, \odot), +, \cdot)$ " iff $(V, (F, \oplus, \odot), +, \cdot)$ is a vector space, and $L \subseteq V$ and for every $n \in \mathbb{N}$ and for every injection $v: \{1, \ldots, n\} \to L$ and for all $x_1, \ldots, x_n \in F$, we have that $x_1 \cdot v_1 + \cdots + x_n \cdot$ $v_n = \mathrm{Id}_+ \implies x_1, \ldots, x_n = \mathrm{Id}_{\oplus}.$

"L of $(V, (F, \oplus, \odot), +, \cdot)$ is dependent" or "L is dependent in $(V, (F, \oplus, \odot), +, \cdot)$ " iff $(V, (F, \oplus, \odot), +, \cdot)$ is a vector space, and $L \subseteq V$ but L of $(V, (F, \oplus, \odot), +, \cdot)$ is not independent.

Corollary 3.4.10 (\emptyset is independent). Let $(V, \mathbb{F}, +, \cdot)$ be a vector space. Then \emptyset of $(V, \mathbb{F}, +, \cdot)$ is independent.

Proposition 3.4.11 (Finite independent sets). Let $(V, (F, \oplus, \odot), +, \cdot)$ be a vector space. Let $n \in \mathbb{N}$ and $v_1, \ldots, v_n \in V$. Then the following are equivalent:

- (a) v_i 's are distinct and $\{v_1, \ldots, v_n\}$ of $(V, (F, \oplus, \odot), +, \cdot)$ is independent.
- (b) For all $x_1, \ldots, x_n \in F$, we have that $x_1 \cdot v_1 + \cdots + v_n \cdot v_n = \mathrm{Id}_+ \implies x_1, \cdots, x_n = \mathrm{Id}_{\oplus}$.

Lemma 3.4.12 (Properties of independent sets). Let $(V, (F, \oplus, \odot), +, \cdot)$ be a vector space, and $L', L \subseteq V$ and $v, w \in V$. Then,

- (a) L is independent in $(V, (F, \oplus, \odot), +, \cdot)$ and $L' \subseteq L \implies \mathrm{Id}_+ \notin L$ and L' is independent in $(V, (F, \oplus, \odot), +, \cdot)$,
- (b) $\{v\}$ is independent in $(V, (F, \oplus, \odot), +, \cdot) \iff v \neq \mathrm{Id}_+$, and
- (c) $\{v, w\}$ is independent in $(V, (F, \oplus, \odot), +, \cdot) \iff v \notin \{c \cdot w : c \in F\}$ and $w \notin \{c \cdot v : c \in F\}.$

Definition 3.4.13 (Bases). "*B* is a basis of $(V, \mathbb{F}, +, \cdot)$ " iff *B* is independent in $(V, \mathbb{F}, +, \cdot)$ and $\operatorname{span}_{\mathbb{F}, +, \cdot}(B) = V$.

Remark 3.4.14. If + on X is associative and commutative, and has an identity, then for any finite set K and any function $f: K \to X$, we'll set $\sum_{k \in K} f(k)$ to be the obvious object.

Lemma 3.4.15. Let $(V, \mathbb{F}, +, \cdot)$ be a vector space and $S \subseteq V$ such that S is a finite set. Let $x: S \to F$. Then

- (a) $\sum_{v \in S} x_v \cdot v \in \operatorname{span}_{\mathbb{F},+,\cdot}(S)$, and
- (b) \overline{S} is independent in $(V, \mathbb{F}, +, \cdot)$ and $\sum_{v \in S} x_v \cdot v = \mathrm{Id}_+ \implies x_v = \mathrm{Id}_\oplus$ for all $v \in S$.

Proposition 3.4.16 (Characterizing bases). Let $(V, \mathbb{F}, +, \cdot)$ be a vector space and $B \subseteq V$. Then B is a basis of $(V, \mathbb{F}, +, \cdot) \iff$ for every $w \in V$, there exists a unique function $x: B \to F$ such that, setting $B' := \{v \in B : x_v \neq Id_{\oplus}\},\$

- (a) B' is finite, and
- (b) $w = \sum_{v \in B'} x_v \cdot v.$

Proposition 3.4.17 (Finite bases). Let $(V, \mathbb{F}, +, \cdot)$ be a vector space. Let $n \in \mathbb{N}$ and $v_1, \ldots, v_n \in V$. Then the following are equivalent:

- (a) v_i 's are distinct and $\{v_1, \ldots, v_n\}$ is a basis of $(V, \mathbb{F}, +, \cdot)$.
- (b) For all $w \in V$, there exist unique $x_1, \ldots, x_n \in F$ such that $w = x_1 \cdot v_1 + \cdots + x_n \cdot v_n$.

Proposition 3.4.18 (Standard basis for F^m). Let $m \ge 1$. Then $\{e_{1,1;m\times 1}, \ldots, e_{m,1;m\times 1}\}$ is a basis of F^m over \mathbb{F} .

Proposition 3.4.19 (Spans and independence upon adding single elements). Let $(V, \mathbb{F}, +, \cdot)$ be a vector space. Let $S \subseteq V$ and $w \in V$. Then

- (a) $\operatorname{span}_{\mathbb{F},+,\cdot}(S \cup \{w\}) = \operatorname{span}_{\mathbb{F},+,\cdot}(S) \iff w \in \operatorname{span}_{\mathbb{F},+,\cdot}(S), and$
- (b) S is independent in $(V, \mathbb{F}, +, \cdot) \implies (S \cup \{w\} \text{ is independent in } (V, \mathbb{F}, +, \cdot) \text{ and } w \notin S \iff w \notin \operatorname{span}_{\mathbb{F}, +, \cdot}(S)).$

Definition 3.4.20 (Finite-dimensional vector spaces). " $(V, \mathbb{F}, +, \cdot)$ is a finitedimensional vector space" iff $(V, \mathbb{F}, +, \cdot)$ is a vector space and there exists a finite set $S \subseteq V$ such that $\operatorname{span}_{\mathbb{F},+,\cdot}(S) = V$.

