Algebra Prof Atul Dixit¹

Organized Results complied by Sarthak 2

October 2022

To my stars, Giuseppe, and the Doctor...

¹adixit@iitgn.ac.in
²vijaysarthak@iitgn.ac.in

Contents

Ι	Gro	ups 1
	1	Powers in a group
	2	gcd, lcm, order
	3	Modular arithmetic
	4	Permutation groups
	5	Subgroups
	6	Product of subgroups
	7	Cyclic groups
	8	Cosets
	9	Normal subgroups
п	Gro	up homomorphisms 16
	1	Basics
	2	Isomorphisms theorems
	3	Direct products
		3.1 External direct products
		3.2 Internal direct products
III	[Gro	up actions 21
	1	Basics
	2	The class equation
	3	Partial converses to Lagrange's theorem
		3.1 Sylow theorems
	4	Simple groups
	5	$ G = p^n q$ violates simplicity
IV Rings		
	1	Basics
	2	Rings of polynomials

3	Idempotents, nilpotents, zero divisors 32
4	Subrings
5	Integral domains, division rings, fields,
6	Ideals
7	Studying aR and Ra 's $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 39$
8	Quotient rings
9	Ring homomorphisms
10	Maximal and prime ideals
11	Embedding rings in larger rings
12	Factorizations

Chapter I

Groups

1 Powers in a group

August 11, 2022

Remark. Unless stated otherwise, the group operation will be denoted by juxtaposition.

Definition 1.1 (Semi-group). A set with an associative binary operation.

Proposition 1.2. A semi-group has at most one identity element. If it exists, then each element has at most one inverse.

Definition 1.3 (Group). A semi-group which has an identity and each of whose elements has an inverse.

Remark. This allows to define, in a given group, the inverse of an element a as a^{-1} .

Proposition 1.4. Invertible elements of a semi-group form a group.

Definition 1.5 (Powers). Let G be a group and $a \in G$. Then for $n \in \mathbb{Z}$, we define

$$a^{n} := \begin{cases} e, & n = 0\\ a^{n-1}, & n > 0\\ (a^{-n})^{-1}, & n < 0 \end{cases}$$

CHAPTER I. GROUPS

Remark. The above "overloading" of a^{-1} is actually an extension. Hence we can interpret a^{-1} in either way.

Proposition 1.6 (Properties of powers). Let G be a group and $a \in G$. Let $m, n \in \mathbb{Z}$. Then the following hold:

- (i) $(a^{-1})^{-1} = a$, (ii) $a^{n\pm 1} = a^n a^{\pm 1}$, (iii) $a^m a^n = a^{m+n}$,
- $(iv) \ (a^n)^{-1} = a^{-n}, \ and$
- $(v) \ (a^m)^n = a^{mn}.$

$2 \quad \text{gcd, lcm, order...}$

August 15, 2022 Prove **all** these!

Definition 2.1 (gcd and lcm). Let $a_1, \ldots, a_k \in \mathbb{Z}$ with $k \ge 1$. Then

(i) for a_i 's not all zero, we define

$$gcd(a_1,\ldots,a_k) := \max\{\text{common divisors of } a_i \}, \text{ and }$$

(ii) for each $a_i \neq 0$, we define

 $lcm(a_1,\ldots,a_k) := min\{positive \text{ common multiples of } a_i s\}$

Proposition 2.2 (Properties of gcd). Let $a_1, \ldots, a_k \in \mathbb{Z}$ for $k \ge 1$, not all zero. Then the following hold:

(i) We have

 $gcd(a_1,\ldots,a_k) = gcd(|a_1|,\ldots,|a_k|).$

(ii) For $k \geq 2$, we have

$$gcd(a_1,\ldots,a_k) = gcd(gcd(a_1,\ldots,a_{k-1}),a_k).$$

(iii) $gcd(a_1, \ldots, a_k)$ is the unique integer d > 0 such that

- (a) d is a common divisor of a_i 's, and
- (b) each common divisor of a_i 's divides d.

