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Chapter 1

Matrices

1.1 The basic operations
October 7, 2021

Definition 1.1.1 (Matrices over a field). “A is an mxn matrix over (F, +, -)”
iff (F,+,-) is a field and m,n > 1 are naturals such that A: {1,...,m} X
{1,...,n} = F.

“A is a matrix over (F,+, )
matrix over (F,+, ).

7 iff there exist m, n such that A is an m xn

Remark 1.1.2. We’ll deal with matrix over a given field F, unless stated
otherwise, thus replacing “let A be a matrix over F” with “let A be a matrix”.
We’ll denote the set of scalars of F by §.
We'll write “a is a scalar” to mean that a € §.

Abbreviation 1.1.3 (Entries of matrices). For any matrix A of size m x n
and for any 1 <7 <m and any 1 < j <n, we set A, ; := Ay ;).

Lemma 1.1.4 (Size of a matrix). Let A be a matriz. Then there exist unique
m,n € N such that A is an m X n matrix.

Lemma 1.1.5 (Zero matrices). Let m,n > 1 be naturals. Then there exists a
unique m x n matriz A such that for each 1 <i < m and for each 1 < j <mn,
we have A; j = 0.

Remark 1.1.6. This allows to denote A by 0,,xx.

4
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Definition 1.1.7 (Square matrices). “A is a square matrix of size n” iff
there A is an n X n matrix.

“A is a square matrix” iff there exists an n such that A is a square matrix
of size n.

Lemma 1.1.8. Let A be a square matriz. Then there exists a unique n € N
such that A is a square matrix of size n.

Lemma 1.1.9 (Identity matrices). Let n > 1 be natural. Then there ezists
a unique square matriz A of size n such that for all 1 < i,7 < n, we have

Aij=1ifi=73, and Aij =0 ifi #j.
Remark 1.1.10. This allows to denote A by I,,.

Lemma 1.1.11 (Operations on matrices). Let A and B be matrices of size
m x n each, and C' be a matriz of size n X p and X be a scalar. Then there
exist unique matrices W, X, Y, Z such that
(a) (addition) W is an m x n matriz such that for each 1 < i < m and
for each 1 < j <n, we have W, ; = A, ; + D1, J,
(b) (negation) X is an m x n matriz such that for each 1 < i < m and
for each 1 < j <mn, we have X; ; = —A, ;,
(¢) (matrix multiplication) Y is an m X p matriz such that for each 1 <
i <m and for each 1 < j < p, we have Y; ; = ZZZI A; Cyj, and
(d) (scalar multiplication) Z is an m X n matriz such that for each 1 <
i <m and for each 1 < j <n, we have Z; ; = N\A, ;.

Remark 1.1.12. This along with Lemma 1.1.4 allows to denote W, X, Y,
Z by A+ B, —A, AB, \A.

Lemma 1.1.13 (Properties of matrices). Let m,n,p,q € N, and A, A", A”
be m x n matrices, and B, B’ be n X p matrices and C be a p X ¢ matriz and
A, i be scalars. Then A+ A, A", A+ A", —A, AA are m X n matrices, and
AB, AB', A'B are m x p, and BC' is an n X ¢ matriz, and AB is ann X p
matriz, and

A+ A=A+ A,
(A+ A+ A=A+ (A + A",
Omxn + A=A,
(—A) + A= Omxn,
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(AB)C = A(BC),
I,A= Al = A,
A(B+ B')=AB+ AB/,
(A+A)B = AB + A'B,
14 = A,

(An)A = A(pA),
MA+A) = A+ NA, and

MAB) = (\M)B = A(\B).

Definition 1.1.14 (Inverses and invertible matrices). “B is an inverse of
matrix A” iff there exists a natural n > 1 such that A, B are square matrices
of size n and AB = BA =1,,.

“A is an invertible matrix” iff there exists a B such that B is an inverse
of matrix A.

Corollary 1.1.15 (Simple properties of invertible matrices).

(a) A is an inverse of matrix B <= B is an inverse of matriz A.

(b) Let A be an invertible matriz. Then there exists a unique n € N such
that A is a square matriz of size n.

(c) Let B be an inverse of matrix A and n € N such that A is a square
matriz of size n. Then B is also a square matriz of size n.

Lemma 1.1.16 (Uniqueness of inverses). Let A, L, R be square matrices of
size n such that LA = AR =1,,. Then L = R.

Hence, if A is an invertible matriz, then there exists a unique matriz B
such that B is an inverse of A.

Lemma 1.1.17. This allows to denote B by A™. (n is determined due to
Lemmal.1.4.)

Proposition 1.1.18 (Properties of invertible matrices).

(a) Let A be an invertible matriz. Then A™' is also invertible with (A=1)~! =
A.

(b) Let A, B be invertible matrices of size n. Then AB is invertible with
the inverse being B~*A~!.

Remark 1.1.19. The notations like Ay +---+ Ay or F; - - - E} are explained
in the next chapter. They carry the usual meanings.
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Proposition 1.1.20 (Inverses of nilpotent matrices). Let A be a matriz of
sizen xn and k > 1 such that A* = 0,,«,,. Then I — A is invertible with
(I-A)t=A1 4. 41,

All Aln

)

Definition 1.1.21. We will denote an m xn matrix A by | : .
A oo A

)

Lemma 1.1.22 (Inverses for 2 x 2 matrices). Let a, b, ¢, d be scalars. Then
a b d —b
L d} [—c a] = (ad — be)Is.

Also, [Z 2] is invertible <= ad — bc # 0.

Lemma 1.1.23 (Rows and columns of matrices). Let m,n € N, and A be
an m X n matriz, and 1 < ig < m and 1 < jo < n. Then there exist unique
matrices X, Y of sizes 1 x n and m x n such that for all 1 <1 < m and for
all1 <j <mn, we have X, ; = A;y; and Y1 = A, j,.

Remark 1.1.24. This allows to denote X and Y by A;; and A ;.

Lemma 1.1.25 (Square matrices with a zero row or column is not invertible).
Let A be a square matrix of size n such that there exists a 1 < k <n so that
A = 01xn or Ay, = 0,x1. Then A is not invertible.

Corollary 1.1.26 (Nonexistence of inverses for non-square matrices). Let
L, A be n x m and m X n matrices with m < n. Then LA # I,.

Lemma 1.1.27 (Block matrices).

(a) Let A, B be matrices of sizes ma X n and mpg X n. Then there exists
a unique matriz C of size (ma + mp) X n such that for each 1 <
1 < ma+mp, we have C; = A; if 1 <1 < my, and C; = B, if
ma+1<i<my+mp.

(b) Let A', B’ be matrices of sizes m X na and m X ng. Then there
exists a unique matriz C' of size m X (na + np) such that for each
1 <j<nu+ng, we have ij = Afj if 1 <j <mnyu, and C’fj =B,
if1+na <j<ng+np.
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Remark 1.1.28. This allows to denote C' by {g

} and C’" by [A" B'].
Corollary 1.1.29 (Block matrices). Let P, Q, R, S be matrices of sizes
my X ny and mq X ny and my X nq and my X ny. Then [P Q] and [R S}
are matrices of sizes my X (ny +ny) and my X (ng + na), and [Z] and {Q]

S
are matrices of sizes (my + mg) X ny and (my + msy) X ny such that

e )= Ll 51

Remark 1.1.30. This allows to denote the last matrix by {; g} .

Lemma 1.1.31 (Block multiplication).

(a) Let A, B, M be matrices of sizes mq X n and mg X n and n X p. Then
[g} and M are matrices of sizes (my +msg) X n and n x p, and AM,

BM are matrices of sizes mq X p and my X p, and

A AM
o] =[]
(b) Let M, A, B be matrices of sizes m X n and n X p; and n X py. Then

M and [A B} are matrices of sizes m xn and n x (p1+ps), and MA,
M B are matrices of sizes m X p; and m X po, and

M[A B] = [MA MB}.
(c) Let P, Q, R, S be matrices of sizes m X ny and m X ng and ny X p and
ng X p. Then [P Q} and

]S%} are matrices of sizes m X (ny +ngy) and

(ny +ng) X p, and PR, QS are matrices of sizes m X p, and

P Q [?] — PR+ QS

(d) Let P, Q, R, S be matrices of sizes my X n and mg X n and n X p; and

n X py. Then [g

} and [R S| are matrices of sizes (my +m2) x n and
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n X (p1+p2), and PR, PS, QR, QS are matrices of sizes my X p; and
myq X py and mo X p1 and ms X pa, and

P PR PS
o 17 1= {0n o)
Corollary 1.1.32 (Multiplication of 2x2 blocks). Let A, B, C, D be my xny
and my X ny and mg X ny and mo X ny matrices, and P, (), R, S be ny X py

. A B P
and ny X pa and ny X p1 and ny X py matrices. Then [C’ D} and [R g]

are (myq +mz) X (ny +ng) and (ny + ny) X (p1 + p2) matrices, and AP+ BR,
AQ + BS, CP+ DR, CQ + DS are my X p1 and my X py and my X p1 and
ms X po matrices, and

A B[P Q] [AP+BR AQ+ BS
C D||R S|~ |CP+DR CQ+DS|

Lemma 1.1.33 (Matrix units). Let m,n > 1 be naturals and 1 < iyp < m
and 1 < jo < n. Then there exists a unique matriz A of size m X n such that
foralll <i<m and for all1 <j <mn, we have A, ; =1 if i =iy and j = jo
and A;; = 0 otherwise.

Remark 1.1.34. This allows to denote A by €; j.pmxn-

Lemma 1.1.35 (Multiplication of matrix units). Let m,n,p > 1 be naturals
and 1 <1 <m, and 1 < j,k<nandl <[ <p. Then

€il:imxps j: k

0m><p7 ] # k .

Lemma 1.1.36 (Multiplication by matrix units). Let X be a matriz of size
m X n.

(a) Let I > 1 be natural, and 1 < i <l and 1 < j < m. Then for all
1<p<l,

€ijimxnCklinxp = {

X; w=1
(ei,';l mX) = ! L.
g g 01><na M 7é 1

(b) Let p > 1 be natural, and 1 < i < n and 1 < j < p. Then for all
I<v<p,
X,ia V:j

(Xei,‘;nx ),V = .
’ 8 Om><17 v 7&]
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Definition 1.1.37 (Commutativity of matrices). “A, B are commuting ma-
trices” iff there exist m, n such that A is a matrix of size m x n and B is a
matrix of size n x m such that AB = BA.

Corollary 1.1.38 (Only square matrices commute). Let A, B be commuting
matrices. Then there exists a unique n € N such that A, B are square
matrices of size n.

Lemma 1.1.39 (Commutativity of matrix units). Let n > 1 be natural and
1<9,5,k, 0 <n. Then

€ilinxn — €k jnxn, ] = k’,l =1

) Gilinxns ] - kal 7£ [

€ijnxnCklinxn — €k lnxnCijnxn = . .
—C€L.jinxn J 7& kal =1
Onsns JF#FkIF#0

Abbreviation 1.1.40 (Trace). For any square matrix A of size n, we set
trace(A) == > | Ai

Proposition 1.1.41 (Properties of trace). Let A, B be nxn matrices. Then

trace(A + B) = trace(A) + trace(B),
trace(AB) = trace(BA), and
trace(A") = trace(A).

Corollary 1.1.42. Let A, B be n x n matrices. Then AB — BA # I,,.

1.2 Row reduction

October 7, 2021

Lemma 1.2.1 (Rows and columns of matrix products). Let A, B be matrices
of sizesm xn and n X p. Then for all 1 <i <1 and for all1 < j < p, we
have (AB); = Y p_, Aix By and (AB) j = >} _, By Ay

Abbreviation 1.2.2 (Elementary matrices). For any n > 1, and any 1 <
7,7 < n and any scalar c, we set

SF,n;iHiJrcj = [n + CEj jinxn,
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gF,n;iHj = In - ei,i;nxn - ej,j;nxn + ei,j;nxn + ej,i;nxna and
gF,n;i—)ci = ]n + (C - ]-)ei,i;nxn-
The above are called “elementary matrices of type (I or II or III) for size
n” iff + # 7 and ¢ # 0.

Remark 1.2.3. Thus & i (—1); and Ep p.i-0; are not elementary for any
1 and any n.
Proposition 1.2.4 (Type II in terms of types I and III). Letn > 1 and 1 <
i <j<mn. Then Epnicsj = Ernijos(-1)j EFmiimsit1s EFmsjmjt(=1)i EFmsimsit1y-
Lemma 1.2.5 (Elementary matrices uniquely determine indices and scalars).
Let n > 1 be natural and 1 < 14,75,k,l <n and c, d be scalars. Then

(CL) SIFJL;/L'A)iJer = E]F,n;kﬁ]prdk — (C =d and (C 7é 0 = 1=k andj = l)),

(b) 5[@7,1;7;_)1'4_0]' = 5F,n;k<—>l — (C =0 and k = l),

(C) 8[[?’“;1‘_”'4_0]‘ = gIF,n;k—nlk — (C =d—1 and (C 7’é 0 = 1 :j = k’)),

(d) Erpivrj = Ernpert = (=7 <= k=1) and (i #j = {i,j} ={k,1})),

() Ermicsj = EFmkser = (c=1andi=j), and

(f) (C/‘F’n;iﬁci = g[p’n;jﬁdj — (C =d and (C 7£ 0 = 1= j))
Example 1.2.6. Let n > 1 be natural. Then the sets of elementary matrices
of type I, 11, III of size n are pairwise disjoint.
Lemma 1.2.7 (Multiplication by elementary matrices). Let X be a matrix
of size m X n and ¢ be a scalar. Then

(a) for all1 <i,j <m,

(g]F,m;i—>i+ch)k =

(g]F,m;i<—>jX)k = Xi; k =]
k#£1
k
(g]F,m;i—miX)k = { L

(b) foralll <i,j <n,

(X Ernimitej) k
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th, ]{3 =1
(X(S‘F,n;iﬁj)yk = X,i7 k :] ) and

Xka k 7£ 1, ]

CXZ‘, k=1
(XgIF,n;i—wi),k = ' .

X7/§, k 7é 7

Lemma 1.2.8 (Elementary matrices are invertible). Let n > 1 be natural,
and 1 <i,7 <n and c be a scalar such that i # j and ¢ # 0. Then

(a) Epniimsitej is invertible with the inverse being Ep ni—it(—c)j»

(b) Epniicsj is invertible with itself being the inverse, and

(¢) Ermiimei @5 invertible with inverse being Er niis(1/ci-

October 14, 2021

Lemma 1.2.9 (Commutativity of elementary matrices). Let n > 1 be natu-
ral, and 1 < i,5,k, 1 <n and c, d be scalars. Then

(0) EFniimsitej and Epnpkrar commute <= one of these holds:
(i) c=0,
(i1) d =0,
(iii) i=j=k=1,
(iv) 1 #1 and j # k;
(b) Erniisitej and Ep niperr commute <= one of these holds:
(i) ¢=0
(i) (j=Fkork=1)and (j=1orl=1),
(i) j #k and k #i and j #1 and | # i;

(¢) Emiisitej and Eppk—ap commute <= one of these holds:

(Z) €= O;
(ii) d =1,
(iii) i = j = k,

(iv) j # k and k # i;
(d) Eppiicsi and Ep pest commute <= one of these holds:
(i) i=7,
(i) k=1,
(i1i) i # j and k # 1 and {i,5} N {k,l} is not a singleton;
(e) Ermicsj and Ep e, commute <= one of these holds:
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(i) i =7 =k,
(11i) i # k and k # j;

(f) EFniisei and Ep p.j—qj commute.
October 16, 2021

Definition 1.2.10 (Pivots of a matrix). “(4,j) is a pivot of an m X n matrix
A” iff A is a matrix of size m x n and 1 <7 <m and A; # 01, (so that the
set S # ) and j = min(S), where S :={1 <j<n:A;; #0}.

Definition 1.2.11 (Row echelon matrices). “A is an m x n row echelon
matrix” iff A is an m x n matrix such that the following hold:
(a) For each 1 <i < m, we have (A; = 01, = Aj11 = O1xn)-
(b) Foreach1 < i < mand foreach 1 < j <n, wehave ((i,7) is a pivot of A =
A ;=1).
(¢) For each 1 < i < m and for all 1 < j,j" < n, we have ((i,7) and (i +
1,7") are pivots of A = j < j').
(d) Foralll <7 <i<mandforalll < j <mn,wehave ((7,) is a pivot of A =
Ai’,j = 0)
“A is a row echelon matrix” iff there exist m, n such that A is an m xn
row echelon matrix.