Corollary 3.4.21 (Spanning sets in finite dimensions can be reduced to finite sets). Let $(V, \mathbb{F}, +, \cdot)$ be a finite-dimensional vector space and $S \subseteq V$ such that $\operatorname{span}_{\mathbb{F},+,\cdot}(S) = V$. Then there exists an $S' \subseteq S$ such that S' is a finite set and $\operatorname{span}_{\mathbb{F},+,\cdot}(S') = V$.

Proposition 3.4.22 (Making an independent set a basis in finite dimensions). Let L be independent in $(V, \mathbb{F}, +, \cdot)$ and $S \subseteq V$ be a finite set such that $\operatorname{span}_{\mathbb{F},+,\cdot}(S) = V$. Then there exists an $S' \subseteq S$ such that $S' \cup L$ is a basis of $(V, \mathbb{F}, +, \cdot)$.

Corollary 3.4.23 (Making a finite spanning set into a basis). Let $(V, \mathbb{F}, +, \cdot)$ be a vector space and $S \subseteq V$ be a finite set such that $\operatorname{span}_{\mathbb{F},+,\cdot}(S) = V$. Then there exists an $S' \subseteq S$ such that S' is a basis of $(V, \mathbb{F}, +, \cdot)$.

Corollary 3.4.24 (Finite-dimensional spaces have a basis). Let $(V, \mathbb{F}, +, \cdot)$ be a finite-dimensional vector space. Then there exists a basis of $(V, \mathbb{F}, +, \cdot)$.

Theorem 3.4.25 (Finite spanning sets have more elements than finite independent ones). Let L be independent in $(V, \mathbb{F}, +, \cdot)$ and $S \subseteq V$ such that $\operatorname{span}_{\mathbb{F},+,\cdot}(S) = V$, and S and L are finite sets. Then $\#(S) \geq \#(L)$.

Proposition 3.4.26 (Independent sets in finite dimensions are finite). Let $(V, \mathbb{F}, +, \cdot)$ be a finite-dimensional vector space and L be independent in $(V, \mathbb{F}, +, \cdot)$. Then L is a finite set.

Proposition 3.4.27 (Dimension of finite-dimensional spaces). Let $(V, \mathbb{F}, +, \cdot)$ be a finite-dimensional vector space. Then there exists a unique $n \in \mathbb{N}$ such that for any basis B of $(V, \mathbb{F}, +, \cdot)$, we have that B has n elements.

Remark 3.4.28. This allows to denote *n* by $\dim_{\mathbb{F},+,\cdot}(V)$.

Corollary 3.4.29. Let $(V, \mathbb{F}, +, \cdot)$ be a finite-dimensional vector space. Let L be independent in $(V, \mathbb{F}, +, \cdot)$ and $S \subseteq V$ be a finite set such that $\operatorname{span}_{\mathbb{F},+,\cdot}(S) = V$. Then L is a finite set and $\#(L) \leq \dim_{\mathbb{F},+,\cdot}(V) \leq \#(S)$. Further, $\#(L) = \dim_{\mathbb{F},+,\cdot}(V) = \#(S) \iff L$ and S are bases of $(V, \mathbb{F},+,\cdot)$.

Example 3.4.30 (Dimension of F^n). Let $m \ge 1$ and $\mathbb{F} := (F, +, \cdot)$ be a field. Then F^m over \mathbb{F} is a finite-dimensional vector space with dimension m.

Proposition 3.4.31 (Independent spanning set for a subspace in finite dimensions). Let $(V, \mathbb{F}, +, \cdot)$ be a finite-dimensional vector space and W be a subspace of $(V, \mathbb{F}, +, \cdot)$. Then there exists an independent L in $(V, \mathbb{F}, +, \cdot)$ such that $\operatorname{span}_{\mathbb{F},+,\cdot}(L) = W$.

Lemma 3.4.32 (Independence and spans in subspaces). Let W be a subspace of $(V, \mathbb{F}, +, \cdot)$. Let $L, S \subseteq W$. Then

- (a) L is independent in $(V, \mathbb{F}, +, \cdot) \iff L$ is independent in $(W, \mathbb{F}, +_W, \cdot_W)$, and
- (b) $\operatorname{span}_{\mathbb{F},+,\cdot}(S) = \operatorname{span}_{\mathbb{F},+_W,\cdot_W}(S).$

Proposition 3.4.33 (Dimensions of subspaces of finite dimensional spaces). Let $(V, \mathbb{F}, +, \cdot)$ be a finite-dimensional vector space and W be a subspace of $(V, \mathbb{F}, +, \cdot)$. Then

- (a) $(W, \mathbb{F}, +_W, \cdot_W)$ is a finite-dimensional vector space,
- (b) $\dim_{\mathbb{F},+W,W}(W) \leq \dim_{\mathbb{F},+,V}(V)$, and
- (c) $\dim_{\mathbb{F},+_W,w}(W) = \dim_{\mathbb{F},+,*}(V) \iff V = W.$

Example 3.4.34. Let $\mathbb{F} := (F, \oplus, \odot)$ be a field and $m, n \ge 1$. Let $\{X_1, \ldots, X_m\}$ and $\{Y_1, \ldots, Y_n\}$ be bases of $\operatorname{Mat}(m, 1; \mathbb{F})$ and $\operatorname{Mat}(n, 1; \mathbb{F})$ respectively. Then $\{X_i(Y_j)^t : 1 \le i \le m, 1 \le j \le n\}$ is a basis of $\operatorname{Mat}(m, n; \mathbb{F})$.

Proposition 3.4.35 (Basis of \mathbb{F}^n and invertible matrices). Let $\mathbb{F} := (F, \oplus, \odot)$ be a field and $n \ge 1$. Let $v_1, \ldots, v_n \in \operatorname{Mat}(n, 1; \mathbb{F})$ and $A \in \operatorname{Mat}(n, n; \mathbb{F})$ such that $A_i = (v_i)^t$ for each $1 \le i \le n$. Then $\{v_1, \ldots, v_n\}$ is a basis for F^n over $\mathbb{F} \iff A$ is invertible.

Proposition 3.4.36 (Subspaces as solutions of homogeneous systems). Let $\mathbb{F} := (F, \oplus, \odot)$ be a field and $n \ge 1$. Let W be a subspace of F^n over \mathbb{F} . Then there exists an $A \in \operatorname{Mat}(n, n; \mathbb{F})$ such that $W = \{X \in \operatorname{Mat}(n, 1; \mathbb{F}) : AX = 0_{m \times 1}\}$.