Proposition 2.3 (Bézout's lemma). For $a, b \in \mathbb{Z}$ not both zero, there exist $m, n \in \mathbb{Z}$ such that

$$gcd(a,b) = ma + nb.$$

Proposition 2.4 (Properties of lcm). Let $a_1, \ldots, a_k \in \mathbb{Z} \setminus \{0\}$ for $k \ge 1$. Then

(i) We have

$$\operatorname{lcm}(a_1,\ldots,a_k) = \operatorname{lcm}(|a_1|,\ldots,|a_k|).$$

(ii) For $k \geq 2$, we have

 $\operatorname{lcm}(a_1,\ldots,a_k) = \operatorname{lcm}(\operatorname{lcm}(a_1,\ldots,a_{k-1}),a_k).$

- (iii) $lcm(a_1,...,a_k)$ is the unique integer m > 0 such that
 - (a) m is a common multiple of a_i 's, and
 - (b) m divides each common multiple of a_i 's.

Proposition 2.5. Let $a, b \in \mathbb{Z} \setminus \{0\}$. Then

$$gcd(a,b) lcm(a,b) = |ab|.$$

Remark. We'll take for granted the definition of \mathbb{Z}_n , and the multiplication operation on it. We'll also use Bézout's lemma. Also, we'll take the semantic definitions of the lcm and gcd.

Proposition 2.6 (Multiplicative inverses in \mathbb{Z}_n). For $a, n \in \mathbb{Z}$ not both zero, we have that \bar{a} is invertible $\iff \gcd(a, b) = 1$.

Theorem 2.7. \mathbb{N} is well-ordered.

Definition 2.8 (Order of a group element). Let G be a group and $a \in G$. Let

$$S := \{n > 0 : a^n = e\}.$$

Then we define

$$|a| := \begin{cases} \min S, & S \neq \emptyset \\ \infty, & S = \emptyset. \end{cases}$$

Theorem 2.9. Let G be a group and $a \in G$ with $|a| < \infty$. Then for any $n \in \mathbb{Z}$, the following hold:

(i) We have

$$a^n = e \iff |a| \mid n.$$

(ii) We have

$$|a^n| = \frac{|a|}{\gcd(|a|, n)}.$$

Result 2.10. The order of the product of commuting elements of a group divides the lcm of their respective orders.

If the orders are pairwise coprime, then the order is the product of the respective orders.

Result 2.11. Let G be a group and $a, b \in G$. Let $m \in \mathbb{Z}$ such that $aba^{-1} = b^m$. Then for any $n \ge 0$, we have

 $a^n b a^{-n} = b^{m^n}.$

It follows that if $|a| \mid \alpha$, then $|b| \mid m^{\alpha} - 1$ for $\alpha \geq 0$.

3 Modular arithmetic

August 13, 2022

Definition 3.1 (Modulo congruence). Let $a, b, n \in \mathbb{Z}$. Then we write

 $a \equiv b \mod n$ iff $n \mid (a - b)$.

Proposition 3.2. For any $n \in \mathbb{Z}$, congruence mod n is an equivalence relation on \mathbb{Z} .

Lemma 3.3. Let $a, b, c \in \mathbb{Z}$ such that both of a, b are not zero with gcd(a, b) = 1. Let $a \mid bc$. Then $a \mid c$.

Proposition 3.4 (Properties of modulo congruence). Let $n, a, b, c \in \mathbb{Z}$. Then the following hold with all the congruences being taken with n:

(i) $a \equiv b \iff a + c \equiv b + c$.

(*ii*)
$$a \equiv b \implies ac \equiv bc$$
.

(iii) $ac \equiv bc$ and gcd(n, c) = 1 with n, c not both zero $\implies a \equiv b$.

Definition 3.5 (Modulo). Let $n \in \mathbb{Z} \setminus \{0\}$ and $a \in \mathbb{Z}$. Then we define $a \mod n$ to be the remainder obtained upon dividing a by n.

Proposition 3.6 (Properties of modulo). Let $n \in \setminus \{0\}$ and $a, b \in \mathbb{Z}$. Then the following hold:

- (i) $a \mod n = b \mod n \iff a \equiv b \mod n$.
- (*ii*) $(a \mod n) \mod n = a \mod n$.
- (iii) $(a + b \mod n) \mod n = (a + b) \mod n$.
- $(iv) (a(b \mod n)) \mod n = ab \mod n.$

Definition 3.7 (Prime integers). $p \in \mathbb{Z}$ will be called prime iff $|p| \neq 1$ and the only divisors of p are $\pm 1, \pm p$.