Lemma 1.2.12. Let R C N x N such that for each i, j,j € N,
(a) (i,7),(i+1,j) e R = j <y, and
(b) i+1€domR = i€ domR.
Then for all 1,4, 7,5 € N,
(a) i € dom R and i’ <i = ¢ € dom R, and
(b) (i,7),(, ) € R andi <i = j <7

Lemma 1.2.13 (Pivots of row echelons). Let A be an m X n row echelon
matriz and (i, jo) be a pivot of A. Then

(a) ig < jo, and

(b) A,jo = €ip,1;mx1-

Lemma 1.2.14 (Preserving row echelon-ness).

(a) Let A be an m x n row echelon matriz. Then [0p1 A] and [A Op1]
are row echelon matrices.
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(b) Let A, B be matrices of sizes mxmn and 1 xn such that for all1 <i <m
and for all 1 < j < n, if (4,7) is a pivot for A, then By; = 0. Then

{0[1] i} s a row echelon matrix.
m,1

. . Al .
(c) Let A, B be matrices of sizes my X n and ms X n such that B] is a
row echelon matrixz. Then A, B are each row echelon matrices.
(d) Let A, B be matrices of sizes m x n and n x 1 such that C := [A B]
is a row echelon matriz. Then A is a row-echelon matriz.

Lemma 1.2.15 (Square row echelons). Let A be a square row echelon matric
of sizem. Then A =1, or A, = 01xn.

Remark 1.2.16. See Proposition 2.1.9 for the precise meaning of Fy - - - F.

Definition 1.2.17 (Row equivalence). “A, B are row equivalent matrices”
iff there exist m, n such that A, B are matrices of size m x n and there

exists a k > 1 and elementary matrices Ey, ..., Ey each of size m such that
A=EFE,---E;B.

Example 1.2.18. Row equivalence is an equivalence relation on the set of
matrices on .

Lemma 1.2.19 (Preserving row equivalence).

(a) Let A, B be m X ny and m X ny matrices such that A and A’ are row
equivalent. Then [A 0mx1] and [A’ 0mx1] are row equivalent.

(b) Let A, A’ be m x ny matrices and B, B’ be m X ny matrices such that
[A B] and [A’ B’} are row equivalent. Then A, A" and B, B’ are
row equivalent.

Corollary 1.2.20 (Inverses of matrices using row reduction). Let A, B be
square matrices of size m such that [A In} 18 row equivalent to [[n B].

Then AB = BA =1,.

Theorem 1.2.21 (Row reduction is possible). Let A be a matriz. Then
there exists a row echelon matrix B such that A is equivalent to B.

Lemma 1.2.22 (Equivalent systems of equations). Let A, A’ be matrices
of size m x n, and B, B’ be matrices of size m x 1 and X be a matriz
of size n x 1 such that [A B] and [A’ B’} are row equivalent. Then
AX =B «<— AX=PRB.
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Proposition 1.2.23 (Solving linear systems using row echelons). Let A, B
be matrices of sizes mxn and m x 1 such that M := [A B] 1S a row echelon
matriz. We have the following cases:
(a) (i,n+ 1) is a pivot of M for some i:
Then AX # B for any matrix X of size n X 1.
(b) (i,n+ 1) is not a pivot of M for any i:
Set K .= {1 <i<m:A # Oixnf and L := {1 < j < n:
(1,7) is not a piwot of A for any i}. Then there exists a unique func-
tion s: K — {1,...,n} such that for each i € K, setting X = {1 <
J<mn:A;;#0}, wehave X #0 and s(i) = min(X). Further, for any
such function s and any matriz X of size n x 1,
(1) LNs[K] =0,
(ii)) LUs[K]={1,...,n}, and
(iti)) AX =B <= X pa1+> @) AijXj1 = Bl for eachi € K.

j€L,j>5(1

Remark 1.2.24. We'll write m xn matrix” instead of “matrix of size m xn”
from now on.

Corollary 1.2.25 (More variables than equations). Let m < n be naturals

and A be an m X n matriz. Then there exists an n X 1 matriz X such that
X % OTZX1 a’ﬂd AX = Oan.

October 17, 2021

Theorem 1.2.26 (Square matrices). Let A be a square matriz of size n.
Then the following are equivalent:
(a) A is row equivalent to I,,.
(b) There exists a k > 1 and elementary matrices Ey, ..., Ey each of size
n such that A = Ey--- E.
(c) A is invertible.

Proposition 1.2.27 (A weaker condition for invertibility). Let A, B be
square matrices of size n each such that AB = I,,. Then BA =1,,.

Corollary 1.2.28. Let A, B be n X n matrices such that AB 1is invertible.
Then A and B are invertible.

Theorem 1.2.29 (Square systems). Let A be a square matrix of size n.
Then the following are equivalent:

(a) A is invertible.
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(b) For each n x 1 matriz B, there exists a unique n X 1 matriz X such
that AX = B.
(¢) For each n x 1 matriz X, if AX = 0,x1, then X = 0,;1.

Proposition 1.2.30 (Left invertible matrices). Let A be an m X n matriz
such that there exists an n X m matrix L so that LA=1,,. Let B be an m x 1
matriz. Then

(a) m >n, and

(b) (AL)B =B <= B = AX for some n x 1 matriz X.

m > n.

Proposition 1.2.31 (Invertibility of I — AB). Let A, B be m xn and n xm
matrices such that I, — AB s invertible. Then I,, — BA is invertible with
(I-BA)'=1+B(I - AB)'A.

1.3 The matrix transpose

October 17, 2021

Lemma 1.3.1 (Transposes). Let A be a matriz. Then there ezists a unique
matriz B such that there exist m,n € N so that A, B are m X n and n X m
matrices such that for all1 <i<m and 1 < j <n, we have A;; = B;;.

Remark 1.3.2. This allows to denote B by A’

Lemma 1.3.3 (Operations with transpose). Let A, B be m X n matrices,
and C be an n x p matriz, and X be a scalar. Then A, B! are n x p matrices,
and C' is a p x n matriz, and

(A+B)t:At+Bt
(AC)' = A
(AA)" = A", and
(At)t:

Lemma 1.3.4 (Some special transposes).
(a) Let myn € N, and 1 < i < m and 1 < j < n. Then (€ j,mxn)’ =

€jimnxm-

(b) Let n > 1 be natural. Then (I,)" = I,.
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(¢) Let A be an m x n matriz. Then A' is an n X m matriz and
(i) (A = (Ag)" for each 1 <k <n, and
(ii) (A"); = (A)! for each 1 <1 <m.

Lemma 1.3.5 (Inverses of transposes). Let A be an invertible matriz. Then
At is also invertible with (AY)~1 = (A7)

Lemma 1.3.6 (Transposes of elementary matrices). Let n > 1 be natural,
and 1 < 1,7 <n and c be a scalar. Then

t
(SIF,n;iHiJrcj) = gIF,n;j%jJrci;
t
(gF,n;iHj) = g]F,n;iij and

<EF,n;i—>ci)t = g]F,n;i—wi .

1.4 Determinants

October 18, 2021

Lemma 1.4.1 (Submatrices). Let A be an m x n matriz, and 1 < iz < m
and 1 < jo < n such that m,n > 2. Then m — 1,n —1 > 1 and there exists
a unique (m — 1) x (n — 1) matriz B such that for all 1 < i < m —1 and
1<:<n—-1,

Ai,ja i <i07j <j0

B _ Aijr, 1 <10,J 2 Jo
] . . . .o

At 1210, < Jo

Aivijr1, 1 2>10,7 = Jo
Remark 1.4.2. This (along with Lemma 1.1.4) allows to denote B by A, jo)-

Lemma 1.4.3 (Determinant function). Then there exists a unique function
F on U, o, SMatmE) sych that for all f € U, o, SN there exists a
k > 1 such that f: Mat(k, k;F) — § and F(f): Mat(k + 1,k + 1;F) = § so
that for all (k+ 1) x (k+ 1) matrices A, we have that for all 1 <v < k+1,
we have that A1y is a k X k matriz, and

k+1

(FONA) = ()" A f(Apy):

v=1

Hence, there exists a unique function Det: N\ {0} — U@lS’M“(m’”?F)
such that
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(a) Dety: Mat(1,1;F) — § such that Dety(A) = Ay 1 for all 1 x 1 matrices
A, and
(b) for each n > 1, we have that Det, 1 = F(Det,).

Hence, for any square matrix B, there exists a unique x € § such that
there exists an n > 1 so that B is an n X n matriz and x = Det,,(B).

Remark 1.4.4. This allows to denote x by det(B).
Corollary 1.4.5 (Determinant of I,,). Let n > 1. Then det([,) = 1.
October 19, 2021

Definition 1.4.6 (Matrices differing in only one row). “A and B are m x n
matrices differing in only k-th row” iff A, B are m X n matrices, and 1 <
k< m and for all 1 <i <m, if ¢ # k, then A; = B;.

Definition 1.4.7 (Matrices differing in only one column). “A and B are
m X n matrices differing in only k-th column” iff A, B are m X n matrices,
and 1 <k <nandforalll<j<mn, ifj#k, then A; = B.

Lemma 1.4.8 (k-th row sum). Let A, B be m X n matrices differing in
k-th row. Then there exists a unique m X n matriz C' such that for each

1<i<m, we have C; = A; = B; if i #k and C; = A; + B; if i = k.
Remark 1.4.9. This (and Lemma 1.1.4) allow to denote C' by A +; B.

Lemma 1.4.10 (k-th column sum). Let A, B be m X n matrices differing
only in k-th column. Then there exists a unique matrix C' such that for each

1<j<n,wehaweC;=A;=B;ifj#kandC;=A;+ B, if j =k.
Remark 1.4.11. This (and Lemma 1.1.4) allow to denote C' by A+, B.

Lemma 1.4.12. Let A, B be m x n matrices differing only in k-th column.
Then At, B' are n x m matrices differing only in k-th row, and (A+j B)" =
At +,. B

Definition 1.4.13 (Determinant-like functions). “J is a determinant-like
function on n x n matrices” iff §: Mat(n,n;F) — § such that the following
hold:
(a) o(I,) = 1.
(b) (i) For any n x n matrix A, for any scalar ¢ and for any 1 < i < n,
we have that 0(Ep e d) = cO(A).
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(ii) For any n xn matrices A, B differing in only i-th row, §(A+; B) =
d(A) + 4(B).
(¢) For any nxn matrix A, if there exists a 1 < i < n such that A; = A4,
then 0(A) =

Lemma 1.4.14. Let A, B be m x n matrices, and 1 < 1,7 < m, and ¢
be a scalar such that for each 1 < k < m, we have By = Ay if k # i and
By = A; ifk =1i. Then A and Ep ;i B differ only in t-th rows and we have
Ermiimivej A = A+i Epniisei B.

Lemma 1.4.15. Let § be a determinant-like function for n X n matrices,
and A be an n x n matriz, and 1 <1 <n, and 1 < 7 <mn, and ¢ be a scalar.
Then

(a) 5(5]F,n;i—>i+c(i+1)14) = 5(51F,n;j—>j+c(j—1)A) = 0(A), and
(b) 0(Ermiicsit1A) = 0(Ernijerj—14) = —6(A).

Lemma 1.4.16. Let § be a determinant-like function on n xn matrices, and
A be an m x n matriz and 1 <1i < j <n such that A; = A;. Then

(a) there exists a k > 1, and matrices Ey,...,E, and a 1 < ig < m
such that for each 1 < | < k, there exists a 1 < a < m so that
E = 5F,n;a<—>a+1; and (E1 ce EkA)io = (El s EkA)io+1; and

(b) m=n = §(A) =0.

Theorem 1.4.17 (Properties of determinant-like functions). Let § be a
determinant-like function on n X n matrices, and A be an n X n matriz,
and ¢ be a scalar, and 1 < 1,7 < n such that i # j. Then

5(513‘ nyi—i+cj ) 5(A>;
0(ErmiciA) = —0(A),

5(5]3‘ n;i—ci ) - C(S(A) )

A; = 01y d(A) =0, and
A; = cA, — §(A) =

Corollary 1.4.18 (Determinants of elementary matrices). Let d be a determinant-
like function on nxn matrices, A be an nxn matriz, and E be an elementary
matrixz of size n, and ¢ be a scalar and 1 < 4,7 < n such that i # j. Then

5(5F,n;i—>i+cj) = 17
(5(5F,n;i<—>j) = _17
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5(51F,n;i—>ci) =c, and
o(EA) = 6(E)0(A).

Theorem 1.4.19 (Determinants are multiplicative). Let ¢ be a determinant-
like function on n x n matrices and A, B be n x n matrices. Then §(AB) =

5(A)8(B).

Theorem 1.4.20 (Uniqueness of determinant). Let n > 1. Then Det,, is
the only determinant-like function on n X n matrices.

Proposition 1.4.21 (Further properties of determinants). Let A be a square
matrix of size n. Then the following hold:

(a) (i) A is invertible <= det(A) # 0.
(ii) A is invertible = det(A) # 0 and det(A™!) = (det(A))~ L.
(b) A' is a square matriz of size n and det(A') = det(A).
(¢) For any scalar ¢ and for any 1 <1i,j <mn such that i # j,
(1) (1) det(AEp nisei) = cdet(A),
(2) for any square matriz B of size n differing from A only in the
i-th column, det(A +; B) = det(A) + det(B),
(i) (1) det(A&r nivivej) = det(A),
(2) det(Ap p.icy;) = — det(A),
(3) det(AEr niiei) = cdet(A),
(4) A?i = 0px1 — det(A) = O, and
(5) Aﬂ; = CAJ‘ — det(A) =0.

Proposition 1.4.22 (Determinants of tridiagonal matrices). Let a, b, ¢ be
scalars and for alln > 1, let A, be an n X n matriz such that for all 1 <
h,J < n,

a, 1=17
Ai,j: b, j:Z+1
¢, 1=7+1

Then for alln > 1, det(A,4+1) = adet(A,11) — bedet(A,,).
Proposition 1.4.23 (Determinants of block diagonals). Let A, B, D be m x

m and m x n and n x n matrices. Then det ( [0 A g}) = det(A) det(D).
nxm

Corollary 1.4.24. Let A, B, C, D be nxn matrices such that A is invertible

and AC' = CA. Then det([é g]) = det(AD — CB).
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Proposition 1.4.25 (Vandermonde determinant). Let n € N, and t,...,t,
be scalars and A be the (n+1) x (n+ 1) matriz such that A;; = (tj—1)""* for
all 1 <id,j <n+1. Then det(A) = [TZy ([Tpes (t — ).

Remark 1.4.26. We write “¢;’s are distinct” to abbreviate that t is injective.

Corollary 1.4.27. Letn € N andtg,...,tn, by, ..., b, be scalars such thatt;’s
are distinct. Then there exist unique ag, . . ., a, such that ag+. .. +a,(t;)" = b;
forall 0 <7 <n.

Remark 1.4.28. From this, it follows that a polynomial of degree n can not
have n + 1 distinct roots. That is, it has at most n distinct roots.

1.5 Permutations

October 22, 2021

Definition 1.5.1 (Permutations). “p is a permutation on S” iff p: S — S
and p is a bijection.

Lemma 1.5.2 (Permuting entries by p permutes indices by p~!). Letn > 1,
and p be a permutation on {1,...,n} and X, Y be n x 1 matrices such
that X1 = Yy for all 1 < @ < n. Then for all 1 < i < n, we have
Yii=Xp10)1-

)

Lemma 1.5.3 (Permutation matrices). Let n > 1 and p be a permutation
on{1,...,n}. Then there exists a unique n X n matriz P such that for any
n x 1 matriz X, we have X;1 = (PX)p@)1 for all1 <i < n.

Remark 1.5.4. This allows to denote P by PerMat(p). (Functions uniquely
determine their domains.)

Definition 1.5.5 (Permutation matrices). “P is the permutation matrix
for p on {1,...,n}” iff n > 1, and p is a permutation on {1,...,n} and
P = PerMat(p).

“Pis an n x n permutation matrix” iff there exists a p such that P is the
permutation matrix for p on {1,...,n}.