Proposition 3.4.37. Let $\mathbb{F} := (F, \oplus, \odot)$ be a field, and $n \ge 1$ and $A \in Mat(n, n; \mathbb{F})$. Then there exist $c_0, \ldots, c_{n^2} \in F$ such that $c_i \ne Id_{\oplus}$ for some $0 \le i \le n^2$ and $c_0 A^0 + \cdots + c_{n^2} A^{n^2} = 0_{n \times n}$.

Proposition 3.4.38 (Vector spaces over infinite fields can't be finitely covered). Let $\mathbb{F} := (F, \oplus, \odot)$ be a field such that F is an infinite set. Let $n \in \mathbb{N}$ and U_1, \ldots, U_n be subspaces of $(V, \mathbb{F}, +, \cdot)$. Then $V \neq \bigcup_{i=1}^n U_i$.

3.5 Computing with bases

December 6, 2021

Proposition 3.5.1 (Morphisms from F^n to V). Let $\mathbb{F} := (F, \oplus, \odot)$ be a field and $(V, \mathbb{F}, +, \cdot)$ be a vector space. Let $n \in \mathbb{N}$ and $v_1, \ldots, v_n \in V$. Let $\psi \colon \operatorname{Mat}(n, 1; \mathbb{F}) \to V$ such that $\psi(X) = X_{1,1} \cdot v_1 + \cdots + X_{n,1} \cdot v_n$ for all $X \in \operatorname{Mat}(n, 1; \mathbb{F})$. Then

- (a) $\psi(X + Y) = \psi(X) + \psi(Y)$ and $\psi(cX) = c \cdot \psi(X)$ for all $X, Y \in Mat(n, 1; \mathbb{F})$ and all $c \in F$,
- (b) ψ is injective $\iff v_i$'s are distinct and $\{v_1, \ldots, v_n\}$ is independent in $(V, \mathbb{F}, +, \cdot)$, and
- (c) ψ is surjective \iff span_{$\mathbb{F},+,\cdot$} ({ v_1,\ldots,v_n }) = V.

Corollary 3.5.2 (Classification of finite-dimensional vector spaces). Let $\mathbb{F} := (F, \oplus, \odot)$ be a field.

- (a) Let $(V, \mathbb{F}, +, \cdot)$ be a finite-dimensional vector space such that $n := \dim_{\mathbb{F},+,\cdot}(V) \ge 1$. 1. Then $(V,+,\cdot)$ and F^n over \mathbb{F} are isomorphic over \mathbb{F} .
- (b) Let $m, n \geq 1$ such that $m \neq n$. Then F^m over \mathbb{F} and F^n over \mathbb{F} are not isomorphic over \mathbb{F} .

Proposition 3.5.3 (Basechange). Let $\mathbb{F} := (F, \oplus, \odot)$ be a field and $(V, \mathbb{F}, +, \cdot)$ be a vector space. Let $m, n \geq 1$ with $v_1, \ldots, v_m, v'_1, \ldots, v'_n \in V$ such that v_i 's are distinct and $B := \{v_1, \ldots, v_m\}$ is a basis of $(V, \mathbb{F}, +, \cdot)$. Set $B' := \{v'_1, \ldots, v'_n\}$. Let $P \in \operatorname{Mat}(m, n; \mathbb{F})$ such that $v'_j = P_{1,j} \cdot v_1 + \cdots + P_{m,j} \cdot v_j$ for all $1 \leq j \leq n$. Then the following hold:

- (a) The following are equivalent:
 - (i) v'_i 's are distinct and B' is a basis of $(V, \mathbb{F}, +, \cdot)$.
 - (ii) m = n and P is invertible.
- (b) If v'_i 's are distinct and B' is a basis of $(V, \mathbb{F}, +, \cdot)$, and $Q \in \operatorname{Mat}(n, m; \mathbb{F})$ such that $v_j = Q_{1,j} \cdot v'_1 + \cdots + Q_{n,j} \cdot v'_n$ for all $1 \leq j \leq m$, and $X, X' \in \operatorname{Mat}(m, 1; \mathbb{F})$, then
 - (i) m = n
 - (ii) P is invertible with $P^{-1} = Q$, and
 - (*iii*) $X_{1,1} \cdot v_1 + \dots + X_{m,1} \cdot v_m = X'_{1,1} \cdot v'_1 + \dots + X'_{m,1} \cdot v'_m \iff PX' = X.$

Example 3.5.4 (Rowspans of row equivalent matrices). Let $\mathbb{F} := (F, \oplus, \odot)$ be a field and $m, n \geq 1$. Let $A, B \in Mat(m, n; \mathbb{F})$ be row equivalent. Set $V := Mat(1, n; \mathbb{F})$, and $X := \{A_1, \ldots, A_m\}$ and $Y := \{B_1, \ldots, B_m\}$. Let $\tilde{+}$ and $\tilde{\cdot}$ be the usual operations of matrix addition and scalar multiplication on V. Then

- (a) $\operatorname{span}_{\mathbb{F},\tilde{+},\tilde{\cdot}}(X) = \operatorname{span}_{\mathbb{F},\tilde{+},\tilde{\cdot}}(Y)$, and
- (b) A_i 's are distinct and X is independent in $(V, \tilde{+}, \tilde{\cdot}) \iff B_i$'s are distinct and Y is independent in $(V, \tilde{+}, \tilde{\cdot})$.

Lemma 3.5.5 (Elementary actions). Let $\mathbb{F} := (F, \oplus, \odot)$ be a field and $\mathcal{V} := (V, \mathbb{F}, +, \cdot)$ be a vector space. Let $n \geq 1$. Let $1 \leq i, j \leq n$ and $c \in F$. Then there exist unique functions $f, g, h \colon V^{\{1, \dots, n\}} \to V^{\{1, \dots, n\}}$ such that for each $v \in V^{\{1, \dots, n\}}$, we have that for each $1 \leq k \leq n$,

$$(a) \ (f(v))_{k} = \begin{cases} v_{k}, & k \neq i \\ v_{i} + c \cdot v_{j}, & k = i \end{cases}$$
$$(b) \ (g(v))_{k} = \begin{cases} v_{k}, & k \neq i, j \\ v_{j}, & k = i \\ v_{i}, & k = j \end{cases}$$
$$(c) \ (h(v))_{k} = \begin{cases} v_{k} & k \neq i \\ c \cdot v_{i} & k = i \end{cases}$$

Remark 3.5.6. This allows to denote f, g, h by $\mathfrak{a}_{\mathcal{V},n;i\to i+cj}, \mathfrak{a}_{\mathcal{V},n;i\leftrightarrow j}, \mathfrak{a}_{\mathcal{V},n;i\to ci}$ respectively.