Proposition 3.8 (\mathbb{Z}_n and U_n). Let $n \in \mathbb{Z}$ with $|n| \neq 0$. Then

$$\mathbb{Z}_n := \{0, \ldots, |n| - 1\}$$

forms an abelian group under the operation

$$(a,b) \mapsto (a+b) \mod n$$

and an abelian semi-group under the operation

 $(a, b) \mapsto (ab) \mod n$

with identity being 1 if |n| > 1 and 0 if |n| = 1. Further, for $n \ge 1$, the set

$$U_n := \{a \in \mathbb{Z}_n : \gcd(a, n) = 1\}$$

is the set of all invertible elements of \mathbb{Z}_n , and for a prime p, we have that

$$|U_p| = |p| - 1.$$

Remark. Note that $a \mod 0$ makes no sense, hence we couldn't define \mathbb{Z}_0 . See however Definition 9.13 and Theorem 9.14.

4 Permutation groups

August 12, 2022

Proposition 4.1. The set of all permutations of a set forms a group under function composition.

Notation. For a set X, we'll denote by S_X the set of all permutations of X. For $n \in \mathbb{N}$, we'll use $S_n := S_{\{1,\dots,n\}}$.

Definition 4.2 (Dynamic set). Let σ be a permutation of a set A. Then we define the dynamic set of σ to be the set

$$\{a \in A : \sigma(a) \neq a\}.$$

Proposition 4.3. Let σ be a permutation of a set A and K be the associated dynamic set. Then

$$\sigma(K) = K.$$

Definition 4.4 (Disjoint permutations). Two permutations on a set are called disjoint iff their associated dynamic sets are disjoint.

Theorem 4.5. Disjoint permutations commute.

Theorem 4.6 (Cycles in a permutation). Let σ be a permutation of a set A and K be the associated dynamic set. Define a relation \sim_A (respectively \sim_K) on A (respectively K) by

$$a \sim_A b$$
 (respectively $a \sim_K b$) iff $a = \sigma^n(b)$ for some $n \in \mathbb{Z}$.

Then the following hold:

(i) The above are equivalence relations.

(ii) We have

 $\{equivalence \ classes \ of \ \sim_K\}$

= {non-singleton equivalence classes of \sim_A }

(iii) If C is an equivalence class of \sim_A , then we have that

$$\sigma(C) = C$$

and hence we can restrict σ on C, obtaining a permutation on C, the dynamic set, L, of whose trivial extension is given by

$$L = \begin{cases} C, & C \text{ is non-singleton} \\ \emptyset, & otherwise \end{cases}.$$

(iv) The (trivial extensions of) restricted σ 's above are disjoint permutations; such an extension is non-identity \iff corresponding equivalence class is of \sim_K .

- (v) The composition, whenever finite, (in any order) of (the trivial extensions of) all the restricted σ 's above (in K or in A) gives σ back.
- (vi) Let C be an equivalence class of \sim_A . Let $a \in C$ and $n \ge 1$. Then the following are equivalent:
 - (a) C has n elements.
 - (b) $C = \{\sigma^0(a), \ldots, \sigma^{n-1}(a)\}$ with $\sigma^i(a)$'s being distinct.
 - (c) n is the smallest positive integer k such that $\sigma^k(a) = a$.

Remark. We call the equivalence classes of A, the cycles of σ . (Note that since σ is specified, mentioning only the set is sufficient.)

Theorem 4.7 (k-cycles). Let A be a set and $a_0, \ldots, a_{k-1} \in A$ be distinct for $k \ge 1$. Then there exists a unique function $\sigma: A \to A$ such that

$$\sigma(x) = \begin{cases} a_{(i+1) \mod k}, & x = a_i \text{ for some } 0 \le i < k \\ x, & otherwise \end{cases}$$

Further, the following hold:

(i) σ is a permutation on A, with

$$\sigma^{-1}(x) = \begin{cases} a_{(i-1) \mod k}, & x = a_i \text{ for some } 0 \le i < k \\ x, & otherwise \end{cases}$$

(ii) For any $i, j \in \mathbb{Z}$, we have

$$\sigma^i(a_j) = a_{(i+j) \mod k}.$$

- (iii) The cycle of σ containing a_0 is $\{a_0, \ldots, a_{k-1}\}$.
- (iv) The trivial extension of the restriction of σ on $\{a_0, \ldots, a_{k-1}\}$ is σ itself.
- (v) The order of σ is k.
- (vi) The induced partition of the dynamic set is $\{\{a_0, \ldots, a_{k-1}\}\}$ if k > 1, and \emptyset if k = 1.