Lemma 1.5.6 (Rows and columns of permutation matrices). Let P be the
permutation matriz for p on {1,...,n}. Then P = epm)1,nx1 and Py =
€1p-1(k)ixn for all 1 <k < n.
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Corollary 1.5.7 (Permutation matrix for identity). Let n > 1. Then I, is
the permutation matrix for L{1,.;n}—={1,..;n} -

Corollary 1.5.8 (Permutation matrices permuting rows and columns). Let
P be the permutation matrixz forp on{1,...,n} and A, B be n xm and mxn
matrices. Then for all 1 < i < n, we have (PA)y;) = A; and (BP) 4y = B;.

Proposition 1.5.9 (Characterizing permutation matrices). Let P be annxn
matriz. Then P is an n X n permutation matric <= for each 1 < k < n,
there exist 1 < i,7 < mn such that P, = ey j1xn and Py = €;1.mx1.

Lemma 1.5.10. Let n > 1 and P be the permutation matriz for p on
{1,...,n+1}. Then Pyayay is an n x n permutation matriv.

Proposition 1.5.11 (Dtereminants of permutation matrices). Let P be an
n X n permutation matriz. Then det(P) =1 or det(P) = —1.

Proposition 1.5.12 (Matrices of permutation compositions). Let P, Q be
the permutation matrices for p, q each on {1,... ,n}. Then PQ is the per-
mutation matriz for poq on {1,...,n}.

Lemma 1.5.13 (Inverses of permutation matrices). Let P be the permutation
matriz for p on {1,...,n}. Then

(a) P is invertible,

(b) P~' = Pt and

(c) P! is the permutation matriz for p=* on {1,... ,n}.

Lemma 1.5.14 (Transpositions). Let n € N and 1 < i,j < n. Then there
exists a unique function f: {1,...,n} — {1,...,n} such that for all1 < k <
n?

7, k=1
f(k)=1q1i, k=]
k, k#i,j

Remark 1.5.15. This allows to denote f by 7,5

Definition 1.5.16 ((Proper) transpositions). “T"is a (proper) transposition
on {1,...,n}” iff n € N and there exist 1 < i,5 < n such that (i # j and)
T = Tnyicsj-
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Lemma 1.5.17 (Transpositions are permutations). Let n € N and T be a
transposition on {1,...,n}. Then T is a permutation on {1,...,n}.

Lemma 1.5.18 (Permutation matrices for transpositions). Let n > 1 and
1 <i,5 <n. Then PerMat(7,.i05;) = Ernsicss-

Remark 1.5.19. We don’t define empty function composition.

Proposition 1.5.20 (Permutations as transposition compositions). Let n €
N and p be a permutation on {1,...,n}. Then there exists a k > 1 and
transpositions Ty, ..., Ty on {1,...,n} such that p="T;0---0oT}.

Abbreviation 1.5.21 (Signs of permutations). For any n > 1 and for any
permutation p on {1,...,n}, we set sign(p) := det(PerMat(p)).

Proposition 1.5.22 (Odd and even permutations). Let n > 1, and k > 1
and Ty, ..., Ty be proper transpositions on {1,...,n}. Set p:=Ty0---0T}.
Then p is a permutation on {1,...,n}, and

(a) k is even = sign(p) =1, and

(b) k is odd = sign(p) = —1.

Lemma 1.5.23 (Cycles). Let n,k € N such that k < n. Then there exists a
unique function p: {1,...,n} — {1,...,n} such that for each 1 <i <n,

1+ 1, i<k
p(i) =<1, 1=k.
7, 1>k

Remark 1.5.24. This allows to denote p by (1---k),.

Corollary 1.5.25. Let n,k € N such that k <n. Set p:=(1---k),. Then
(a) p€S,, and

..........

Lemma 1.5.26 (Sign of cycles). Let 1 <k <n and setp:= (1---k),. Then

(a) P = Tn1:20 O Tnik—1ek; and

(b) sign(p) = (=1)*.
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1.6 Other formulas for the determinant

October 24, 2021

Proposition 1.6.1 (Expanding det on arbitrary rows and columns). Let
n>1, and A be an (n+ 1) x (n+ 1) matriz and 1 < iy, jo <n+1. Then

n+1

det(A) = (=1)"0 A; 5, det(Ag o)
=1
n+1

=) (—1) T Ay, det(Agy ).
=1

Lemma 1.6.2 (Embedding permutations doesn’t change sign). Let n > 1,
and p be a permutation on {1,...,n} and q: {1,...,n+1} = {1,... ,n+1}
such that for each 1 <1 <n+1,

q(i) = {p(i)’ =

n+l, i=n+1

Then q is a permutation on {1,...,n+ 1} and sign(p) = sign(q).

Lemma 1.6.3. Letn > 1, and p be a permutation on{1,...,n} andq: {1,...,n+
1} = {1,...,n+ 1} such that for all1 <i<n+1,

0=1" i

i) = .

1 pli—1)+1, i>1

Then q is a permutation on {1,...,n+ 1} and sign(p) = sign(q).

Proposition 1.6.4 (Complete expansion of det). Let n > 1 and A be an
n X n matriz. Then

det(A) = " sign(p) A1 (1) - - Anp(n)

peX
where X = {p: p is a permutation on {1,...,n}}.

Lemma 1.6.5 (Co-factor matrix). Let A be an n X n matriz. Then there
exists a unique n x n matriz C' such that
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(a) n=1 = C =1[1], and
(b)) n>1 = C;; = (1) det(Ayys) for all1 <i,j <n.

Remark 1.6.6. This allows to denote C' by cof(A).

Theorem 1.6.7 (Inverse using co-factor matrix). Let A be an n X n matriz.
Then Acof(A) = cof(A)A = det(A)I,.

Remark 1.6.8. We'll write x = *+k for abbreviating “x =k or x = —k”.

Example 1.6.9. Let A be an invertible matrix with integer entries. Then
A~ has integer entries < det(A) = +1.



Chapter 2

Groups

2.1 Laws of composition

October 28, 2021

Definition 2.1.1 (Identity). “e is an identity for + on S” iff S is a set, and
+:S5x S5 —=S,andeec Sande+z=x+e=2xforeach x € S.

“4+ on S has an identity” iff there is an e such that e is an identity for +
on S.

Lemma 2.1.2 (Uniqueness of identity). Let + on S have an identity. Then
there exists a unique e such that e is the identity for + on S.

Remark 2.1.3. This allows to denote e by Id,. (S determined by +.)

Definition 2.1.4 (Inverses). “a is an inverse of b for + on S with identity”
iff + on S has an identity, and be S and a+b=0b+a = 1d,.

“b is invertible for + on S” iff there exists an a such that a is an inverse
of b for 4+ on S with identity.

Definition 2.1.5 (Associativity). “+ on S is associative” iff S is a set and
+:Sx S8 —=Sand (a+b)+c=a+ (b+c) forall a,b,c € S.

Lemma 2.1.6 (Uniqueness of inverses). Let + on S have an identity and be
associative and a,l,r € S. Then
(a) a+l=a+r = l=r, and
(b) a is invertible for + on S = there exists a unique b such that b is
the inverse of a.

26
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Remark 2.1.7. This allows to denote b by Inv, (a).

Lemma 2.1.8 (Inverses of products and inverses). Let + on S have an
identity and be associative, and a,b € S be invertible. Then a+b and Inv, (a)
are invertible with

Inv, (a+b) = Inv, (b) + Inv, (a), and

Inv, (Inv, (a)) = a.

Proposition 2.1.9 (Strings for associative operations). Let + on S be as-

sociative. Then there exists a unique function F: N\ {0} — 5, Gsttnh)
such that

This also allows, for each a € S and for each m > 1, to denote F,,(b) by
Iter, ,,(a) where b is the unique function (determined by a and m) such that
b: {1,...,m} — S so that by =a for all 1 <k < m.

Lemma 2.1.11 (Adding constant strings, and strings of a string). Let + on
S be associative, and a € S and r,s > 1. Then rs,r+s > 1, and

Itery ,(a) + Itery s(a) = Itery .1 s(a), and
Iter; (Itery ,(a)) = Itery ,s(a).

Lemma 2.1.12. Let + on S be associative and have an identity, and a € S.
Then there exists a unique function f: N — S such that for each n € N,

Id+, n=>0

Iter, ,(a), n>1

f((a;n)) = {

Remark 2.1.13. This allows to set f(n) by Iterld, ,(a) for each n € N.

Corollary 2.1.14. Let + on S be associative and have an identity, and
a €S, andn € N. Then
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(a) Tterldy ,,(Idy) = Id4,
(b) Tterld o(a) = Idy, and
(c) n>1 = lterldy ,,(a) = Itery ,(a).

Lemma 2.1.15. Let + on S have an identity and be associative, and a € S,
andr,s € N. Then rs,r + s € N and analogue of Lemma 2.1.11 holds.

Lemma 2.1.16. Let + on S have an identity and be associative, and a € S
be invertible. Then there exists a unique function f: 7Z — S such that for
each p € Z,

Iterld, ,(a), p>0
fo) =4, A :
tery _,(Invi(a)) p<0

Remark 2.1.17. This allows to denote f(p) by Itry ,(a) for each p € Z.

Corollary 2.1.18. Let + on S be associative and have an identity, and a € S
be invertible and n € N. Then

(a) Itry ,(a) = Iterldy ,(a),

(b) Ttry —1(a) = Invi(a), and

(c) Tterld, ,,(a) is invertible and Itry _,(a) = Inv (Iterld, ,(a)).

Lemma 2.1.19. Let + on S have an identity and be associative, and a € S
be invertible and r,s € Z. Then r+ s,rs € Z and analogue of Lemma 2.1.11
holds.

Lemma 2.1.20 (Restriction of binary operations). Let G be a set, and -: G X
G — G and H C G such that a-b € H for each a,b € H. Then there exists
a unique function x: H x H — H such that axb=a-b for all a,b € H.

Remark 2.1.21. This allows to denote x by -g. (This is poor notation if
ordered pairs are considered as Kuratowski pairs.)

2.2 Groups and subgroups

October 29, 2021

Definition 2.2.1 (Groups). “(G,-) is a group” iff - on G has an identity and
is associative, and each a € G is invertible.

Proposition 2.2.2. Let + on S be associative and have an identity. Set
G :={x € S :z is invertible for + on S}. Then (G,+¢) is a group.
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Proposition 2.2.3. Let (G,-) be a group, and a,b € G and n € Z. Then
Iter. ,(a-b) =1d. <= TIter.,(b-a) =1d..

Definition 2.2.4 (Finite groups). “(G,-) is a finite group” iff (G,-) is a
group and G is a finite set.

Definition 2.2.5 (Abelian groups). “(G,-) is an abelian group” iff (G, ) is
a group and a-b=>b-a for all a,b € G.

Corollary 2.2.6 (A condition for commuting elements). Let (G, -) be a group
and a,b € G such that Iter. o(a) = Iter. 5(b) = Iter. o(ab) = Id.. Then a-b=
b-a.

Proposition 2.2.7 (Cancellation law). Let (G, -) be a group and a,b,c € G.
Then

(a) (ab=ac orba =ca) = b=c, and
(b) (ab=a orba=a) = b=1d.

Abbreviation 2.2.8 (General linear, symmetric and alternating groups).
For any n > 1, we set GL,(F) := {A € Mat(n,n;F) : A is invertible} and
A, ={pesS, :sign(p) = 1}.

Lemma 2.2.9 (Cardinality of S,,). Let n € N. Then #(S,,) = nl.

Example 2.2.10 (Groups). For any m,n € N such that n > 1, we have that
(Sim, o) and (GL,(F), matriz multiplication) are groups.

Example 2.2.11 (Characterizing S3). Set x := (123), and y := (12). Then,
in multiplicative notation,

Y # 1,
=1,
Yy =1,

yr = 2%y, and
S3 = {]-7 x, 12’ Yy, 1y, xzy}
Definition 2.2.12 (Subgroups). “H is a subgroup of (G, -)” iff the following

hold:
(a) HCG.
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(b) a-be€ H for each a,b € H.
(¢) (H,-g)is a group.

Proposition 2.2.13 (An equivalent condition for being a subgroup). Let
(G,-) be a group and H be a set. Then H is a subgroup of (G,-) <= the
following hold:

(a) HCG.

(b) a-be H foralla,be H.

(¢c) Id. € H.

(d) Inv.(a) € H for each a € H.

Proposition 2.2.14 (Subgroups of subgroups). Let H be a subgroup of (G, -)
and K be a subgroup of (H,-y). Then K is a subgroup of (H,-).

Proposition 2.2.15 (Intersection of subgroups). Let H and K be subgroups
of (G,-). Then HU K 1is a subgroup of (G, ).

Lemma 2.2.16 (Trivial subgroups). Let (G,-) be a group. Then G, {Id.}
are subgroups of (G,-).

Definition 2.2.17 (Proper subgroups). “H is a proper subgroup of (G, -)”
iff H is a subgroup of (G,-), and H # G and H # {Id.}.

Abbreviation 2.2.18 (Special linear groups). For any n > 1, we set SL,,(F) :=
{A € GL,(F) : det(A) = 1}.
Example 2.2.19 (Examples of subgroups).

(a) SL,(F) is a subgroup of (GL,(FF), matriz multiplication) for any n > 1.

(b) {z € C:|z| = 1} is a subgroup of (C, complex multiplication).

(c) The set of upper triangular matrices is a subgroup of (GL,,(F), matriz multiplication)

for each n > 1.
A B

(d) Let 1 <r <mn. Then {
0(n—7")><7" D
a subgroup of (GL,(IF), matriz multiplication).

: A e GL.(F),D € GL,,_.(F)} s

Definition 2.2.20 (Subgroups generated by sets). “H is a smallest subgroup
of (G,-) generated by S” iff H is the minimal set such that S C H and H is
a subgroup of (G, ).

Corollary 2.2.21 (Uniqueness of the subgroups generated by sets). Let H,
H' be subgroups of (G,-) generated by S. Then H = H'.
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Example 2.2.22. The group generated by a subset contains exactly all the
finite products (including empty products which evaluate to identity) of the
elements of U and their inverses.

Proposition 2.2.23 (Product set of subgroups being a subgroup). Let H,
K be subgroups of (G,-). Set A:=={h-k:he€ H ke K} and B:={k-h:
ke K,he H}. Then A is a subgroup of (G,-) <= A= B.

Proposition 2.2.24 (Type I and type III generate GL,(F)). Let n > 1.
Then GL,, () is the smallest subgroup of GL,(FF) generated by { E € Mat(n,n;F) :
E is type I or type III elementary matrixz of size n}.

Proposition 2.2.25 (Type I generates SL,,(F)). Let n > 1. Then SL,(F) is
the smallest subgroup of GL,,(F) generated by { E € Mat(n,n;F) : E is a type I elementary matriz of si:

Proposition 2.2.26 ((Proper) transpositions generate S,,). Letn € N. Then
Sy is the smallest subgroup of S,, generated by {p € S,, : p is a proper transposition}.

Proposition 2.2.27 (3-cycles generate A,). Let n > 3. Then A, is the
smallest subgroup of S, generated by {po(1---3),0p~t:p€S,}.

Abbreviation 2.2.28 (Subgroups generated by singletons). For any group
(G,-) and any = € G, we set (x) = {Itr.,,(z) : m € Z}.

Lemma 2.2.29. Let (G,-) be a group and x € G. Then (x)_is the smallest
subgroup of (G,-) generated by {z}.

Definition 2.2.30 (Path connections in subsets of R¥). “a and b are con-
nected in S of R¥” iff £ > 1, and a,b € R*, and S C R*, and there exists a
¢: [Or, 1g] — R¥ such that

(a) ¢(Or) = a and ¢(1r) = b,

(b) ¢ is conitnuous, and

(c) ¢(x) € S for all O <z < 1p.

Definition 2.2.31 (Path-connected subsets). “S is path-connected in RF”

iff S is a set such that for every a,b € S, we have that a and b are connected
in S of R¥.

Proposition 2.2.32 (Path connections form an equivalence relation). Let
k>1,andS CR* anda € S. Set R := {(a,b) : a and b are connected in S of R*}.
Then
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(a) R is an equivalence relation on S, and
(b) la]r is path-connected in RF.

Example 2.2.33 (Examples of path-connected subsets). {(z,y) € R?: 22 +
y*> = 1} and {(z,y) € R? : zy = 0} are path-connected in R?, whereas
{(x,y) € R? : zy = 1} is not.

Remark 2.2.34. From Definition 2.2.35 to Example 2.2.39, we'll fixann > 1
and a bijection f: {1,....,n} x {1,...,n} = {1,...,n%}.

We'll set g to be the unique function g: Mat(n,n;R) — R™ such that
9(A) p(i gy = Aij for any A € Mat(n,n;R) and for all 1 < 4,5 < n.