Further, we'll call them "type I, or II, or III elementary actions for n vectors of \mathcal{V} " iff $i \neq j$ and $c \neq 0$.

Proposition 3.5.7 (Elementary actions preserve spans and independence). Let $\mathcal{V} := (V, \mathbb{F}, +, \cdot)$ be a vector space. Let $n \ge 1$ and $v : \{1, \ldots, n\} \to V$. Let a be an elementary action for n vectors of \mathcal{V} and set $w := a \circ v$. Then

- (a) $\operatorname{span}_{\mathbb{F},+,\cdot}(\{w_1,\ldots,w_n\}) = \operatorname{span}_{\mathbb{F},+,\cdot}(\{v_1,\ldots,v_n\}), and$
- (b) v_i 's are distinct and $\{v_1, \ldots, v_n\}$ is independent in $(V, \mathbb{F}, +, \cdot) \implies w_i$'s are distinct and $\{w_1, \ldots, w_n\}$ is independent in $(V, \mathbb{F}, +, \cdot)$.

Lemma 3.5.8. Let $(V, (F, \oplus, \odot), +, \cdot)$ be a vector space. Let $n \ge 1$ and $u: \{1, \ldots, n\} \to V$ be such that $\{u_1, \ldots, u_n\}$ is a basis for $(V, \mathbb{F}, +, \cdot)$ and u_i 's are distinct. Let $A \in \operatorname{Mat}(n, n; \mathbb{F})$. Let E, a be such that there exist $1 \le i, j \le n$ and $c \in F$ so that one of the following holds:

- (a) $E = \mathcal{E}_{\mathbb{F},n;i \to i+cj}$ and $a = \mathfrak{a}_{\mathcal{V},n;i \to i+cj}$.
- (b) $E = \mathcal{E}_{\mathbb{F},n;i\leftrightarrow j}$ and $a = \mathfrak{a}_{\mathcal{V},n;i\leftrightarrow j}$.

(c) $E = \mathcal{E}_{\mathbb{F},n;i \to ci}$ and $a = \mathfrak{a}_{\mathcal{V},n;i \to ci}$.

Then for each $1 \leq k \leq n$, we have that $(EA)_{k,1} \cdot u_1 + \cdots + (EA)_{k,n} \cdot u_k = (a \circ v)_k$.

Proposition 3.5.9 (Any two bases related by elementary actions). Let $\mathcal{V} := (V, \mathbb{F}, +, \cdot)$ be a vector space. Let $n \geq 1$ and $u, v : \{1, \ldots, n\} \to V$ such that $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_n\}$ are bases of $(V, \mathbb{F}, +, \cdot)$ and u_i 's and v_i 's are distinct. Then there exists a $k \in \mathbb{N}$ and elementary actions a_1, \ldots, a_k each for n vectors of \mathcal{V} such that $v = (a_1 \circ \cdots \circ a_k) \circ u$.

Example 3.5.10 (Number of independent ordered sets). Let p > 0 be prime and $n \ge m \ge 1$. Set $F := \mathbb{Z}/\mathbb{Z}p$, and $\mathbb{F} := (F, +_p, \cdot_p)$ and $S := \{v \in$ $\operatorname{Mat}(n, 1; \mathbb{F})^{\{1, \dots, m\}} : \{v_1, \dots, v_m\}$ is independent in F^n over \mathbb{F} and v_i 's are distinct}. Let $\tilde{+}$ and $\tilde{\cdot}$ be the usual operations of matrix addition and scalar multiplication on $\operatorname{Mat}(n, 1; \mathbb{F})$. Then

(a) $S = \{v \in \operatorname{Mat}(n, 1; \mathbb{F})^{\{1, \dots, m\}} : v_1 \neq \operatorname{Id}_{\hat{+}} and v_{k+1} \notin \operatorname{span}_{(F, \oplus, \odot), \hat{+}, \tilde{\cdot}}(\{v_1, \dots, v_k\}) \text{ for all } 1 \leq k < m\}, and$ (b) $\#(S) = \prod_{i=0}^{m-1} (p^n - p^i).$

Corollary 3.5.11 (Cardinality of $\operatorname{GL}_n(\mathbb{F}_p)$). Let p > 0 be prime and $n \ge 1$. Then $\#(\operatorname{GL}_n(\mathbb{F}_p)) = \prod_{i=0}^{n-1} (p^n - p^i)$.

Proposition 3.5.12 (Number of subspaces of \mathbb{F}_p^n). Let p > 0 be prime and $n \ge 1$ and $0 \le m \le n$. Set $F := \mathbb{Z}/\mathbb{Z}p$, and $\mathbb{F} := (F, +_p, \cdot_p)$. Let $\tilde{+}$ and $\tilde{\cdot}$ be the usual operations of matrix addition and scalar multiplication on $\operatorname{Mat}(n, 1; \mathbb{F})$. $S := \{W : W \text{ is a subspace of } F^n \text{ over } \mathbb{F} \text{ and } \dim_{\mathbb{F}, \tilde{+}, \tilde{\cdot}}(W) = m\}$. Then $\#(S)(\prod_{i=0}^{m-1}(p^m - p^i)) = \prod_{i=0}^{m-1}(p^n - p^i)$.

Proposition 3.5.13 (Number of 2×2 matrices with a given determinant in \mathbb{F}_p). Let p > 0 be prime. Set $F := \mathbb{Z}/\mathbb{Z}p$ and $\mathbb{F} := (F, +_p, \cdot -p)$. Then

$$\#(\{A \in \operatorname{Mat}(2,2;\mathbb{F}) : \det(A) = \mathbb{Z}/\mathbb{Z}n\}) = \begin{cases} (p-1)p(p+1), & n \neq 0\\ p(p^2+p-1), & n = 0 \end{cases}$$

for every $0 \le n < p$.