Notation. For a given A, this allows to denote σ by (a_1, \ldots, a_k) .

Remark. Note that 1-cycles are id.

Result 4.8. S_n is abelian $\iff n < 3$.

Proposition 4.9 (Finite cycles induce k-cycles). Let σ be a permutation of a set A and C be a cycle with k elements. Then the trivial extension of the restriction of σ on C is a k-cycle.

Theorem 4.10. Let $n \in \mathbb{N}$ and $\sigma \in S_n$. Then there exists a unique finite set of disjoint non-identity k-cycles (for possibly different k's) in $\{1, \ldots, n\}$ whose product is σ .

Definition 4.11 (Transpositions). 2-cycles in a set are called transpositions.

Theorem 4.12 (Decomposing finite cycles in transpositions). Let A be a set and $a_0, \ldots, a_{k-1} \in A$ be distinct for $k \ge 1$. Then

$$(a_0,\ldots,a_{k-1}) = (a_0,a_{k-1})\ldots(a_0,a_1).$$

Corollary 4.13. Any permutation in S_n can be decomposed as a finite product of transpositions.

Definition 4.14 (Odd and even permutations). Let $n \in \mathbb{N}$. Then a $\sigma \in S_n$ is called odd (respectively even) iff it can be written as a finite product of an odd (respectively even) number of transpositions.

Proposition 4.15 (Permutation matrices and S_n). Let $n \ge 1$. Define a function $P: S_n \to M_{n \times n}(\mathbb{Z})$ by

$$(P_{\sigma})_i := (e_{\sigma(i)})^t.$$

Then P is injective and we have

$$P_{\sigma}P_{\tau}=P_{\tau\sigma}.$$

Theorem 4.16. $\sigma \in S_n$ for $n \ge 0$ can't be both, odd and even.

Proposition 4.17 (Alternating groups). Let $n \in \mathbb{N}$. Then

$$A_n := \{ \sigma \in S_n : \sigma \text{ is even} \}$$

forms a group with

$$|A_n| = \frac{n!}{2}$$

5 Subgroups

Definition 5.1 (Subgroups). Let G be a group. Then a subset $H \subseteq G$ is called a subgroup of G, written $H \leq G$ iff the following hold:

- (i) G's operation can be inherited to H, and
- (ii) H forms a group under the inherited operation.

Proposition 5.2. The identities and inverses in a subgroup are the same as those in the parent group.

Remark. This allows to use the same notation for the group operation, the identity and the inverses as those in the parent group.

Proposition 5.3 (Characterizing subgroups). Let G be a group and $H \subseteq G$ be nonempty. Then the following are equivalent:

- (i) $H \leq G$.
- (ii) $ab^{-1} \in H$ for any $a, b \in H$.
- (iii) H is closed under G's operation and taking inverses.

Result 5.4. If G is a finite group, then ab^{-1} above can be replaced with ab.

Proposition 5.5.

- (i) Subgroup of a subgroup is a subgroup.
- (ii) Nonempty intersection of subgroups is a subgroup.

Result 5.6 (Unions almost never form subgroups). Let G be a group and $H, K \leq G$. Then

$$H \cup K \leq G \iff H \subseteq K \text{ or } K \subseteq H.$$

Theorem 5.7 (Subgroups generated by sets). Let G be a group and $S \subseteq G$. Then

$$\langle S \rangle := \bigcap \{ H \le G : H \supseteq S \}$$

is the smallest subgroup of G that contains S. Further, we have that

 $\langle S \rangle = \{$ "finite strings" of elements in S and their inverses $\}.$

Proposition 5.8. Let G be a group. Then

(i) $H, K \leq G$ and $H \subseteq K \implies H \leq K$, (ii) $H \subseteq K \subseteq G \implies \langle H \rangle \leq \langle K \rangle$, and (iii) $H \leq G \implies \langle H \rangle = H$.

Result 5.9. For $n \ge 3$, the group A_n is generated by 3-cycles.

Remark. For $a_1, \ldots, a_n \in G$, we'll often denote $\langle \{a_1, \ldots, a_n\} \rangle$ by $\langle a_1, \ldots, a_n \rangle$.