We'll also shorten GL, (R, +, real multiplication) to GL, (R).

Definition 2.2.35 (Path connections in subsets of GL,(R)). “A and B are
connected in S of GL,(R)” iff S C GL,(R), and g(A) and g(B) are connected
in ¢[9] of g|GL,(R)].

“S is path-connected in GL,(R)” iff S is a set such that for every A, B €
S, we have that A and B are connected in S of GL,(R).

Example 2.2.36 (Connected components are normal subgroups). Let G be
a subgroup of (GL,(R), matriz multiplication), and A and B, and C' and D
be connected in G of GL,(R). Then

(a) AC and BD are connected in G of GL,(R), and
(b) {M € GL,(R) : M and I,, are connected in G of GL,(R)} is a normal
subgroup of (GL,(R), matriz multiplication).

Proposition 2.2.37 (SL,(R) is path-connected). SL, (R) is path-connected
in GL,(R).

Example 2.2.38 (Generators of GL,(R)). GL,(R) is the smallest subgroup
of (GL, (R), matriz multiplication) generated by { E € Mat(n,n;R) : (E is type I elementary m
EFniisei for some ¢ >0 and some 1 < i <n) or (E =1, —2e1)}.

Example 2.2.39 (GL,(R)’s connected subsets). Let A € GL,(R). Set

X :={BeGL,
Y :={BeGL,
W :={B € GL,
Z :={B € GL,

R) : det(B) > 0},

R) : det(B) < 0},

R) : B and I,, are connected in GL,(R) of GL,(R)}, and
R) : B and I,, — 2ey are connected in GL,(R) of GL,(R)}.

P N

Then
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(a) X =W andY = Z,

(b) {X,Y} is a partition of GL,(R),

(¢) W and Z are path-connected in GL,(R), and

(d) P and Q are not connected in GL,(R) of GL,(R) for any P € W and
any Q € Z.

2.3 Subgroups of the additive group of inte-
gers

October 29, 2021

Lemma 2.3.1 (Euclid’s division lemma for Z). Let a,b € Z such that b # 0.
Then there ezist unique q,r € Z such that 0 < r < |b| and a = bqg + r.

Abbreviation 2.3.2. For any a € Z, we set Za := {ka : k € Z}.

Corollary 2.3.3.
(a) Let a € Z. Then Za = Z(—a) = Z(lal).
(b) Z1 =7.
(c) Z0 = {0}.

Lemma 2.3.4 (Strings in (Z,+)). Let m,n € Z. Then Itry ,,(n) = mn.

Corollary 2.3.5 (a generates Za). Let a € Z. Then Za = (a). .

Lemma 2.3.6. Let a,b > 0 such that Za = Zb. Then a = b.

Theorem 2.3.7 (Characterizing subgroups of Z). Let S be a subgroup of
(Z,+). Then, setting X :={m €S :m >0}

(a) X =0 = S ={0}, and

(b)) X 0 = S =Z(min(X)).

Abbreviation 2.3.8. For any a,b € Z, we set Za +7Zb .= {x +y : x €
Za,y € 7b}.

Lemma 2.3.9 (a, b generate Za + Zb). Let a,b € Z. Then Za + Zb is the
smallest subgroup of (G,-) generated by {a,b}.

Lemma 2.3.10 (gcd). Let a,b € Z such that not both are zero. Then there
exists a unique m > 0 such that Za + Zb = Zm.
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Remark 2.3.11. This allows to denote m by ged(a, b).

Corollary 2.3.12. Let a,b € Z such that not both are zero. Then |al,|b| are
not both zero and ged(a,b) = ged(|al, 0]).

Proposition 2.3.13 (Euclid’s algorithm). Let a,b € N not both be zero.
Then there exist unique functions A, B: N — N such that Ay = max(a,b),
and By = min(a, b) and for alln € N,

(B, remainder on dividing A,, by B,), B, #0

An 7Bn =
( ! +1) {(Ana())a Bn =0

Further, for any such functions A, B, the following hold:
(a) For each n € N,
(i) A, >0 and B,, > 0,

(ii)) B, #0 = B, < By, and
(i1i) ZA, + ZB, = Za + Zb.

(b) Setting K :== {n € N: B, = 0}, we have K # (. Set N := min(K).
Also, A, = Ay and B,, =0 for each n > N.

(c) ged(a,b) = Ay.

Definition 2.3.14 (Divisors). “a is a divisor of b” or “a divides b” or b is a
multiple of a” iff a,b € Z and b € Za.

Lemma 2.3.15 (Quotients). Let m divide n such that m # 0. Then there
exists a unique q € Z such that n = gm.

Remark 2.3.16. This allows to denote ¢ by n/m.

Proposition 2.3.17 (Characterizing ged). Let a,b,d € Z such that a, b are
not both zero. Then

(a) ged(a,b) is a divisor of a, b,

(b) dis a divisor of a, b = d is a divisor of ged(a,b), and

(c) ged(a,b) = ra+ sb for somer,s € Z.

Proposition 2.3.18 (ged of quotients). Let a,b,k € Z such that a, b are
not both zero and k divides both a and b. Set d := gcd(a,b). Then

(a) k divides d and k # 0,

(b) Z(a/k) + Z(b/k) = Z(d/k), and
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(c) ged(a,b) = d/ K]
Definition 2.3.19 (Co-primes). “a, b are co-primes” iff a,b € Z and Za +
7b = 7.
Proposition 2.3.20 (Characterizing co-primes). Let a,b € Z. Then the
following are equivalent:

(a) a, b are co-primes.

(b) There exist r,s € Z such that ra +rb = 1.

(¢c) For any d >0, if d divides a, b, then d = 1.
Definition 2.3.21 (Primes). “pis a prime” iff p € Z, and p # 1, and p # —1
and for any a, if a divides p, then a € {1, —1,p, —p}.
Corollary 2.3.22. 0 is not prime.

Proposition 2.3.23. Let p be a prime and a,b € Z such that p divides ab.
Then p divides a or p divides b.

Lemma 2.3.24 (lem). Let a,b € Z\ {0}. Then there exists a unique m > 0
such that Za N Zb = Zm.

Remark 2.3.25. This allows to denote m by lem(a, b).
Proposition 2.3.26 (Characterizing lem). Let a,b,m € Z such that a, b are
each nonzero. Then

(a) lem(a,b) is a positive multiple of a, b,

(b) m is a multiple of a, b and m >0 = m is a multiple of lcm(a,b).
Proposition 2.3.27 (Icm of quotients). Let a,b,k € Z such that a,b # 0
and k divides both a and b. Set m :=lcm(a,b). Then

(a) k divides m and k # 0,

(b) Z(a/k)NZ(b/k) = Z(m/k), and

(c) lem(a/k,b/k) = m/|k|.

Lemma 2.3.28. Let a,b > 0 such that a divides b and b divides a. Then
a=>b.

Proposition 2.3.29 (Product of ged and lem). Let a,b > 1. Then ged(a, b) lem(a, b) =
ab.

Corollary 2.3.30. Let m,n > 0 and k € Z such that n divides mk. Then n
divides m ged(n, k).

Corollary 2.3.31 (Icm of co-primes). Let r,s > 1 be co-primes. Then
lem(r, s) = rs.
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2.4 Cyclic groups
October 29, 2021

Definition 2.4.1 (Cyclic groups). “(G,-) is a cyclic group” iff (G,-) is a
group and there exists an a € G such that (z) = G.

Corollary 2.4.2 (Cyclic groups are abelian). Let (G,-) be a cyclic group.
Then (G,-) is an abelian group.

Example 2.4.3. (S3,0) is non-abelian and non-cyclic.

Proposition 2.4.4 (Subgroups of cyclic groups). Let (G, ) be a cyclic group
and H be a subgroup of (G,-). Then (H,-g) is a cyclic group.

Definition 2.4.5 (Order of elements). “z has order n in (G,-)” iff (,-) is
a group and, setting S := {m > 0 : Itr.,,(z) = Id.}, we have S # ) and
n = min(S).

Proposition 2.4.6 (Finite groups have finite orders). Let (G,-) be a finite
group and x € G. Then there exists a unique n > 1 such that x has order n

in (G,-).

Remark 2.4.7. We write P(i)’s are distinct for each i € X” to mean that
there exists a set Y and a function f: X — Y such that f(i) = P(i) for each
x € X, and that any such f is injective.

Proposition 2.4.8 (Cyclic subgroups). Let (G,-) be a group, and x € G,
and r,s € Z andn > 1. Set S :={k € Z : Ttr (z) =1d.}. Then
(a) S is a subgroup of (Z,+),
(b) 2" =2° <= r—seS, and
(c) the following are equivalent:
(i) S =7Zn.
(11) (z) = {Itr.;(z) : 0 < i < n} and Itr.;(x)’s are distinct for 0 <
< n.
(i11) (x). has n elements.
(iv) = has order n in (G,-).

Proposition 2.4.9 (Order of z*). Let x have order n in (G,-) and k € 7.
Then x* has order n/ ged(n, k) in (G, -).
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Proposition 2.4.10 (Elements with no finite order). Let (G,-) be a group
and a € G. Then (a) is a finite set <= there exists an n € Z \ {0} such
that Iter. ,,(a) = Id..

Proposition 2.4.11 (Characterizing groups with no proper subgroups). Let
(G,-) be a group. Then there are no proper subgroups of (G,) <= G is a
finite set such that #(G) =1 or #(G) is prime.

Example 2.4.12 (Order of elements in Sy).

Number of elements of order n in Sy
1

n
1
2 9
3 8
4 6

Example 2.4.13 (Product of finite ordered elements need not be finite or-

dered). Let b be a nonzero scalar. Then [(1] _ﬂ and [(1] _ﬂ have order 2

in (GL,(F), matriz multiplication), but <{(1) _ﬂ [(1) _ﬂ) # I, for any
n>1

2.5 Homomorphisms

October 30, 2021

Definition 2.5.1 (Homomorphisms). “¢ is a homomorphism from (G, -) to
(G',%) 7 iff (G, ), (G', %) are groups, and ¢: G — G and ¢(a-b) = ¢(a)* (D)
for all a,b € G.

Example 2.5.2 (Homomorphisms).

(a) For anyn > 1, we have that det is a homomorphism from (GL, (IF), matriz multiplication)
to (§\ {0}, field multiplication).

(b) For any n > 1, we have that sign is a homomorphism from (S,,o) to
({—1,1}, field multiplication).

(c) exp is a homomorphism from (R,+) to (R\ {Or}, real multiplication).

(d) Let (G,-) be a group and a € G. Thenn — Itr. ,,(a) is a homomorphism
from (Z,+) to (G, -).
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(e) x> |z| is a homomorphism from (C\ {Oc}, complex multiplication) to
(R\ {Or}, real multiplication).

Lemma 2.5.3 (Trivial and inclusion homomorphisms).
(a) Let (G,-), (G' %) be groups and ¢: G — G’ such that ¢p(a) = 1d, for
all a € G. Then ¢ is a homomorphism from (G, ) to (G, x).
(b) Let H be a subgroup of (G,-). Then ty_q is a homomorphism from
(H,-y) to (G,-).

Proposition 2.5.4 (Properties of homomorphisms). Let ¢ be a homomor-
phism from (G,-) to (G',*). Then
(a) for all k > 1 and for all functions a: {1,...,k} — G, we have ¢(a; -
cerag) = (poa) k- x(Ppoa).
(b) o(Id.) = Id,, and
(c) ¢(Inv.(a)) = Inv.(p(a)) for all a € G.

Abbreviation 2.5.5 (Kernels). For any homomorphism ¢ from (G,-) to
(G, %), we set ker,(¢) := ¢~ [{Id,}].

Proposition 2.5.6 (Images and kernels form subgroups). Let ¢ be a ho-
momorphism from (G,-) to (G',*). Then ¢[G] and ker,(¢) are subgroups of
(G',%) and (G, -) respectively.

Proposition 2.5.7 (Subgroup conservation under homomorphisms). Let ¢
be a homomorphism from (G,-) to (G',*) and H be a subgroup of (G,-).
Then ¢[H] is a subgroup of (G', *).

Abbreviation 2.5.8 (Cosets). For any subgroup H of (G, -) and any a € G,
we set coset(a- H):={a-h:he€ H} and coset(H -a) :={h-a:he H}.
Example 2.5.9 (Solutions of linear systems). Let A, B be m x n and m X
1 matrices. Set S := {X € Mat(n,;F) : AX = B} and W = {X €
Mat(n, 1;F) : AX = 0px1}. Then

(a) W is a subgroup of (Mat(n, 1;F),+), and

(b) S =10 orS = coset(Xo+ W) for some n x 1 matriz X,

Lemma 2.5.10. Let H be a subgroup of (G,-) and a,b € G. ThenInv.(a)-b €
H <= b€ coset(a- H).

Proposition 2.5.11 (Properties of kernels). Let ¢ be a homomorphism from
(G,-) to (G',%) and a,b € G. Then, setting K := ker,(¢) the following are
equivalent:
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(a) ¢(a) = ¢(b).

(b) Inv.(a) - b€ K.

(c) b€ coset(a- K).

(d) coset(a- K) = coset(b- K).

Corollary 2.5.12 (Injectivity and kernels). Let ¢ be a homomorphism from
(G,) to (G',%). Then ¢ is injective <= ker,(¢) = {Id.}.

Lemma 2.5.13 (Conjugation). Let (G,-) be a group and g € G. Then there
exists a unique function f: G — G such that f(x) = g - x - Inv.(g) for all
red.

Remark 2.5.14. This allows to denote f by conj. ;.

Proposition 2.5.15 (Conjugation is a homomorphism). Let (G, ) be a group
and g € G. Then conj. , is a homomorphism from (G,-) to (G,-).

Corollary 2.5.16 (Subgroup conservation under conjugation). Let H be a
subgroup of (G,-) and g € G. Then conj. ,[H] is a subgroup of (G,-).

2

Definition 2.5.17 (Normal subgroups). “N is a normal subgroup of (G, -)
iff Vis a subgroup of (G,-) and conj. ,[N] C N forall g € G.

Example 2.5.18. In Example 2.2.11, the subgroup (y) of Ss is not normal.

Proposition 2.5.19 (Intersections of cosets). Let H, K be subgroups of
(G,-) and z,y € G. Then

(a) H is a normal subgroup of (G,-) = H N K is a normal subgroup of
(K, m), and
(b) there ezists a z € G such that coset(z - H)Ncoset(y - K) = coset(z - (H N K)).

Definition 2.5.20 (Centers of groups). “Z is the center of (G, -)” iff (G, )
is agroup and Z ={a € G:a-g=g-a forall g € G}.

Example 2.5.21 (Examples of centers).

..........

(b) For each n > 1, the center of (GL,(F), matriz multiplication) is {\I, :
A is a nonzero scalar}.

Corollary 2.5.22.
(a) Let Z be the center of (G,-). Then Z is a normal subgroup of (G,-).
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(b) Let (G,-) be an abelian group and H be a subgroup of (G,-). Then H
is a normal subgroup of (G,-).

(c) Let ¢ be a homomorphism from (G,-) to (G',x). Then ker.(¢) is a
normal subgroup of (G, -).

Proposition 2.5.23 (A condition for a set to be a group). Let (G,-) be a
group, and G' be a set, and *x: G' x G' = G' and ¢: G — G’ be surjective
such that ¢(a - b) = ¢(a) x ¢(b) for all a,b € G. Then

(a) (G' %) is a group,

(b) 1d. = ¢(1d.),

(c) Inv.(¢p(a)) = ¢(Inv.(a)) for all a € G,

(d) (G,-) is a cyclic group = (G', %) is a cyclic group, and

(e) (G,-) is an abelian group = (G',*) is an abelian group.

2.6 Isomorphisms
October 31, 2021

Definition 2.6.1 (Isomorphisms). “¢ is an isomorphism from (G, -) to (G', *)”
iff ¢ is a homomorphism from (G, -) to (G’, *) and ¢ is a bijection.

Example 2.6.2 (Examples of isomorphisms).

(a) exp is an isomorphism from (R, +) to (R, real multiplication).

(b) Let (G,-) be a group and a € G such that a has infinite order. Then
n— Itr.,(a) is an isomorphism from (Z,+) to ({(a).,-).

(c) For each n > 1, we have that p — PerMat(p) is an isomorphism from
(Sn,0) to ({PerMat(p) : p € S}, matriz multiplication).