3.6 Direct sums

December 6, 2021

Abbreviation 3.6.1 (Sum of subspaces). For any set vector space $(V, \mathbb{F}, +, \cdot)$ and any set \mathcal{W} of subspaces of $(V, \mathbb{F}, +, \cdot)$, we set $\operatorname{SubspSum}_{\mathbb{F},+,\cdot}(\mathcal{W}) := \operatorname{span}_{\mathbb{F},+,\cdot}(\bigcup \mathcal{W})$.

Proposition 3.6.2 (Characterizing sums). Let $(V, \mathbb{F}, +, \cdot)$ be a vector space and \mathcal{W} be a set of subspaces of $(V, \mathbb{F}, +, \cdot)$. Then $\operatorname{SubspSum}_{\mathbb{F},+,\cdot}(\mathcal{W}) = \bigcup_{n \in \mathbb{N}} \{\operatorname{SubspSum}_{\mathbb{F},+,\cdot}(\{W_1, \ldots, W_n\}) : W : \{1, \ldots, n\} \to \mathcal{W} \text{ is an injection}\}.$

Proposition 3.6.3 (Finite sums). Let $(V, \mathbb{F}, +, \cdot)$ be a vector speae, and $n \in \mathbb{N}$ and W_1, \ldots, W_n be subspaces of $(V, \mathbb{F}, +, \cdot)$. Then $\operatorname{SubspSum}_{\mathbb{F},+,\cdot}(\{W_1, \ldots, W_n\}) = \{w_1 + \cdots + w_n : w_i \in W_i \text{ for all } 1 \le i \le n\}.$

Definition 3.6.4 (Independent subspaces). " \mathcal{W} contains independent subspaces of $(V, \mathbb{F}, +, \cdot)$ " iff $(V, \mathbb{F}, +, \cdot)$ is a vector space, and \mathcal{W} is a set of subspaces of $(V, \mathbb{F}, +, \cdot)$, and for any $n \in \mathbb{N}$ and for any injection $W \colon \{1, \ldots, n\} \to \mathcal{W}$ and for any $w_1, \ldots, w_n \in V$ such that $w_i \in W_i$ for all $1 \leq i \leq n$, we have that $w_1 + \cdots + w_n = \mathrm{Id}_+ \Longrightarrow w_1, \ldots, w_n = \mathrm{Id}_+$.

Corollary 3.6.5 (Independence of zero subspace). Let \mathcal{W} contain independent subspaces of $(V, \mathbb{F}, +, \cdot)$. Then $\mathcal{W} \cup \{\{\mathrm{Id}_+\}\}$ contains independent subspaces of $(V, \mathbb{F}, +, \cdot)$.

Corollary 3.6.6 (Independence of two subspaces). Let U, W be subspaces of $(V, \mathbb{F}, +, \cdot)$. Then $\{U, W\}$ contains independent subspaces of $(V, \mathbb{F}, +, \cdot) \iff U \cap W = \{ \mathrm{Id}_+ \}$ or U = W.

Proposition 3.6.7 (Finite set of independent subspaces). Let $(V, \mathbb{F}, +, \cdot)$ be a vector space, and $n \in \mathbb{N}$ and W_1, \ldots, W_n be subspaces of $(V, \mathbb{F}, +, \cdot)$. Then the following are equivalent:

- (a) $\{W_1, \ldots, W_n\}$ contains independent subspaces of $(V, \mathbb{F}, +, \cdot)$ and W_i 's are distinct.
- (b) For any $w_1, \ldots, w_n \in V$ such that $w_i \in W_i$ for all $1 \le i \le n$, we have that $w_1 + \cdots + w_n = \mathrm{Id}_+ \implies w_1, \ldots, w_n = \mathrm{Id}_+$.
- (c) W_i 's are distinct and $(SubspSum_{\mathbb{F},+,\cdot}(\{W_1,\ldots,W_k\})) \cap W_{k+1} = \{Id_+\}$ for all $1 \le k < n$.

Proposition 3.6.8 (Independence of vectors and subspaces). Let $(V, \mathbb{F}, +, \cdot)$ be a vector space and $L \subseteq V$. Then L is independent in $(V, \mathbb{F}, +, \cdot) \iff$ $\mathrm{Id}_+ \notin L$ and $\{\mathrm{span}_{\mathbb{F},+,\cdot}(\{v\}) : v \in L\}$ contains independent subspaces of $(V, \mathbb{F}, +, \cdot)$. **Lemma 3.6.9** (Results on finite sums). Let + on X be associative, commutative and have an identity 0. Let I be a finite set.

- (a) Let X be a finite set and Π be a partition of X. Then Π is a finite set, and P is a finite set for all $P \in \Pi$, and $\sum_{x \in X} x = \sum_{P \in \Pi} (\sum_{x \in P} x)$.
- (b) Let $\{A_i\}_{i \in I}$ and $\{f_i\}_{i \in I}$ be such that A_i is a finite set and $f_i \colon A_i \to X$ for all $i \in I$, and $g \colon I \times (\bigcup_{i \in I} A_i) \to X$ such that

$$g((i,a)) = \begin{cases} f_i(a), & a \in A_i \\ 0, & a \notin A_i \end{cases}$$

Set
$$\mathcal{A} := \bigcup_{i \in I} A_i$$
. Then $\sum_{i \in I} \left(\sum_{a \in A_i} f_i(a) \right) = \sum_{i \in I} \left(\sum_{a \in \mathcal{A}} g((i, a)) \right)$.

Lemma 3.6.10. Let $\mathbb{F} := (F, \oplus, \odot)$ be a field, and $(V, \mathbb{F}, +, \cdot)$ be a vector space and $S, S' \subseteq V$. Let $u \in \operatorname{span}_{\mathbb{F},+,\cdot}(S)$ and $v \in \operatorname{span}_{\mathbb{F},+,\cdot}(S')$, and $a, b \in F$. Then $a \cdot u + b \cdot v \in \operatorname{span}_{\mathbb{F},+,\cdot}(S \cup S')$.