Proposition 5.10 (The subgroup $\langle a \rangle$). Let G be a group and $a \in G$. Then

$$\langle a \rangle = \{a^n : n \in \mathbb{Z}\}.$$

Theorem 5.11. Let G be a group and $a \in G$. Then the following hold:

- (i) $|a| < \infty \implies \langle a \rangle = \{a^0, \dots, a^{|a|-1}\}.$
- (ii) $|a| < \infty \iff |\langle a \rangle| < \infty$.

(*iii*) $|a|, |\langle a \rangle| < \infty \implies |a| = |\langle a \rangle|,$

Proposition 5.12. An infinite group has infinitely many subgroups.

Notation. We'll use the usual notation $n\mathbb{Z}$.

Theorem 5.13. The subgroups of \mathbb{Z} are precisely $n\mathbb{Z}$ for $n \in \mathbb{Z}$.

6 Product of subgroups

Definition 6.1 (Product of subsets). Let G be a group and $A, B \subseteq G$. Then we define

$$AB := \{ab : a \in A, b \in B\}, \text{ and}$$

 $A^{-1} := \{a^{-1} : a \in A\}.$

Remark. Even if $H, K \leq G$ for a group G, we don't need to have $HK \leq G$: Take any $\{e, a\}, \{e, b\} \leq G$ with $ab \neq ba$.

Proposition 6.2 (Properties of products of subsets). Let G be a group and $A, B, C \subseteq G$. Then the following hold:

- (i) $A \subseteq B \implies AC \subseteq BC$ and $CA \subseteq CB$.
- (ii) (AB)C = A(BC), and
- (*iii*) $(AB)^{-1} = B^{-1}A^{-1}$.

Proposition 6.3 (Another characterization of subgroups). Let H be a nonempty subset of a group G. Then the following are equivalent:

- (i) $H \leq G$. (ii) $HH^{-1} \subset H$.
- (*iii*) HH = H and $H^{-1} = H$.

Theorem 6.4 (When is HK a subgroup?). Let $H, K \leq G$ for a group G. Then the following are equivalent:

- (i) $HK \leq G$.
- (ii) HK = KH.
- (iii) $KH \leq G$.

Proposition 6.5 (Center of a group). Let G be a group and

$$Z_G := \{ g \in G : gh = hg \text{ for all } h \in G \}.$$

Then

 $Z_G \leq G.$

7 Cyclic groups

Definition 7.1 (Cyclic group). A group G is called cyclic iff there exists a $a \in G$ such that

 $G = \langle a \rangle.$

Proposition 7.2. Cyclic groups are abelian.

Remark. Converse needn't be true: Consider V, the Klein four-group.

Theorem 7.3. Let G be a finite group and $a \in G$. Then

$$G = \langle a \rangle \iff |G| = |a|.$$

Proposition 7.4. Let G be a group and $a \in G$ with $|a| < \infty$. Then for any $k \in \mathbb{Z}$, we have

$$G = \langle a^k \rangle \iff \gcd(|a|, k) = 1.$$

Theorem 7.5 (Subgroups of cyclic groups are cyclic). Let G be a cyclic group and $a \in G$ such that $G = \langle a \rangle$. Let $H \leq G$ with $H \neq \{e\}$. Then

$$S := \{n \ge 1 : a^n \in H\}$$

is nonempty, and

$$H = \langle a^{\min S} \rangle.$$

Theorem 7.6. A group having no non-trivial subgroups is finite cyclic and has prime order.

Proposition 7.7 ("Converse" of Lagrange for cyclic). Let G be a finite cyclic group and $m \ge 1$ such that $m \mid |G|$. Then there exists a unique subgroup H of G such that |H| = m.

8 Cosets

August, 19, 2022

Definition 8.1 (Cosets). Let G be a group, $A \subseteq G$ and $g \in G$. Then we define

$$gA := \{g\}A, \text{ and}$$
$$Ag := A\{g\}.$$

Proposition 8.2 (Properties of cosets). Let G be a group, $H \leq G$ and $a \in G$. Then the following hold:

- (i) The following are equivalent:
 - (a) aH = H.
 - (b) $a \in H$.
 - (c) Ha = H.
- (ii) The following are equivalent:

$$(a) \ aH = bH$$

(b)
$$a^{-1}b \in H$$

- (c) $aH \cap bH \neq \emptyset$.
- (iii) The following are equivalent:

(a) Ha = Hb.(b) $ab^{-1} \in H.$ (c) $Ha \cap Hb \neq \emptyset.$

Proposition 8.3 (Partitioning via cosets). Let G be a group and $H \leq G$. Let

$$\Pi_L := \{aH : a \in G\}, and$$
$$\Pi_R := \{Ha : a \in G\}.$$

Then the following hold:

- (i) Π_L and Π_R are partitions of G.
- (*ii*) $|\Pi_L| = |\Pi_R|$.
- (*iii*) |aH| = |H| = |Ha|.