(d) For each n > 1, we have that x — I, + Tepxn1,n S an isomorphism
from (§F,+) to ({Ernis1+en : € s a scalar}, matriz multiplication).

Definition 2.6.3 (Automorphisms). “¢ is an automorphism on (G, -)” iff ¢
is an isomorphism from (G,-) to (G, ).

Example 2.6.4 (Examples of automorphisms).

(a) For any group (G, ), identity map and conjugation by any element are
automorphisms on it.

(b)) A — (A)~! is an automorphism on (GL,(F), matriz multiplication)
for eachn > 1.
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(c) There are 6 automorphisms on (Ss,0).

Proposition 2.6.5 (z — z? on finite groups). Let (G,-) be a finite group
and ¢: G x G — G such that ¢(z) = Iter.o(x) for each v € G. Then ¢ is
an automorphism on (G, ) <= (G,-) is an abelian group and there is no
a such that a has order 2 in (G,-).

Definition 2.6.6 (Isomorphic groups). “(G,-) and (G’,*) are isomorphic
groups” iff there exists a ¢ such that ¢ is an isomorphism from (G, -) to

(G, %).

Proposition 2.6.7 (Isomorphic cyclic groups). Let (G,-) and (G',*) be
cyclic groups such that one of the following holds:

(a) G and G" are finite sets such that #(G) = #(G").

(b) G and G' are infinite sets.

Then (G,-) and (G', %) are isomorphic groups.

Proposition 2.6.8 (Homomorphisms between cyclic groups). Let ¢ be a
homomorphism from (G,-) to (G',*), and a € G such that {(a). = G. Then
the following hold:
(a) ¢ is a surjection < (¢(a)). = G'.
(b) If G is a finite set, then
(i) ¢ is injective <= ¢ is surjective, and
(i1) ¢ is injective and #(G) > 2 = ¢(a) # 1d,.
(c) If G is an infinite set, then
(1) ¢ is injective <= ¢(a) # 1d,, and
(i1) ¢ is surjective —> ¢ is injective.

Definition 2.6.9 (Semigroups, their generators and their isomorphisms).
“(S,-) is a semigroup” iff - on S has an identity and is associative.

“s is a generator of the semigroup (S,-)” iff (S,-) is a semigroup and
S = {Iterld. ,,(s) : m > 0}.

“¢ is a semigroup isomorphism from (S,-) to (5',%)” iff ¢: S — S’ is a
bijection and ¢(a - b) = ¢(a) * ¢(b) for all a,b € S.

“(S,-) and (9', %) are isomorphic semigroups” iff there exists a ¢ such
that ¢ is a semigroup isomorphism from (S, -) to (S, *).

Lemma 2.6.10. Let s be a generator of the semigroup (.S, -) and S be a finite
set. Set n:= #(S). Then
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(a) S = {Iterld. ,,(s) : 0 < m < n},

(b) Tterld. ,,(s) =1d. <= (S,-) is a group,

(c) Tterld. ,,(s) = Iterld. ;(s) for some 2 < i <mn andt is a generator of the
semigroup (S,:) = s=t, and

(d) Tterld. ,(s) = s and t is a generator of the semigroup (S,-) =
Iterld. , () =t.

Proposition 2.6.11 (Classification of semigroups generated by single ele-
ment). Let s, t be generators of semigroups (S,-), (S',*). Then

(a) S, T have n elements and 0 < i < j = n such that Iterld. ,(s) =
Iterld. ;(s) and Iterld, ,(t) = Iterld, ;(t) = (S,-) and (S',*) are not
1somorphic semigroups, and

(b) S is an infinite set = (S,-) and (N, +) are isomorphic semigroups.

Proposition 2.6.12 (Finite semigroups with cancellation). Let (S,-) be a
semigroup such that S is a finite set and for alla,b € S leta-b=a-c =
b= c hold. Then (S,-) is a group.

2.7 Equivalence relations and partitions
November 3, 2021

Definition 2.7.1 (Relation induced by conjugation). “R is the relation on
(G, -) induced by conjugation” iff (G,-) is a group and R = {(a,b) € G X G :
b=g-a-Inv.(g) for some g € G}.

Proposition 2.7.2 (Conjugation is an equivalence relation). Let R be the

relation on (G, -) induced by conjugation. Then R is an equivalence relation
on G.

Definition 2.7.3 (Relations and partitions induced by functions). “R is the
relation on X induced by f: X — Y7 iff f: X — Y and R = {(a,b) €
X % X« f(a) = (B)}.

“C is the partition induced by f: X — Y7 iff f: X — Y and C =

{7y} -y e YIN{0}.

Proposition 2.7.4 (Equivalence relations induced by functions). Let R be
the relation on X and C be the partition, both induced by f: X — Y and let
xr € X. Then
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(a) R is an equivalence relation on X and C = {[z|g : * € R},

(b) [z]r = [T [{f(x)}], and

(c) there exists a unique function g: f[X] — C such that g(y) = f[{y}]
for all y € f[X]; further, any such function g is a bijection.

Corollary 2.7.5 (Partitions induced by homomorphisms). Let ¢ be a homo-
morphism from (G, -) to (G', %), and C be the partition induced by ¢: G — G,
and f € C, and a € G such that a € f and set K := ker,(¢). Then

(a) f = coset(a- K), and

(b) C ={coset(a-K):a€G}.

2.8 Cosets

November 4, 2021

Remark 2.8.1. We’ll work with only left cosets. Analogues of all the results
also hold for right cosets.

Proposition 2.8.2 (Cosets of a subgroup form a partition). Let H be a
subgroup of (G,-) and set R := {(a,b) € G x G : Inv.(a) -b € H} and
C := {coset(a-H) : a € G}. Then R is an equivalence relation on G and
C=A{lz]g: 2z € G}, and |a]gr = coset(a- H) for alla € G.

Proposition 2.8.3 (A condition for a set to be subgroup). Let (G,-) be a
group and S C G such that 1 € S and {{a-z :x € S} : a € G} is a partition
of G. Then S is a subgroup of (G,-).

Lemma 2.8.4 (Cosets of a subgroup are equinumerous). Let H be a subgroup
of (G,-) and a € G. Then there ezists a bijection from H to coset(a - H).

Abbreviation 2.8.5 (Index of subgroups). For any subgroup H of (G,-),
such that A := {coset(a- H) : a € G} is a finite set, we set [(G,-) : H| :=
#(A).

Proposition 2.8.6 (Intersection of finite index subgroups). Let H, K be
subgroups of (G,-) such that {coset(a- H) : a € G} and {coset(a- K) : a €
G} are finite sets. Then {coset(a - (H N K)) :a € G} is a finite set.

Corollary 2.8.7. Let H be a subgroup of (G,-) such that [(G,-) : H] = 2.
Then H is a normal subgroup of (G,-).
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Corollary 2.8.8 (Counting formula). Let H be a subset of a group (G, )
such that G is a finite set. Then H and {coset(a-H) : a € G} are finite
sets, and #(G) = [(G,-) : H|#(H).

Theorem 2.8.9 (Lagrange’s theorem). Let H be a subset of (G, -) such that
G is a finite set. Then H is a finite set and #(H) divides #(G).

Corollary 2.8.10 (Order divides #(G)). Let a have order n in (G,-) such
that G is a finite set. Then n divides #(G).

Corollary 2.8.11 (Groups with prime number of elements). Let (G, ) be a
group, and a € G\ {Id.}, and p > 0 be prime such that G has p elements.
Then a has order p in (G,-) and (a) = G.

Proposition 2.8.12 (Groups with prime-power number of elements). Let
(G, ") be a group, and p > 0 be prime and k > 1 such that G has p* elements.
Then

(a) there exists an a such that a has order p in (G, ), and

(b) if there exists exactly one subgroup H of (G,-) such that H contains
p elements, then there exists an a such that a has order p' for some
1<1<k.

Proposition 2.8.13 (Groups with prime-product elements). Let (G,-) be a
group and p,q > 2 be primes such that G has pq elements. Let x,y € G
such that x # 1d. and y ¢ (a), and let H be a subgroup of (G,-) such that
x,y € H. Then H = (.

Example 2.8.14 (Subgroups of S;3). The subgroups of (Ss,0) are (1), (x),
(y), (zy), (z%y) and Ss.

Proposition 2.8.15 (Groups with 35 elements). Let (G,-) be a group such
that G has 35 elements. Then there exist a,b € G such that a, b have orders
5, 7in (G,-).

Corollary 2.8.16 (Counting formula for homomorphisms). Let ¢ be a ho-
momorphism from (G,-) to (G',*) and set K := ker,(¢). Then

(a) there exists a bijection from {coset(a- K) :a € G} to ¢[G], and
(b) G and ¢|G] are finite sets = K is a finite set and #(G) = #(K)#(¢[G)).

Example 2.8.17 (Half of S,, is even). Let n > 2. Then #(A,) = n!/2.
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Lemma 2.8.18. Let f: X — Y and f[X] have n elements. Then there
exists a function x: {1,--- ,n} — X such that f[X] = z[{1,--- ,n}].

Lemma 2.8.19. Let H be a subgroup of (G,-), and A C G such that
Uaea coset(a - H) is a subgroup of (G,-). Then coset(g - (U, coset(a- H))) =
U,ea coset((g-a) - H).

Proposition 2.8.20 (Indices are multiplicative). Let H, K be subgroups of
(G, -) such that G is a finite set and K C H. Then K is a subgroup of (H, - ),
and {coset(a- K) : a € G} and {coset(a- H) : a € G} and {coset(b-y H) :
be H} are finite sets and [(G,-) : K| = [(G,-) : H|[(H, 5) : K].

Lemma 2.8.21 (Sufficient conditions for a group being finite). Let (G, ),
(G', %) be groups. Then G is a finite set if one of the following holds:

(a) There exists a subgroup H of (G,-) such that H and {coset(a - H) : a €
G} are finite sets.

(b) There exists a homomorphism ¢ from (G, -) to (G', *) such that ker,(¢)
and ¢[G] are finite sets.

(c) There exist subgroups H, K of (G,-) such that K C H, and K and
{coset(a- H) :a € G} and {coset(b- K) : b € H} are finite sites.

Lemma 2.8.22. Let H be a subgroup of (G,-) and g,9' € G such that
coset(g - H) = coset(H - g'). Then coset(g - H) = coset(g’' - H) and coset(H - g) =
coset(H - ¢').

Proposition 2.8.23 (Equivalent conditions for a normal subgroup). Let H
be a subgroup of (G,-). Then the following are equivalent:

(a) H is a normal subgroup of (H,-).

(b) conj. [H] = H for all g € G.

(c) coset(g- H) = coset(H - g) for all g € G.

(d) For each g € G, there exists a ¢’ € G such that gH = Hg'.

Corollary 2.8.24. Let n > 1 and H be the unique subgroup of (G,-) such
that #(H) =n. Then H is a normal subgroup of (G, -).

2.9 Modular arithmetic

November 7, 2021
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Abbreviation 2.9.1 (Z/Zn). For any n € Z, we set Z/Zn := {coset(a + Zn) :
a€Z}.

Definition 2.9.2 (Equality modn). We write “a = b mod n” iff a,b € Z
and n divides a — b.

Proposition 2.9.3 (modn equivalence relation). Let n € Z and set R :=
{(a,b) € ZxXZ :a=b modn}. Then R is an equivalence relation on Z,
and Z/Zn = {[a|g : a € Z}, and [a]g = coset(a + Zn) for each a € Z.

Proposition 2.9.4 (Cardinality of Z/Zn). Let n > 1. Then Z/Zn =
{coset(a+Zn) : 0 < a < n} and coset(a + Zn)’s are distinct for each
0<a<n.

Lemma 2.9.5 (Sum and products of equivalent integers). Let n € Z, and
a=d modn andb="b modn. Thena+b=a +b modn and ab= a't’
mod n.

Corollary 2.9.6 (Operations on Z/Zn). Let n € Z and A,B € 7Z/Zn.
Then there exist unique C,D € Z/Zn such that for all a,b € Z so that
A = coset(a + Zn) and B = coset(b + Zn), we have C' = coset((a + b) + Zn)
and D = coset((ab) + Zn).

Remark 2.9.7. This allows to denote C' and D by A +,, B and A -, B.
(Since sets (here as cosets) are not functions (here as matrices), no notational
collision.)

Corollary 2.9.8. Letn € Z and a,b € Z. Then (coset(a + Zn))+,(coset(b+ Zn)) =
coset((a + b) + Zn) and (coset(a + Zn))-,(coset(b + Zn)) = coset((ab) + Zn).

Corollary 2.9.9 (Z/Zn forms a ring). Let n € Z and A,B,C € Z/Zn.
Then

(A+,B)+,C=A+,(B+,0),
A4, B=B+, A,
A+, coset(0 + Zn) = A,
A+, D = coset(0 + Zn) for some D € Z/Zn,
(A-yB) oy C=A- (B C),
A, B=B-, A,
A -, coset(l+Zn) = A, and
A (B+,C)=(AB)+, (A, C).
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Proposition 2.9.10. Letn € Z. Then2a =1 mod n for somea € Z <=
n s odd.

Example 2.9.11. Let n > 0 and a: {0,...,n} — {0,...,9}. Then (agl0° +
o+ a,10") = (ag+ - - +a,) mod 9.

Proposition 2.9.12 (Chinese remainder theorem). Let a,b,u,v € Z such
that not both of a, b are zero and ged(a,b) = 1. Then there exists an x € Z
such that x = u mod a and x =v mod b.

Abbreviation 2.9.13 (amodb). For any a,b € Z such that b # 0, we set
amod b := remainder on dividing a by b.

Proposition 2.9.14 (Properties of amodb). Let n,a,b € Z such that n # 0.
Then

(a) amodn =bmodn <= a=0b mod n,

(b) a = (amodn) mod n, and hence (a modn) modn = amodn,

(¢) (a+b)modn = ((amodn)+ (bmodn)) modn, and

(d) (ab) modn = ((amodn)(bmodn)) modn.

Corollary 2.9.15. Letn, k € Z such thatn # 0 andk > 0 anda: {1,...,n} —
Z. Then

(a) (a1 + -+ ax) modn = ((a; modn) + - - - + (ax modn)) modn, and
(b) (ay---ar)modn = ((a;modn)--- (ay modn)) modn.

Lemma 2.9.16. Letn,a € Z such thatn # 0. Then coset((amodn) + Zn) =
coset(a + Zn).

Example 2.9.17 (Ring isomorphism between Z/Zn and {0,...,n — 1}).
Let n > 1. Then a w coset(a + Zn) is an isomorphism from ({0,...,n —
1}, additionmodn) to (Z/Zn,+y). Also, for any 0 < a,b < n, we have
coset((abmodn) + Zn) = coset(a + Zn) -, coset(b + Zn)

Corollary 2.9.18 (Z/Zn is cyclic). Let n € Z. Then (Z/Zn,+,) is a cyclic
group.

Example 2.9.19 (Automorphisms on Z/Zn). Letn > 1. SetG := ({0,...,n—
1}, additionmodn) and ¢ be a homomorphism from G to G. Then ¢ is an
automorphism on G <= ged(¢(1),n) = 1.

Example 2.9.20 (Order of a k-cycle). Let 1 <k <mn andl>1. Then
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+1—1 dk)+1, 1<k
(a) foralll <i<n, wehave ((1---k),)!(i) = {(,(Z—i_ Jmod k) +1, Z;k,
i, i

and

(b) order of (1---k), in (S,,0) is k.

2.10 The correspondence theorem

November 9, 2021

Lemma 2.10.1 (Restriction of a homomorphism). Let ¢ be a homomorphism
from (G,-) to (G',%) and H be a subgroup of (G,-). Then ¢ oty is a
homomorphism from (H, -g) to (G', %), and ker,(¢ o tg¢) = (ker.(¢)) N H.

Proposition 2.10.2. Let ¢ be a homomorphism from (G, -) to (G',*) and H
be a subgroup of (G, -) such that H and G’ are finite sets and gcd(#(H), #(G")) =
1. Then H C ker,.(¢).

Example 2.10.3 (Subgroups of S,, with odd cardinality). Let n € N and H
be a subgroup of (S,,o) such that #(H) is odd. Then H C A,

Proposition 2.10.4 (Inverse images of subgroups under homomorphisms).
Let ¢ be a homomorphism from (G,-) to (G',*) and H' be a subgroup of
(G',%). Then
(a) ker.(8) C o[,
(b) ¢~'[H'] is a subgroup of (G, "),
(c) H' is a normal subgroup of (G',*) = ¢ '[H'] is a normal subgroup
of (G,-), and
(d) ¢ is surjective and ¢~ [H'] is a normal subgroup of (G,:) = H' isa
normal subgroup of (G',*).