Remark 3.6.11. Let $\{B_i\}_{i \in I}$ be a family of sets. We'll say that " B_i 's are pairwise disjoint" to mean the obvious.

Definition 3.6.12 (Direct sums). " $(V, \mathbb{F}, +, \cdot)$ is a direct sum of \mathcal{W} " iff \mathcal{W} contains independent subspaces of $(V, \mathbb{F}, +, \cdot)$, and $\operatorname{SubspSum}_{\mathbb{F}, +, \cdot}(\mathcal{W}) = V$.

Proposition 3.6.13 (Characterizing direct sums). Let $(V, \mathbb{F}, +, \cdot)$ be a vector space and \mathcal{W} be a set of subspaces of $(V, \mathbb{F}, +, \cdot)$. Let $\{B_W\}_{W \in \mathcal{W}}$ be a family of sets such that B_W is a basis of $(W, \mathbb{F}, +_W, \cdot_W)$ for each $W \in \mathcal{W}$. Then the following are equivalent:

- (a) $(V, \mathbb{F}, +, \cdot)$ is a direct sum of \mathcal{W} .
- (b) $\bigcup_{W \in \mathcal{W}} B_W$ is a basis of $(V, \mathbb{F}, +, \cdot)$ and B_W 's are pairwise disjoint.
- (c) For every $v \in V$, there exists a unique function $w: \mathcal{W} \to \bigcup \mathcal{W}$ such that
 - (i) $w_W \in W$ for each $w \in \mathcal{W}$,
 - (ii) $\mathcal{U} := \{ W \in \mathcal{W} : w_W \neq \mathrm{Id}_+ \}$ is a finite set, and
 - (iii) $v = \sum_{W \in \mathcal{U}} w_W.$

Proposition 3.6.14 (Subspaces of independent subspaces). Let \mathcal{W} contain independent subspaces of $(V, \mathbb{F}, +, \cdot)$. Let $\{U_W\}_{W \in \mathcal{W}}$ be a family of sets such that U_W is a subspace of $(W, \mathbb{F}, +_W, \cdot_W)$ for all $W \in \mathcal{W}$. Then $\{U_W : W \in \mathcal{W}\}$ contains independent subspaces of $(V, \mathbb{F}, +, \cdot)$. **Remark 3.6.15.** We'll talk of "finite-dimensional subspaces" to talk of the obvious.

Proposition 3.6.16 (Dimension of a subspace sum). Let $n \in \mathbb{N}$ and W_1, \ldots, W_k be finite-dimensional subspaces of $(V, \mathbb{F}, +, \cdot)$. Then $\dim_{\mathbb{F},+,\cdot}(SubspSum_{\mathbb{F},+,\cdot}(\{W_1, \ldots, W_n\})) \leq \dim_{\mathbb{F},+,\cdot}(W_1) + \ldots + \dim_{\mathbb{F},+,\cdot}(W_n)$ with equality holding $\iff \{W_1, \ldots, W_n\}$ contains independent subspaces of $(V, \mathbb{F}, +, \cdot)$ and W_i 's are distinct.

Lemma 3.6.17. Let $(V, \mathbb{F}, +, \cdot)$ be a vector space and $S, S' \subseteq V$. Then $\operatorname{span}_{\mathbb{F}, +, \cdot}(S \cup \operatorname{span}_{\mathbb{F}, +, \cdot}(S')) = \operatorname{span}_{\mathbb{F}, +, \cdot}(S \cup S')$.

Proposition 3.6.18 (Basis from two subspaces). Let U, W be subspaces of $(V, \mathbb{F}, +, \cdot)$ such that $\operatorname{SubspSum}_{\mathbb{F},+,\cdot}(\{U,W\}) = V$. Let $B, C, D \subseteq V$ such that B is a basis of $(U \cap W, \mathbb{F}, +_{U \cap W}, \cdot_{U \cap W})$, and $B \cup C$ is a basis of $(U, \mathbb{F}, +_{U}, \cdot_{U})$, and $B \cup D$ is a basis of $(W, \mathbb{F}, +_{W}, \cdot_{W})$, and $B \cap C = B \cap D = \emptyset$. Then

- (a) $B \cup C \cup D$ is a basis of $(V, \mathbb{F}, +, \cdot)$,
- (b) $C \cap D = \emptyset$, and
- (c) $(V, \mathbb{F}, +, \cdot)$ is a direct sum of $\{U \cap W, \operatorname{span}_{\mathbb{F}, +, \cdot}(C), \operatorname{span}_{\mathbb{F}, +, \cdot}(D)\}$.

Corollary 3.6.19. Let U, W be finite-dimensional subspaces of $(V, \mathbb{F}, +, \cdot)$. Then $\operatorname{SubspSum}_{\mathbb{F},+,\cdot}(\{U,W\})$ and $U \cap W$ are finite-dimensional subspaces of $(V, \mathbb{F}, +, \cdot)$, and $\dim_{\mathbb{F},+,\cdot}(U) + \dim_{\mathbb{F},+,\cdot}(W) = \dim_{\mathbb{F},+,\cdot}(\operatorname{SubspSum}_{\mathbb{F},+,\cdot}(\{U,W\})) + \dim_{\mathbb{F},+,\cdot}(U \cap W)$.

Example 3.6.20 (Matrix decompositions). Let p be the characteristic of $\mathbb{F} := (F, \oplus, \odot)$ and $n \geq 1$. Let $\tilde{+}$ and $\tilde{\cdot}$ be the usual operations of matrix addition and scalar multiplication on $\operatorname{Mat}(n, n; \mathbb{F})$. Set $U := \{A \in \operatorname{Mat}(n, n; \mathbb{F}) : A^t = A\}$ and $W := \{A \in \operatorname{Mat}(n, n; \mathbb{F}) : A^t = -A\}$. Set $U' := \{A \in \operatorname{Mat}(n, n; \mathbb{F}) : \operatorname{At}(n, n; \mathbb{F}) : \operatorname{Tace}(A) = \operatorname{Id}_{\oplus}\}$ and $W' := \{\lambda e_{n,n;n \times n} : \lambda \in F\}$. Then

(a) $p \neq 2 \implies (\operatorname{Mat}(n, n; \mathbb{F}), \tilde{+}, \tilde{\cdot})$ is the direct sum of $\{U, W\}$, and (b) $(\operatorname{Mat}(n, n; \mathbb{F}), \tilde{+}, \tilde{\cdot})$ is the direct sum of $\{U', W'\}$.

3.7 Infinite-dimensional spaces

December 29, 2021

Remark 3.7.1. We'll use AC in this section.

Proposition 3.7.2 (Making independent sets into bases given a spanning set). Let L be independent in $(V, \mathbb{F}, +, \cdot)$ and $S \subseteq V$ such that $\operatorname{span}_{\mathbb{F},+,\cdot}(S) = V$. Then there exists an $S' \subseteq S$ such that $L \cup S'$ is a basis of $(V, \mathbb{F}, +, \cdot)$.

Corollary 3.7.3 (Existence of basis and making spanning sets into bases). Let $(V, \mathbb{F}, +, \cdot)$ be a vector space and $S \subseteq V$ such that $\operatorname{span}_{\mathbb{F},+,\cdot}(S) = V$. Then there exist $B \subseteq V$ and $S' \subseteq S$ such that B and S' are bases for $(V, \mathbb{F}, +, \cdot)$.

Proposition 3.7.4 (Independent sets of countably infinite-dimensional spaces). Let *L* be independent over $(V, \mathbb{F}, +, \cdot)$ and $S \subseteq V$ be countably infinite such that $\operatorname{span}_{\mathbb{F},+,\cdot}(S) = V$. Then *L* is finite or countably infinite.

Chapter 4

Linear operators

4.1 The dimension formula

January 4, 2022

Remark 4.1.1. For any field \mathbb{F} , we'll write "F is the set of scalars of \mathbb{F} " to mean the obvious.

Definition 4.1.2 (Linear transformation). "*T* is a linear transformation from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$ " iff $(V, \mathbb{F}, +, \cdot)$ and $(W, \mathbb{F}, \boxplus, *)$ are vector spaces, and $T: V \to W$ such that for all $u, v \in V$ and for all $x \in F$, where *F* is the set of scalars of \mathbb{F} , we have that $T(u + v) = T(u) \boxplus T(v)$, and $T(x \cdot v) = x * T(v)$.

Corollary 4.1.3 (Linear transformation on arbitrary linear combinations). Let T be a linear transformation from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$ and F be the set of scalars of \mathbb{F} . Let $n \ge 1$ and $x_1, \ldots, x_n \in F$ and $v_1, \ldots, v_n \in V$. Then $T(x_1 \cdot v_1 + \cdots + x_n \cdot v_n) = x_1 * T(v_1) \boxplus \cdots \boxplus x_n * T(v_n)$.

Abbreviation 4.1.4. For any linear transformation T from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$, we'll set $\operatorname{Ker}_{\mathbb{F}, \boxplus, *}(T) := T^{-1}[\{\operatorname{Id}_{\boxplus}\}].$

Proposition 4.1.5 (Kernel and image are subspaces). Let T be a linear transformation from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$. Then $\operatorname{Ker}_{\mathbb{F}, \boxplus, *}(T)$ and T[V] are subspaces of $(V, \mathbb{F}, +, \cdot)$ and $(W, \mathbb{F}, \boxplus, *)$.

Theorem 4.1.6 (The dimension formula). Let T be a linear transformation from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$ and set $K := \operatorname{Ker}_{\mathbb{F}, \boxplus, *}(T)$ and I := T[V]. Then the following hold:

- (a) $(V, \mathbb{F}, +, \cdot)$ is finite-dimensional $\iff (K, \mathbb{F}, K, \cdot, K)$ and $(I, \mathbb{F}, \boxplus_I, *_I)$ are finite-dimensional.
- (b) All the above three are finite-dimensional $\implies \dim_{\mathbb{F},+_K,\cdot_K}(K) + \dim_{\mathbb{F},\boxplus_I,*_I}(I) = \dim_{\mathbb{F},+,\cdot}(V).$

4.2 The matrix of a linear transformation

January 4, 2022

Abbreviation 4.2.1. For any field \mathbb{F} and any $m \ge 1$, we'll set $\operatorname{VecSp}_n(\mathbb{F}) := (\operatorname{Mat}(m, 1; \mathbb{F}), \tilde{+}, \tilde{\cdot})$, as in Remark 3.3.4.

Lemma 4.2.2 (Linear transformations from \mathbb{F}^n to \mathbb{F}^m). Let \mathbb{F} be a field and $m, n \geq 1$. Let T be a linear transformation from $\operatorname{VecSp}_n(\mathbb{F})$ to $\operatorname{VecSp}_m(\mathbb{F})$ and $A \in \operatorname{Mat}(m, n; \mathbb{F})$ such that $A_{,j} = T(e_{j,1;n,1})$ for each $1 \leq j \leq n$. Then T(X) = AX for all $X \in \operatorname{Mat}(n, 1; \mathbb{F})$.

Remark 4.2.3. " (v_1, \ldots, v_n) is an ordered basis of $(V, \mathbb{F}, +, \cdot)$ " iff $(V, \mathbb{F}, +, \cdot)$ is a finite-dimensional vector space, and $\dim_{\mathbb{F},+,\cdot}(V) = n \ge 1$, and $v_1, \ldots, v_n \in V$ such that v_i 's are distinct and $\{v_1, \ldots, v_n\}$ is a basis of $(V, \mathbb{F}, +, \cdot)$.

Proposition 4.2.4 (Matrix of a linear transformation for given bases). Let T be a linear transformation from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$, and (v_1, \ldots, v_n) and (w_1, \ldots, w_m) be ordered bases of $(V, \mathbb{F}, +, \cdot)$ and $(W, \mathbb{F}, \boxplus, *)$. Let $A \in Mat(m, n; \mathbb{F})$. Then the following are equivalent:

- (a) For all $X \in Mat(n, 1; \mathbb{F})$, we have $T(X_{1,1} \cdot v_1 + \dots + X_{n,1} \cdot v_n) = (AX)_{1,1} * w_1 \boxplus \dots \boxplus (AX)_{m,1} * w_m.$
- (b) For all $1 \leq j \leq n$, we have that $T(v_j) = A_{1,j} * w_1 \boxplus \cdots \boxplus A_{m,j} * w_m$.