Lemma 2.10.5. Let ¢ be a homomorphism from (G, -) to (G',*) and H' C G’
such that ¢ is a surjection and ¢~ *[H'] is a subgroup of (G,-). Then H' is a
subgroup of (G', *).

Theorem 2.10.6 (Correspondence theorem). Let ¢ be a homomorphism
from (G,-) to (G', %) such that ¢ is surjective, and let H, H" be subgroups of
(G,-), (G' %) such that ker,(¢) C H. Set K := ker,(¢). Then the following
hold:

(a) (i) ¢[H] is a subgroup of (G',*).
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(ii) ¢~ [H'] is a subgroup of (G,-) and K C ¢~ '[H'].
() o~ [6[H)) = H and ol 1) = 1
(¢c) (i) H is a normal subgroup of (G, ) <= ¢[H] is a normal subgroup
of (G',*).
(ii) H' 1is a normal subgroup of (G',x) <= ¢ '[H'] is a mnormal
subgroup of (G,-).
(d) (i) H is a finite set <= ¢[H] and K are finite sets.
(ii) ¢~'[H'] is a finite set < H' and K are finite sets.
(e) (i) H, K, ¢|H| are finite sets = #(H) = #(¢[H])#(K).
(ii) 7' [H'], K, H' are finite sets = #(¢"'[H']) = #(H)#(K).
(f) (i) There exists a bijection between {coset(a - H) : a € G} and {coset(a’ * ¢[H]) :
a e G}
(ii) There exists a bijection between {coset(a- ¢ '[H']) : a € G} and
{coset(a’ * H') : ' € G'}.

2.11 Product groups

November 11, 2021

Lemma 2.11.1. Let (G,-), (G',*) be groups. Then there exists a unique
function f: (G x G') x (G x G') = (G x G') such that f(((a,d), (b)) =
(a-b,a V) for all a,b € G and for all ',V € G'.

Remark 2.11.2. This allows to denote f by (P*)

Proposition 2.11.3 (Product groups). Let (G,-), (G',*) be groups. Set
* 1= (11) Then

(a) (a,a’) % (b,b') = (a-b,a" xV) for all a,b € G and all a', b € G,

(b) (G x G' %) is a group,

(c) 1d, = (Id.,1d,), and

(d) Inv,((a,a’)) = (Inv.(a),Inv,(a")) for alla € G and all ' € G'.
Proposition 2.11.4 (Orders in product groups). Let x, y have rdersr, s in
(G,-), (G',%). Then (z,y) has order rs in (G x G', (%)).
Proposition 2.11.5 (Product of subgroups). Let H be a subgroup of (G, )
and H' be a subgroup of (G',*). Then H x H' is a subgroup of (G x G, (11))

Proposition 2.11.6 (Product of isomorphic groups). Let (G, ), (G',-") and
(H,*), (H',+") be isomorphic groups. Then (G x H, (%)) and (G' x H', (1))
are 1somorphic groups.
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Proposition 2.11.7 (Factors of a product group). Let (G,-), (G',*) be
groups. Set x := (Z) Then
(a) (i) (G,-) and (G x {Id.}, *Gxqia,}) are isomorphic,
(it) (G, %) and ({Id.} x G',*q1a.1xcr) are isomorphic,
(b) (i) Texcr—a is a homomorphism from (GXG', %) to (G,-) and ker.(Texar—a) =
{Id.} x G', and
(ii) Taxar—»cr is a homomorphism from (G x G',x) to (G',*) and
ker*(ﬂgxglﬁgl) =G X {Id*}

Proposition 2.11.8 (Center of a product group). Let Z, Z' be centers of
(G,), (G',%). Then Z x Z' is the center of (G x G', (1)).

Proposition 2.11.9 (Products of cyclic groups with co-prime cardinalities).
Let (G,-), (G', %) be cyclic groups such that G, G' are finite sets and #(G),
#(G") are co-primes. Then (G x G', (%)) is a cyclic group.

Proposition 2.11.10 (Cy x Cy is not cyclic). Let (G,-) be a cyclic group
such that G is a finite set and #(G) = 2. Then (G x G, (%)) is not a cyclic
group.

Proposition 2.11.11 (Product of infinite cyclic groups). (Z x Z, (%)) is
not a cyclic group.

Proposition 2.11.12 (Properties of product groups). Let H, K be subgroups
of (G,-) and f: Hx K — G such that f((h,k)) = h-k for all h € H and all
ke K. Then

(a) f is injective <—= HNK =1d,

(b) f is a homomorphism from (H x K, (P)HxK) to (G,-) <= hk=kh
forallh € H and all k € K,

(¢) H is a normal subgroup of (G,-) = f[H x K] is a subgroup of (G, ),
and

(d) f is an isomorphism from (H x K, (F)

) HX K

) to (G,-) <= the fol-
lowing hold:
(i) HNK = {Id}.
(i) f[H x K] =G.
(111)) H, K are normal subgroups of (G, -).

Proposition 2.11.13 (Classification of groups with cardinality 4). Let (G, -)
be a finite group such that #(G) = 4. Then ezactly one of the following holds:
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(a) (G,-) is a cyclic group.
(b) There exists a cyclic group (H,*) such that H is a finite set with
#(H) =2 and (G, ) is isomorphic to (H x H, (1)).

Example 2.11.14 (A condition for the group to contain an element of
prime-product order). Let p,q > 2 be primes such that p # q. Let x, y
have orders p, q in (G,-) such that (z) , (y). are normal subgroups of (G, -).
Set x:= (") and H := (z) x (y). and K :={a-b:a € (x),be (y)}. Then

(a) K is a subgroup of (G,-),

(b) (a,b) — a-bis an isomorphism from (H,xy) to (K, k), and

(c) x -y has order pq in (G,-).

Example 2.11.15. Let H be a subgroup of (G,-) and ¢ be a homomorphism
from (G,-) to (H,-g) such that ¢ oty_q = ty—pu. Then (a,b) — a-b is a
bijection from H X ker., (¢) to G.

2.12 Quotient groups

November 11, 2021

Abbreviation 2.12.1 (Quotient set). For a normal subgroup N of (G, -),
we set (G,-)/N = {coset(a-N):a € G}.

Lemma 2.12.2 (Operation on quotient sets). Let N be a normal subgroup
of (G,-). Then there exists a unique function f: ((G,-)/N) x ((G,-)/N) —
(G,-)/N such that f((coset(a-N),coset(b-N))) = coset((a-b)-N) for all
a,beqG.

Remark 2.12.3. This allows to denote f by ((?V)

Proposition 2.12.4 (Operation on quotient groups coincides with product
of cosets). Let N be a normal subgroup of (G,-). Set x := (?V) Then for
any A, B € (G,-)/N, we have Ax B={a-b:Ac A bec B}.

Proposition 2.12.5 (Only normal groups form quotient groups). Let H be
a subgroup of (G,-) such that H is not a normal subgroup of (G,-). Then
there exist x,y € G such that {a-b: a € coset(x - H),b € coset(y - H)} #
coset(z - H) for any z € G.

Proposition 2.12.6 (Quotient groups). Let N be a normal subgroup of
(G,-). Set % := (?\,) Then
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(a) coset(a - N) % coset(b- N) = coset((a-b) - N) for all a,b € G,
(b) ((G,-)/N,*) is a group,

(c) Id, = N, and

(d) Inv,(coset(a - N)) = coset(Inv.(a) - N') for each a € G.

Example 2.12.7. Letn > 2. Set H := {A € GL,(F) : A is upper triangular with diagonal en:
and K := {& n1—1+4en : C is a scalar}. Let A,B € H. Then

(a) H is a subgroup of (GL,(F), matriz multiplication),

(b) K is a normal subgroup of (H, matriz multiplication),

(c) A, B lie in some same coset of K <= A, B (possibly) differ only in
(1,n)-th entry, and

(d) K is the center of H.

Proposition 2.12.8 (A condition for a subset to be a normal subgroup).
Let (G,-) be a group and P be a partition of G such that for any A, B € P,
there exists a C € P such that {a-b:a € A,b€ B} CC. Let N € P such
that 1 € N. Then

(a) N is a normal subgroup of (G,-), and
(b) P ={coset(a-N):a€ G}.

Corollary 2.12.9. Let N be a normal subgroup of (G,-) and ¢: G — (G, -)/N
such that ¢p(a) = coset(a - N) for all a € G. Set % := (?\/) Then

(a) ¢ is a surjection,

(b) ¢ is a homomorphism from (G,-) to ((G,-)/N,*),

(c) ker,(¢) = N, and

(d) for all a,b € G such that a-b € N, we have ¢(a) * ¢(b) = N.

Theorem 2.12.10 (First isomorphism theorem). Let ¢ be a homomorphism
from (G,-) to (G',*) such that ¢ is surjective. Set K := ker.(¢). Then
there exists a unique function ¢ : (G,-)/N — G’ such that (coset(a - K)) =
¢(a) for all a € G. Further, any such function v is an isomorphism from

((G.)/N.($)) to (C.5).
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Vector spaces

3.2 Fields

November 23, 2021

Definition 3.2.1 (Fields). “(F,+,-) is a field” iff each of the following hold:
(a) (F,4+) is an abelian group.

(b) -« Fx F — F.

(¢) a-be F\{ld,} for all a,b € F\ {Id, }.

(d) (F\ {Idy}, r) is an abelian group.

(e) a-(b+c)=(a-b)+ (a-b)forall a,b,c e F.

e

Remark 3.2.2. We'll always assume (unless otherwise stated) the prece-
dence of “multiplicative symbols” over “additive symbols”, so that a - b+ ¢
will mean (a - b) 4+ ¢ and not a - (b + c¢).

Lemma 3.2.3 (Properties of fields). Let (F,+,-) be a field, and a € F and
r € Z. Then

(a) Ids #1d.,

(b) a-1dy =1d, -a =1d,,

(c) - on F is associative and commutative,

(d) a-1d. =1d. - a = a,

(e) Inv,(Id.) - a = Invy(a), and

(f) Ttery ,(a) = Itery ,.(Id.) - a.

Lemma 3.2.4. Let p be prime and a,b € Z such that ab=0 mod p. Then
a=0 modp orb=0 mod p.

93
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Theorem 3.2.5 (Prime fields). Let p be prime. Then (Z/Zp,+,,,) s a
field.

Abbreviation 3.2.6 (Prime fields). Let p be prime. Then we set [, :=
(Z/Zp, +p, p)-

Example 3.2.7. (GLy(Fy), matriz multiplication) is isomorphic to (Ss, o).

Definition 3.2.8 (Field characteristic). “p is a characteristic of (F, +,-)” iff,
(F,+,-) is a field and setting S := {m > 0 : Iter; ,,(Id.) = Id;} one of the
following holds:

(a) S=0and p=0.

(b) S # 0 and p = min(S).

Lemma 3.2.9 (Permissible characteristics). Let p be the characteristic of
(F,+,-). Then p =0 or p is prime.

Definition 3.2.10 (Primitive roots). “r is a primitive root of (F,+,-)” iff
(F,+,-) is a field and (r) = F'\ {Id; }.

Example 3.2.11 (Some primitive roots).

(a) 3, 5 are the primitive roots of Fy.
(b) 2,6, 7, 8 are the primitive roots of Fy;.

Proposition 3.2.12 (Fermat’s and Wilson’s theorems). Let p > 0 be prime
and (Z)Zp \ {Zp},+,,-p) be a cyclic group. Let a € Z. Then

(a) a? = a mod p, and

(b) (p—1)!'=—-1 mod p.

Proposition 3.2.13 ({a + /nb : a,b € F} is a field). Let (F,+,-) be a
field andn € F\{a-a:a € F}. Let ®,©: F x F — F such that for all
a,b,c,d € F, we have (a,b) ® (¢,d) = (a + ¢,b + d) and (a,b) ® (¢,d) =
(a-c+mn-b-dya-d+b-c). Then (F X F,®,®) is a field.

Proposition 3.2.14 ({a++/nb+¥/nc: a,b,c € F} is a field). Let (F,+,) be
a field andn € F\{a-a-a:a € F}. Let ®,®: F x F x F — F such that for
all a,b,c,ad' b, € F, we have (a,b,c)® (a’,b,c) = (a+d' b+, ,c+ ) and
(a,b,c)o(d,V,d) = (a-d'+n-b-d+n-cV,;a-b/+b-a'+n-c-,a- +b-t/+c-a').
Then (F x F X F,®,®) is a field.

Example 3.2.15 (A field with non-prime order and infinite characteristic).

{02><2,12, [(1) ﬂ , E (ﬂ } forms a field with entries in Fy.
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3.3 Vector spaces
November 23, 2021

Definition 3.3.1 (Vector spaces). “(V, (F,&®,®),+,-) is a vector space” iff
the following hold:

(a) (V,+) is an abelian group.
(F,®,®) is a field.

XV =V,

b)

c) -

)

e) (a® ) v=a-(b- v)foralla,beFandaHUEV.

f) (a®b)-v=(a-v)+ (b-v) foralla,be Fand all v € V.
) a- (v—l—w) (a-v)+ (a-w)forall a € Fand all v,w e V.

Example 3.3.2 (Examples of vector spaces). In the following, the vector
addition and scalar multiplication are defined usually.
(a) Mat(m,n;F) over F for any m,n > 1.
(b) C over (R, +, real multiplication).
(c) Set of polynomials of degree at most n with coefficients in § over F.
(d) Set of continuous functions on R over (R, +, real multiplication).

Lemma 3.3.3 (Properties of vector spaces). Let (V,(F,®,®),+, ) be a vec-
tor space and v € V.. Then

(a) Idg -v =1dy, and

(b) Invg(Idg) - v = Inv, (v).

Remark 3.3.4. For any m > 1 and any field F := (F) -, +), we’ll abbreviate
(Mat(m7 1;F),F, +, 7) as “I'™ over F”, where + and ~ are the susal operations
of matrix addition and scalar multiplication respectively on Mat(m, 1;F).

Proposition 3.3.5 (F™ is a vector space). Let m > 1 and F := (F,+,-) be
a field. Then F™ over IF is a vector space.

Proposition 3.3.6 (Linear combinations in F™). Let m > 1 and F :
(F,+,-) be a field. Letn > 1, and vy, ...,v, € Mat(m,1;F) and z1,--- , x,
F. Let A € Mat(m,n;F) such that A; = v; for all 1 < j < n, and X
Mat(m, 1;IF) such that X;; = x; for all1 <i <m. Then x1v1+-- -+ 2,0,
AX.

m m ol
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Lemma 3.3.7 (Restriction of scalar multiplication). Let F', V' be sets and
 FxV = V. Let W CV such that c-w € W forallc € F and all w € W.
Then there exists a unique function x: F x W — W such that cxw = c-w
forallce F and allw € W.

Remark 3.3.8. This allows to denote * by -1, (Poor notation since possible
collision with the notation for restriction of binary operations (besides the
case when ordered pairs are considered as Kuratowski pairs); when V' = F
such that the above condition is fulfilled, then - is also a binary operation
and W C F'is closed under -.)

So, we will follow the convention that if - is the scalar multiplication for
some vector space, then -y, will always denote the above.

Definition 3.3.9 (Subspace). “W is a subspace of (V,(F,®,®),+,-)” iff
(V,(F,®,®),+,) is a vector space and the following hold:
(a) w+wveW forall woveW.
(b) ¢-w € W for each ¢ € F' and for each w € W.
()

c) (W, (F,®,0),+w, w) is a vector space.

Corollary 3.3.10 (An equivalent condition for being a subspace). Let (V, (F,®,®), +, )
be a vector space and W be a set. Then W is a subspace of (V, (F,®,®),+,-)
<= the following hold:

(a) W CV.

(b) wy 4+ wy € W for all wy,wy € W.

(c) c-weW forallce F and allw € W.

(d) Idy € W.

Proposition 3.3.11 (Subspaces of subspaces). Let W be a subspace of
(V,(F,8,0),+,-) and U be a subspace of (W, (F,®,®),+w, -w). Then U
is a subspace of (V,(F,®,®),+,).

Proposition 3.3.12 (Intersection of subspaces). Let U and W be subspaces
of (V,(F,®,®),+,:). Then UNW s a subspace of (V,(F,®,®),+,").