Remark 4.2.5. We'll abbreviate "A is the matrix of the linear transformation T from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$ for the ordered bases (v_1, \ldots, v_n) and (w_1, \ldots, w_m) " iff (v_1, \ldots, v_n) and (w_1, \ldots, w_m) are ordered bases of $(V, \mathbb{F}, +, \cdot)$ and $(W, \mathbb{F}, \boxplus, *)$, and $A \in \operatorname{Mat}(m, n; \mathbb{F})$ such that $T(v_j) = A_{1,j} * w_1 \boxplus \cdots \boxplus$ $A_{m,j} * w_m$ for all $1 \leq j \leq n$.

Proposition 4.2.6 (Matrix of linear transformation upon basechange). Let A be the matrix of linear transformation T from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$ for ordered bases (v_1, \ldots, v_n) and (w_1, \ldots, w_m) . Let $P \in \operatorname{GL}_n(\mathbb{F})$ and $Q \in \operatorname{GL}_m(\mathbb{F})$. Set $v'_i := P_{1,j} \cdot v_1 + \cdots + P_{n,j} \cdot v_n$ and $w'_i := Q_{1,i} * w_1 \boxplus \cdots \boxplus Q_{m,i} * w_m$ for all $1 \leq j \leq n$ and all $1 \leq i \leq m$. Then $Q^{-1}AP$ is the matrix of the linear transformation T from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$ for ordered bases (v'_1, \ldots, v'_n) and (w'_1, \ldots, w'_m) .

Corollary 4.2.7 (Matrices of a given linear map). Let A be the matrix of a linear transformation T from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$ for ordered bases (v_1, \ldots, v_n) and (w_1, \ldots, w_m) and $M \in Mat(m, n; \mathbb{F})$. Then the following are equivalent:

- (a) There exist $v'_1, \ldots, v'_n \in V$ and $w'_1, \ldots, w'_m \in W$ such that M is the matrix of the linear transformation T from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$ for ordered bases (v'_1, \ldots, v'_n) and (w'_1, \ldots, w'_m) .
- (b) There exist $P \in \operatorname{GL}_n(\mathbb{F})$ and $Q \in \operatorname{GL}_m(\mathbb{F})$ such that $M = Q^{-1}AP$.

Abbreviation 4.2.8. For any $n \geq 1$ and any subspaces U of $\operatorname{VecSp}_n(\mathbb{F})$, we'll set $\dim_{\operatorname{VecSp}_n(\mathbb{F})}(U) := \dim_{\mathbb{F},\tilde{+}_U,\tilde{\cdot}_U}(U)$ where $\tilde{+}, \tilde{\cdot}$ are as in Remark 3.3.4.

Remark 4.2.9. No notational collisions.

Proposition 4.2.10 (Ranks of linear transformation and its matrix). Let A be the matrix of the linear transformation T from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$ for ordered bases (v_1, \ldots, v_n) and (w_1, \ldots, w_m) . Set I := T[V] and $I' = T'[\operatorname{Mat}(n, 1; \mathbb{F})]$. Then $\dim_{\mathbb{F}, \boxplus_I, *_I}(I) = \dim_{\operatorname{VecSp}_m}(\mathbb{F})(\operatorname{colSpan}_{\mathbb{F}}(A))$.

Corollary 4.2.11 (Rank of a matrix upon multiplication by invertible matrices). Let \mathbb{F} be a field and $m, n \geq 1$. Let $A \in \operatorname{Mat}(m, n; \mathbb{F})$, and $P \in \operatorname{GL}_n(\mathbb{F})$ and $Q \in \operatorname{GL}_m(\mathbb{F})$. Then $\dim_{\operatorname{VecSp}_m(\mathbb{F})}(\operatorname{colSpan}_{\mathbb{F}}(A)) = \dim_{\operatorname{VecSp}_m(\mathbb{F})}(\operatorname{colSpan}_{\mathbb{F}}(Q^{-1}AP))$.

Theorem 4.2.12 (Special form of the matrix of a linear map).

(a) Let $(V, \mathbb{F}, +, \cdot)$ and $(W, \mathbb{F}, \boxplus, *)$ be finite-dimensional vector spaces. Set $n := \dim_{\mathbb{F},+,\cdot}(V)$ and $m := \dim_{\mathbb{F},\boxplus,*}(W)$. Let T be a linear transformation from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$. Set I := T[V] and $r := \dim_{\mathbb{F},\boxplus_{I},*_{I}}(I)$. Let $A \in \operatorname{Mat}(m, n; \mathbb{F})$ such that

$$A_{,j} = \begin{cases} e_{j,j;m,1}, & j \le r \\ 0_{m,1}, & j > r \end{cases}$$

Then there exist $v_1, \ldots, v_n \in V$ and $w_1, \ldots, w_m \in W$ such that A is the matrix of linear transformation T from $(V, \mathbb{F}, +, \cdot)$ to $(W, \mathbb{F}, \boxplus, *)$ for ordered bases (v_1, \ldots, v_n) and (w_1, \ldots, w_m) .

(b) Let \mathbb{F} be a field, and $m, n \geq 1$, and $A \in \operatorname{Mat}(m, n; \mathbb{F})$. Set $r := \dim_{\operatorname{VecSp}_m(\mathbb{F})}(\operatorname{colSpan}_{\mathbb{F}}(A))$. Then there exist $P \in \operatorname{GL}_n(\mathbb{F})$ and $Q \in \operatorname{GL}_m(\mathbb{F})$ such that $B = Q^{-1}AP$ is so that

$$A_{,j} = \begin{cases} e_{j,j;m,1}, & j \le r \\ 0_{m,1}, & j > r \end{cases}.$$

Corollary 4.2.13 (Row and column ranks are equal). Let \mathbb{F} be a field and $m, n \geq 1$. Let $A \in \operatorname{Mat}(m, n; \mathbb{F})$. Then $\dim_{\operatorname{VecSp}_m(\mathbb{F})}(\operatorname{colSpan}_{\mathbb{F}}(A)) = \dim_{\operatorname{VecSp}_n(\mathbb{F})}(\operatorname{colSpan}_{\mathbb{F}}(A^t))$.