Definition 3.3.13 (Proper subspaces). “W is a proper subspace of (V, (F,®, ®), +, )"
iff W is a subspace of (V| (F,®,®),+,:) and W # {Id;}, V.

Example 3.3.14 (Proper subspaces of F?). Let W be a set and Wy, W be
proper subspaces of (Mat(2, 1; ), F, matriz addition, scalar multiplication). Then



3.4. BASES AND DIMENSION 57

(a) W is a proper subspace of (Mat (2, 1;F),F, matriz addition, scalar multiplication)
<= there exists a w € W\ {Id} } such that W ={c-w:c€ F},

(b) {c-w:ceF} =W, forallwe Wy \ {Id; },

(c) there exists a bijection between Wy and Ws, and

(d) W, %WQ — WlmWQZ{Id+}.

Example 3.3.15 (Number of proper subspaces of F?). Let F have n scalars.
Then there are n+1 proper subspaces of (Mat(2, 1;F),F, matriz addition, scalar multiplication).

Definition 3.3.16 (Isomorphisms). “¢ is an isomorphism from (V,+,-) to
(V',+',-) over (F,®,0)" iff (V,(F,®,®),+,-) and (V',(F,®,®),+,") are
vector spaces the following hold:

(a) ¢: V — V' is a bijection.

(b) ¢(v+ w) = ¢p(v) + P(w) for all v,w € V.

(c) ¢(c-v)=c p(v) forallce FandallvelV.

Definition 3.3.17 (Isomorphic vector spaces). “(V,+,-) and (V',+/,"") are
isomorphic over (F,®, ®)” iff there exists a ¢ such that ¢ is an isomorphism
from (V,+,-) to (V',+,-") over (F,®,®).

Example 3.3.18 (Examples of isomorphic vector spaces). In the following,
vector addition and scalar multiplication are defined in the usual way.

(a) Mat(m,n;F) is isomorphic to Mat(mn, 1;F) over F.
(b) (a,b) — a+bi is an isomorphism from R? to C over (R, +, real multiplication).

3.4 Bases and dimension

November 30, 2021

N

v,

Definition 3.4.1 (Span). For any vector space (V,F,+,:) and S
0, and we

)
U :={U CV :S5 C VandU is asubspace of (V,F,+,-)} # ), an
set spang , (S) :=U.

o,

Corollary 3.4.2 (Spans are minimal subspaces). Let (V,TF,+,-) be a vector
space and S C V. Then spang , (S) is a subspace of (V,F,+,-) and for any
subspace W of (V,F,+,-) such that S C W, we have that S C W.

Corollary 3.4.3 (Span of (). Let (V,IF,+, ) be a vector space. Then spang , () =
{id.}.
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Remark 3.4.4. From now on, for a set X which has on itself an associative
binary operation +, and for a function f: {1,--- ,n} — X for n > 1, we’ll
set f(1) 4 --- 4 f(n) to be the obvious object.

If + has an identity too, then n = 0 will also be allowed.

Proposition 3.4.5 (Characterizing span). Let (V,F,+,-) be a vector space
and S C V. Thenspang , (S) = U,entspang o ({vi,...,v0}) cv: {1,--- ,n} —
S is an injection}.

Proposition 3.4.6 (Spans of finite sets). Let F := (F,®,®) be a field
and (V,F,+,-) be a vector space. Let n € N and vy,...,v, € V. Then
spang , ({vy, -, vn}) ={x1-v1 4+ 2y vp 2,2, € FL

Abbreviation 3.4.7 (Column space of matrices). For any field F := (F, &, ®),
and any m,n > 1 and any A € Mat(m,n;F), we set colSpang(A) :=
spang 1 -({A1,...,A,}) where + and * are the matrix addition and matrix
multiplication respectively on Mat(m, 1;TF).

Corollary 3.4.8 (Consistency of linear system). Let F be a field, and m,n >
1 and A € Mat(m,n;F) and B € Mat(m, 1;F). Then B € colSpang(A) <=
there exists an X € Mat(n, 1;F) such that AX = B.

Definition 3.4.9 (Independent and dependent sets). “L of (V, (F, &, ®), +,-)
is independent” or “L is independent in (V, (F, ®, ®), +, -)” iff (V, (F,&,®),+,-)
is a vector space, and L C V and for every n € N and for every injection
v:{1,...,n} — L and for all zy,...,x, € F, we have that 21 -v; + -+ 1z, -
v, =1dy = 21,...,2, =Idg.

“Lof (V,(F,®,®),+,-)is dependent” or “L is dependent in (V, (F, ®,
iff (V,(F,®,®),+, ) is a vector space, and L C V but L of (V| (F,®,®),
is not independent.

®©),+,)"
+,°)

Corollary 3.4.10 (0 is independent). Let (V,TF,+,-) be a vector space. Then
0 of (V,F,+,-) is independent.

Proposition 3.4.11 (Finite independent sets). Let (V,(F,®,®),+,-) be a

vector space. Let n € N and vy,...,v, € V. Then the following are equiva-
lent:
(a) v;’s are distinct and {vy,...,v,} of (V,(F,®,®),+,-) is independent.
(b) For all x1,...,x, € F, we have that x1 - vy + -+ 2, - v, = ldy =

1, Ty = ldg.
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Lemma 3.4.12 (Properties of independent sets). Let (V, (F,®,®),+,-) be
a vector space, and L', L CV and v,w € V. Then,
(a) L is independent in (V,(F,®,®),+,-) and L' C L = 1d; ¢ L and
L' is independent in (V, (F,®,®),+,-),
(b) {v} is independent in (V, (F,®,),+, ) < v#Id,, and
(c) {v,w} is independent in (V,(F,®,®),+,:) <= v ¢ {c-w:ce F}
andw ¢ {c-v:c€ F}.

Definition 3.4.13 (Bases). “B is a basis of (V,F,+,-)” iff B is independent
in (V,IF,+,-) and spang , (B) =V.

Remark 3.4.14. If + on X is associative and commutative, and has an
identity, then for any finite set K and any function f: K — X, we’ll set
> rer f(E) to be the obvious object.

Lemma 3.4.15. Let (V,F,+,-) be a vector space and S C'V such that S is
a finite set. Let x: S — F. Then

(a) Y ycsTv-v € spang, (5), and
(b) S is independent in (V,F,+,-) and ) .qxy-v =1dy = x, = Idg
for allv € S.

Proposition 3.4.16 (Characterizing bases). Let (V,F, +,-) be a vector space
and B C V. Then B is a basis of (V,F,+,-) <= for every w € V, there
exists a unique function x: B — F such that, setting B' := {v € B : z, #

Id@};
(a) B'is finite, and
(b) w = ZUGB’ Ly * V.

Proposition 3.4.17 (Finite bases). Let (V,F,+,-) be a vector space. Let
n € N and vy,...,v, € V. Then the following are equivalent:
(a) v;’s are distinct and {vy,...,v,} is a basis of (V,F,+,-).
(b) For all w € V, there exist unique x1,...,x, € F such that w = x; -
U1+"'+xn'vn-

Proposition 3.4.18 (Standard basis for F™). Letm > 1. Then {€11.mx1, - - - €m 1:mx1}
is a basis of F™ over F.

Proposition 3.4.19 (Spans and independence upon adding single elements).
Let (V,FF,+,-) be a vector space. Let S CV and w € V. Then
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(a) spang , (SU{w}) = spang, (5) <= w € spang, (S5), and
(b) S is independent in (V,F,+,-) = (S U {w} is independent in
(V,F,+,) andw ¢ S <= w ¢ spang , (S5)).

Definition 3.4.20 (Finite-dimensional vector spaces). “(V,F, +, -) is a finite-
dimensional vector space” iff (V,F,+,-) is a vector space and there exists a
finite set S C V' such that spang , (S)=V.

Corollary 3.4.21 (Spanning sets in finite dimensions can be reduced to
finite sets). Let (V,F,+,-) be a finite-dimensional vector space and S C 'V
such that spang , (S) = V. Then there exists an S' C S such that S" is a
finite set and spang | (S') =V.

Proposition 3.4.22 (Making an independent set a basis in finite dimen-
sions). Let L be independent in (V,F,+,-) and S C V be a finite set such
that spang | (S) = V. Then there exists an S" C S such that S"U L is a
basis of (V,IF,+,-).

Corollary 3.4.23 (Making a finite spanning set into a basis). Let (V,F,+, )
be a vector space and S C'V be a finite set such that spang , (S) = V. Then
there exists an S C S such that S’ is a basis of (V,F,+,).

Corollary 3.4.24 (Finite-dimensional spaces have a basis). Let (V,F,+, ")
be a finite-dimensional vector space. Then there exists a basis of (V,F, 4+, ).

Theorem 3.4.25 (Finite spanning sets have more elements than finite in-
dependent ones). Let L be independent in (V,F,+,-) and S C V such that
spang , (S) =V, and S and L are finite sets. Then #(S) > #(L).

Proposition 3.4.26 (Independent sets in finite dimensions are finite). Let
(V,F,+,-) be a finite-dimensional vector space and L be independent in (V,F, +, ).
Then L is a finite set.

Proposition 3.4.27 (Dimension of finite-dimensional spaces). Let (V,F, +,-)
be a finite-dimensional vector space. Then there exists a unique n € N such
that for any basis B of (V,F,+,-), we have that B has n elements.

Remark 3.4.28. This allows to denote n by dimg  .(V).

Corollary 3.4.29. Let (V,F, +,-) be a finite-dimensional vector space. Let L
be independent in (V,IF,+,-) and S C V be a finite set such that spang , (S) =
V. Then L is a finite set and #(L) < dimgy . (V) < #(S). Further,
#(L) =dimp 4 (V) =#(S) <= L and S are bases of (V.F,+,-).
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Example 3.4.30 (Dimension of F™). Letm > 1 and F := (F,+,-) be a field.
Then F™ over F is a finite-dimensional vector space with dimension m.

Proposition 3.4.31 (Independent spanning set for a subspace in finite di-
mensions). Let (V,F,+,-) be a finite-dimensional vector space and W be a
subspace of (V,F,+,-). Then there exists an independent L in (V,IF,+,-)
such that spang , (L) =W.

Lemma 3.4.32 (Independence and spans in subspaces). Let W be a subspace
of (V,F,+,-). Let L,S CW. Then
(a) L isindependent in (V,F,+,-) <= L isindependent in (W, F, +w, w),
and
(b) spang , (S) =spang . (S5).

Proposition 3.4.33 (Dimensions of subspaces of finite dimensional spaces).
Let (V,F,+,-) be a finite-dimensional vector space and W be a subspace of
(V,F,+,-). Then

(a) (W,F, +w, w) is a finite-dimensional vector space,

(b) dimg 1, ., (W) < dimg 4 .(V), and

(C) dimﬁr7+w7.w (W) = dimF,Jr’.(V) — V=W.

Example 3.4.34. LetF := (F,®,®) be a field and m,n > 1. Let {Xy,..., X,,}
and {Y1,...,Y,} be bases of Mat(m, 1;F) and Mat(n, 1; ) respectively. Then
{X;(Y;)':1<i<m,1<j<n}isabasis of Mat(m,n;F).

Proposition 3.4.35 (Basis of F” and invertible matrices). LetF := (F, ®, ®)
be a field andn > 1. Let vy, ..., v, € Mat(n, 1;F) and A € Mat(n,n;F) such
that A; = (v;)" for each 1 < i < n. Then {vy,...,v,} is a basis for F™ over
F <= A is invertible.

Proposition 3.4.36 (Subspaces as solutions of homogeneous systems). Let
F:=(F,®,®) be a field andn > 1. Let W be a subspace of F™ over F. Then
there exists an A € Mat(n,n;F) such that W = {X € Mat(n,1;F) : AX =
Omxl}-

Proposition 3.4.37. Let F := (F,®,®) be a field, and n > 1 and A €
Mat(n,n;F). Then there exist cy,...,cp2 € F such that ¢; # Idg for some
0<i<n?and cgA° + -+ + 2 A" = 0,sn.

Proposition 3.4.38 (Vector spaces over infinite fields can’t be finitely cov-
ered). Let F:= (F,®,®) be a field such that F is an infinite set. Let n € N
and Uy, ..., U, be subspaces of (V.F,+,-). Then V # U;_, U.
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3.5 Computing with bases
December 6, 2021

Proposition 3.5.1 (Morphisms from F" to V). Let F := (F,®,®) be a
field and (V,F,+,-) be a vector space. Let n € N and vy,...,v, € V. Let
Y: Mat(n, 1;F) — V such that (X) = Xq1-v1 + -+ + X1 - v, for all
X € Mat(n, 1;F). Then

(a) V(X +Y) = (X) + ) and ¢(cX) = c- (X)) for all X|Y €
Mat(n, 1;F) and all c € F,

(b) ¥ is injective <= v;’s are distinct and {vy,...,v,} is independent in
(V,F,+,-), and
(¢) v is surjective <=> spang , ({vi,...,0n}) =

Corollary 3.5.2 (Classification of finite-dimensional vector spaces). Let
F:=(F,®,0) be a field.

(a) Let (V.F,+,-) be a finite-dimensional vector space such thatn = dimp .

1. Then (V,+,-) and F™ over F are isomorphic over F.
(b) Let m,n > 1 such that m # n. Then F™ over F and F™ over F are
not isomorphic over IF.

Proposition 3.5.3 (Basechange). Let F := (F,®, ®) be a field and (V,F, +,-)
be a vector space. Let m,n > 1 with vy,..., 0,0}, ... v, € V such that
v;’s are distinct and B = {vy,...,vn} is a basis of (V,F,+,). Set B’ :=
{vi,..., v} Let P € Mat(m,n;F) such that vj = Pij-vi + -+ Ppj - vj
for all 1 < 7 <n. Then the following hold:
(a) The following are equivalent:
(i) v.’s are distinct and B’ is a basis of (V,F,+,-).
(1)) m =n and P is invertible.
(b) Ifvi’s are distinct and B’ is a basis of (V,F,+,-), and @ € Mat(n, m;F)
such that v; = @4 4+ Qv foralll < j < m, and
X, X" e Mat( , 1
(i) m
(ii) P is invertz’ble with P~ = Q, and
(1) Xi1-vi+-+ X v = X101+ + X o0y, = PX'=X.

1.5
F), then

Example 3.5.4 (Rowspans of row equivalent matrices). Let F := (F, @, ®)
be a field and m,n > 1. Let A,B € Mat(m,n;F) be row equivalent. Set

Vv
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V = Mat(1,n;F), and X := {A1,..., An} and Y = {By,...,Bn,}. Let +
and ~ be the usual operations of matriz addition and scalar multiplication on
V. Then

(a) spang 7 -(X) = spang 1 :(Y), and
(b) A;’s are distinct and X is independent in (V,+,7) <= B;’s are dis-
tinct and Y is independent in (V,+,7).

Lemma 3.5.5 (Elementary actions). Let F := (F,®,®) be a field and V =
(V,F,+,-) be a vector space. Letn > 1. Let 1 <i,j5 <n andc € F. Then

) ok, k#i
(a) (f(v))k—{vﬂrc.vj’ Lo
Vg, k#l,j
(b) (9(v)y =< v;, k=i ,and
Uy, ]C:j
(C) (h(v))k— {C-UZ- ]C:Z"

Remark 3.5.6. This allows to denote f, g, b by ay nisitcj, Wniicsj, Wonsiosei
respectively.

Further, we’ll call them “type I, or II, or III elementary actions for n
vectors of V" iff ¢ # j and ¢ # 0.

Proposition 3.5.7 (Elementary actions preserve spans and independence).
LetV := (V,F,+,-) be a vector space. Letn > 1 andv: {1,...,n} — V. Let
a be an elementary action for n vectors of V and set w :=aov. Then
(a) spang , ({wi,...,wp}) =spang . ({vi,...,vn}), and
(b) v;’s are distinct and {vy,...,v,} is independent in (V,F,+,

w;’s are distinct and {wy, ..., w,} is independent in (V,F,+,-).
>

Lemma 3.5.8. Let (V,(F,®,®),+,:) be a vector space. Let n 1 and
w: {1,...,n} = V be such that {uy,...,u,} is a basis for (V,F,+,-) and
w;’s are distinct. Let A € Mat(n,n;F). Let E, a be such that there ezist
1<4,7<n andc € F so that one of the following holds:

(a) E = gF,n;i—)i—i—cj and a = Ay nji—itcj-

(b) E = EFpicsj and a = Ay pics;-
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(C) E = g]F,n;i—)ci and a = Ay nyi—ci-
Then for each 1 < k < mn, we have that (EA)k1-u1+- - -+ (EA)gn-ur = (aov)y.

Proposition 3.5.9 (Any two bases related by elementary actions). Let V :=
(V,F,+,-) be a vector space. Let n > 1 and u,v: {1,...,n} — V such that
{uy, ..., u,} and {vy,...,v,} are bases of (V,F,+,) and u;’s and v;’s are
distinct. Then there exists a k € N and elementary actions aq, ... ,a; each
for n vectors of V such that v = (a; o---0a)ou.

Example 3.5.10 (Number of independent ordered sets). Let p > 0 be prime
andn > m > 1. Set F := Z/Zp, and F = (F,+,,-,) and S = {v €

Let + and = be the usual operations of matriz addition and scalar multiplica-
tion on Mat(n, 1;F). Then

k <m}, and
(b) #(8) = IT% (0" = p").
Corollary 3.5.11 (Cardinality of GL,(IF,)). Let p > 0 be prime and n > 1.
Then #(GLy(Fy)) = H?;ol(pn - p').

Proposition 3.5.12 (Number of subspaces of F}). Let p > 0 be prime and
n>1and 0 < m <n. Set FF := Z/Zp, and F := (F,+,,-,). Let +
and ~ be the usual operations of matrix addition and scalar multiplication on
Mat(n, 1;F). S := {W : W is a subspace of I over F and dimg ; :(W) =

m}. Then #(S) ([T (0™ — p")) = [1% (0" — p').

Proposition 3.5.13 (Number of 2 X 2 matrices with a given determinant in
F,). Let p > 0 be prime. Set F:=Z/Zp and F := (F,+,,- —p). Then

(p—Dplp+1), n#0

#({A € Mat(2,2;F) : det(A) = Z/Zn}) = {p(p2 +p—1), n=>0

for every 0 < n < p.

3.6 Direct sums

December 6, 2021
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Abbreviation 3.6.1 (Sum of subspaces). For any set vector space (V,F, +, -)
and any set W of subspaces of (V,F,+,-), we set SubspSumg , (W) :=

SpaﬂF,Jr,-(U W)

Proposition 3.6.2 (Characterizing sums). Let (V,F,+,-) be a vector space
and W be a set of subspaces of (V,F,+,-). Then SubspSumy, (W) =
Unen{SubspSumg , ({Wh,...,Wy,}) : W:{1,...,n} — W is an injection}.

Proposition 3.6.3 (Finite sums). Let (V,F,+,-) be a vector spcae, and n €
N and Wy, ..., W, be subspaces of (V,IF,+,-). Then SubspSumg , ({W1,...,W,}) =
{wy + -+ w, :w; €W, for all 1 <i<n}.

Definition 3.6.4 (Independent subspaces). “W contains independent sub-
spaces of (V,F,+,-)” iff (V,F,+,-) is a vector space, and W is a set of sub-
spaces of (V,IF, +, ), and for any n € N and for any injection W: {1,...,n} —
W and for any wy, ..., w, € V such that w; € W, for all 1 <1 < n, we have
that w; + -+ +w, =1d, = wy,...,w, =Id,.

Corollary 3.6.5 (Independence of zero subspace). Let W contain indepen-
dent subspaces of (V,F,+,-). Then WU {{Id;}} contains independent sub-
spaces of (V,F,+,-).

Corollary 3.6.6 (Independence of two subspaces). Let U, W be subspaces
of (V,F,+,-). Then {U W} contains independent subspaces of (V,F,+,)
— UNW={ld } orU=W.

Proposition 3.6.7 (Finite set of independent subspaces). Let (V,F,+,-) be
a vector space, and n € N and Wy, ..., W, be subspaces of (V,F,+,-). Then
the following are equivalent:
(a) {Wy,...,W,} contains independent subspaces of (V,F,+,-) and W;’s
are distinct.
(b) For any wy,...,w, €V such that w; € W; for all 1 < i < n, we have
that wi + -+ +w, =1dy = wy,...,w, =1d;.
(¢c) W;’s are distinct and (SubspSumg | ({Wi,..., Wi})) N Wiy = {Id;}
foralll <k <n.

Proposition 3.6.8 (Independence of vectors and subspaces). Let (V,F,+, ")
be a vector space and L C V. Then L is independent in (V,F,+,.) <
Id, ¢ L and {spang, ({v}) : v € L} contains independent subspaces of
(Vva F? +7 )
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Lemma 3.6.9 (Results on finite sums). Let + on X be associative, commu-
tative and have an identity 0. Let I be a finite set.
(a) Let X be a finite set and I be a partition of X. Then Il is a finite set,

and P is a finite set for all P €11, and >, vz = > pey (X pep )
(b) Let {A;}ier and {fi}ier be such that A; is a finite set and f;: A; — X
foralliel, and g: I X (Uiel Ai) — X such that

, ) fila), ac A
g((w))—{O, e

Set A= ;s Ai- Then 3 e, (ZaeAi fl(a)) - Zie](zaeA 9((@, a))).

Lemma 3.6.10. Let F := (F,®,®) be a field, and (V,F,+,-) be a vector
space and S,S" C V. Letu € spang , (S) andv € spang | (S'), anda,b € F.
Then a-u+b-v € spang, (SULS’).

Remark 3.6.11. Let {B;};c; be a family of sets. We'll say that “B;’s are
pairwise disjoint” to mean the obvious.

Definition 3.6.12 (Direct sums). “(V,F,+,-) is a direct sum of W” iff W
contains independent subspaces of (V,FF,+,-), and SubspSumg , (W) = V.

Proposition 3.6.13 (Characterizing direct sums). Let (V,F,+,-) be a vector
space and W be a set of subspaces of (V,F,+,-). Let {Bw }wew be a family
of sets such that By is a basis of (W, F, 4w, -w) for each W € W. Then the
following are equivalent:

(a) (V,F,+,-) is a direct sum of W.

(b) Uwew Bw is a basis of (V,F,+,-) and By ’s are pairwise disjoint.

(c) For every v € V, there exists a unique function w: W — W such

that

(i) wy € W for each w € W,
(1)) U :={W e W :wy #1d,} is a finite set, and
(1) v =" ey Ww-

Proposition 3.6.14 (Subspaces of independent subspaces). Let W contain
independent subspaces of (V,F,+,-). Let {Uw }wew be a family of sets such
that Uy is a subspace of (W, F, 4w, -w) for all W € W. Then {Uy : W €
W} contains independent subspaces of (V,F,+, ).
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Remark 3.6.15. We’ll talk of “finite-dimensional subspaces” to talk of the
obvious.

Proposition 3.6.16 (Dimension of a subspace sum). Letn € N and Wy, ..., W

be finite-dimensional subspaces of (V,F,+,-). Then dimg ;. (SubspSum]Fﬁ,({Wl, e

dimp  .(W1) + ... + dimg . (W,) with equality holding <~ {Wy,...,W,}
contains independent subspaces of (V,F,+,-) and W;’s are distinct.

Lemma 3.6.17. Let (V,F,+,-) be a vector space and S,S" C V. Then
spang , (S Uspang , (5)) = spang_ (SUS’).

Proposition 3.6.18 (Basis from two subspaces). Let U, W be subspaces of
(V,F,+,) such that SubspSumg , ({U,W}) =V. Let B,C,D CV such that
B is a basis of (UNW.F, +uaw, -vaw), and BUC is a basis of (U,F, +vu, v),
and BU D is a basis of (W,F,+w, w), and BNC =BND=1{(. Then

(a) BUCUD is a basis of (V,F,+,"),

(b) CND =0, and

(c) (V.F,+,-) is a direct sum of {U N W,spang_, (C),spang_, (D)}

Corollary 3.6.19. Let U, W be finite-dimensional subspaces of (V,F,+,-).
Then SubspSumyg . ({U,W}) and UNW are finite-dimensional subspaces of
(V,F,+,-), and dimg 4 .(U)+dimg . .(W) = dimg 1. (SubspSumg__.({U, W}))+
dimg (U N W).

Example 3.6.20 (Matrix decompositions). Let p be the characteristic of
F := (F,®,0) and n > 1. Let + and ~ be the usual operations of ma-
triz addition and scalar multiplication on Mat(n,n;F). Set U := {A €
Mat(n,n;F) : A* = A} and W = {A € Mat(n,n;F) : A* = —A}. Set
U' = {A € Mat(n,n;F) : trace(A) = Ida} and W' := {Xepnmxn : A € F}.
Then

(a) p#2 = (Mat(n,n;F),+,%) is the direct sum of {U, W}, and

(b) (Mat(n,n;F),+,%) is the direct sum of {U',W'}.

3.7 Infinite-dimensional spaces
December 29, 2021

Remark 3.7.1. We'll use AC in this section.

<
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Proposition 3.7.2 (Making independent sets into bases given a spanning
set). Let L be independent in (V,F,+,-) and S C'V such that spang , (S) =
V. Then there exists an S' C S such that LU S’ is a basis of (V,F,+,-).

Corollary 3.7.3 (Existence of basis and making spanning sets into bases).
Let (V,F,+,-) be a vector space and S C 'V such that spang | (S) = V. Then
there exist B C'V and S" C S such that B and S’ are bases for (V,F,+,-).

Proposition 3.7.4 (Independent sets of countably infinite-dimensional spaces).
Let L be independent over (V,F,+,-) and S C V be countably infinite such
that spang , (S) =V. Then L is finite or countably infinite.



Chapter 4

Linear operators

4.1 The dimension formula

January 4, 2022

Remark 4.1.1. For any field I, we’ll write “F is the set of scalars of F” to
mean the obvious.

Definition 4.1.2 (Linear transformation). “I" is a linear transformation
from (V,F,+,-) to (W,F,8,x)” iff (V,F,+,-) and (W,F,H,*) are vector
spaces, and T: V' — W such that for all u,v € V and for all x € F, where
F is the set of scalars of F, we have that T'(u + v) = T'(u) B T'(v), and
T(x-v)=xx*T(v).

Corollary 4.1.3 (Linear transformation on arbitrary linear combinations).
Let T be a linear transformation from (V,F,+,-) to (W,F,H, x) and F' be the
set of scalars of F. Letn > 1 and x1,...,x, € F and vy,...,v, € V. Then
T(xy-vy+ -4 xyvy) =xy%xT(vy) BB, «T(vy,).

Abbreviation 4.1.4. For any linear transformation 7" from (V,F,+,) to
(W,F, 8, x), we'll set Kerpm.(T) := T '[{Idm}].

Proposition 4.1.5 (Kernel and image are subspaces). Let T' be a linear
transformation from (V,F,+.-) to (W,F,H, x). Then Kerpg (1) and T[V]
are subspaces of (V,F,+,-) and (W,F, 8, *).

Theorem 4.1.6 (The dimension formula). Let T be a linear transformation
from (V.F,+,-) to (W,F,B,*) and set K = Kergg.(T) and I = T|[V].
Then the following hold:

69
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(a) (V,F,+,-) is finite-dimensional <— (K,F, g, k) and (I,F, By, *;)
are finite-dimensional.

(b) All the above three are finite-dimensional = dimg 4, ., (K)+dimpm, ., () =

dimFH’_’. (V) .

4.2 The matrix of a linear transformation

January 4, 2022

Abbreviation 4.2.1. For any field F and any m > 1, we'll set VecSp,,(F) :=
(Mat(m, 1;F), +,7), as in Remark 3.3.4.

Lemma 4.2.2 (Linear transformations from F" to F™). Let F be a field and
m,n > 1. Let T be a linear transformation from VecSp,, (F) to VecSp,,(IF)
and A € Mat(m,n;F) such that Aj = T(ej1.n1) for each 1 < j < n. Then
T(X)=AX for all X € Mat(n, 1;F).

Remark 4.2.3. “(vy,...,v,) is an ordered basis of (V,F,+, )" iff (V,F, +,-)
is a finite-dimensional vector space, and dimg 4 .(V) =n > 1, and vy, ..., v, €
V such that v;’s are distinct and {vy,...,v,} is a basis of (V,F, +,-).

Proposition 4.2.4 (Matrix of a linear transformation for given bases). Let
T be a linear transformation from (V,F,+,-) to (W,F, B, %), and (vq,...,v,)
and (wy, ..., wy) be ordered bases of (V,F,+,-) and (W,F,H,*). Let A €
Mat(m, n;F). Then the following are equivalent:
(a) For all X € Mat(n,1;F), we have T(X11-v1 + -+ 4+ Xp1 - vn) =
(AX )11 xw BB (AX)p1 * wp,.
(b) For all1 < j <mn, we have that T'(v;) = Ay jxw, B--- B A, * wy,.

Remark 4.2.5. We'll abbreviate “A is the matrix of the linear transforma-
tion T from (V,F,+,-) to (W,FF,H, %) for the ordered bases (v1,...,v,) and
(w1, ..., wy)" iff (vi,...,v,) and (wy, ..., w,) are ordered bases of (V| F, +, )
and (W,F,H, x), and A € Mat(m,n;F) such that T'(v;) = Ay xw, B--- 8
Apj*wy, forall 1 <j <n.

Proposition 4.2.6 (Matrix of linear transformation upon basechange). Let
A be the matriz of linear transformation T from (V,F,+,-) to (W,F,H,*)
for ordered bases (vy,...,v,) and (wi,...,wy). Let P € GL,(F) and Q €
GL,(F). Set v := Py j-vi+- -+ B v, and w; = Q1 ixwi 8- - -BQp i %wn,
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foralll <j<nandalll <i<m. Then Q 'AP is the matriz of the linear
transformation T from (V,F,+,-) to (W,F, 8, *) for ordered bases (vy, ..., v)

n
and (wi,...,w.).

Corollary 4.2.7 (Matrices of a given linear map). Let A be the matriz of
a linear transformation T from (V,F,+,-) to (W,F,H, x) for ordered bases
(v1,..., ) and (w1, ..., wy) and M € Mat(m,n;F). Then the following are
equivalent:
(a) There exist vi,...,v), € V and wi,...,w,, € W such that M is the
matriz of the linear transformation T from (V,F,+,-) to (W,F, H, %)

for ordered bases (v, ..., v)) and (wi,...,w).

r n m

(b) There exist P € GL,(F) and Q € GL,,(F) such that M = Q 'AP.

Abbreviation 4.2.8. For any n > 1 and any subspaces U of VecSp,, (F),
we'll set dimyeesp, (1) (U) := dimg 7, -, (U) where +, * are as in Remark 3.3.4.

Remark 4.2.9. No notational collisions.

Proposition 4.2.10 (Ranks of linear transformation and its matrix). Let A
be the matriz of the linear transformation T from (V,F,+,-) to (W, T, H, x)
for ordered bases (vi,...,v,) and (wiy,...,Wy). Set I := T|V]| and I' =
T'[Mat(n,1;F)]. Then dimpgm, ., (I) = dimvyecsp, (7 (colSpang(A)).

Corollary 4.2.11 (Rank of a matrix upon multiplication by invertible ma-
trices). LetF be a field and m,n > 1. Let A € Mat(m,n;F), and P € GL, ()
and Q € GLy,,(F). Then dimyecs,  m)(colSpang(A)) = dimyecsp, ) (colSpang(Q~1AP)).

Theorem 4.2.12 (Special form of the matrix of a linear map).

(a) Let (V,F,+,-) and (W,F 8, x) be finite-dimensional vector spaces. Set
n = dimpy (V) and m = dimpm . (W). Let T be a linear trans-
formation from (V,F,+,-) to (W,F,H,%). Set I := T|V]| and r =
dimpgm, ., (I). Let A € Mat(m,n;F) such that

A - ej,j;m,la j S r
7j - N :
Om,la J >r

Then there exist vy, ...,v, € V and wy, ..., w,, € W such that A is the
matriz of linear transformation T from (V,F,+,-) to (W,F H,x) for
ordered bases (vy,...,v,) and (wq,...,Wy).
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(b) Let F be a field, and m,n > 1, and A € Mat(m,n;F). Set r :=
dimyecsp, (r)(colSpang(A)). Then there evist P € GL,(F) and @ €

GL,,(F) such that B = Q AP is so that

A = ej,j;m,la ] S r
7j - N *
Om,h J >r

Corollary 4.2.13 (Row and column ranks are equal). Let F be a field
and m,n > 1. Let A € Mat(m,n;F). Then dimvesp ) (colSpang(A)) =

dimVecSpn (F) (COISpan]F (At ) ) :
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