Definition 8.4 (Index of a subgroup). Let G be a group and $H \leq G$. Then we define

$$[G:H] := |\{ \text{left (or right) cosets of } H \}|.$$

Theorem 8.5 (Lagrange's theorem). Let G be a group and $H \leq G$. Then the following hold:

- $(i) |G| < \infty \iff |H|, [G:H] < \infty.$
- (*ii*) If $|G|, |H|, [G:H] < \infty$, then

$$|G| = |H|[G:H].$$

Proposition 8.6 (Immediate consequences).

- (i) If G is a finite group and $a \in G$, then $|a| \mid |G|$.
- (ii) Groups of prime order are cyclic.
- (iii) (Fermat's little theorem) If p is a prime and $p \nmid a$, then

$$a^{p-1} \equiv 1 \pmod{p}.$$

(iv) Let G be a group and $H, K \leq G$ with gcd(|H|, |K|) = 1. Then we have that

$$H \cap K = \{e\}.$$

Result 8.7. A group with a prime power order, say p^n with $n \ge 1$, has an element of order p.

Proposition 8.8. Let G be a group and $H, K \leq G$. Then the following hold:

(i) $H \cap K \leq H, K.$ (ii) $|HK| < \infty \iff |H|, |K| < \infty.$ (iii) $If |H|, |K|, |HK|, |H \cap K| < \infty$, then

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

Result 8.9 ("Converse" of Lagrange's theorem need not hold). A_4 , that has 12 elements, doesn't have any subgroup of order 6.

9 Normal subgroups

August 29, 2022

Definition 9.1. Normal subgroups A subgroup H of a group G is called normal, written $H \leq G$, iff gH = Hg for all $g \in G$.

Corollary 9.2 (Immediate results).

- (i) Subgroups of abelian groups are normal.
- (ii) Center of a group is a normal subgroup.

Result 9.3 (A normal subgroup of a non-abelian group). We have

 $\{id, (123), (132)\} \leq S_3.$

Result 9.4. Let G be a group and $H \leq G$ such that [G:H] = 2. Then $H \leq G$.

Remark. Subgroup of a normal subgroup needn't be normal: Otherwise, each subgroup would be normal.

Normal subgroup of a normal subgroup needn't be normal.¹

Theorem 9.5 (Characterizing normal subgroups). Let G be a group and $H \leq G$. Then the following are equivalent:

 $^{^{1}}D_{4}$ provides a minimal example. See here.

- (i) $H \leq G$.
- (ii) $gHg^{-1} \subseteq H$ for all $g \in G$.
- (iii) $gHg^{-1} = H$ for all $g \in G$.
- (iv) Every left (respectively right) coset is a right (respectively left) coset.

Proposition 9.6. Nonempty intersections of normal subgroups are normal.

Theorem 9.7. Let G be a group and $H, K \leq K$. Then the following hold:

- (i) $H \trianglelefteq G \implies HK \le G$.
- $(ii) H, K \trianglelefteq G \implies HK \trianglelefteq G.$

Result 9.8. Let G be a group and $H \leq G$ with [G : H] being prime. Then for any $K \leq G$, we have either $K \leq H$, or G = HK.

Notation. For $H \leq G$, the left and the right cosets coincide and hence we can denote the partition by G/H, and equivalence classes aH by \bar{a} .

Proposition 9.9 (Quotient groups). Let G be a group and $H \leq G$. Then the binary operation on G/H given by

$$(\bar{a}, \bar{b}) \mapsto \bar{a}\bar{b}.$$

is well-defined and G/H forms a group under this operation.

Result 9.10. Let G be a group such that G/Z is cyclic. Then G is abelian.

Result 9.11. Let G be a group and $H \leq G$ such that $a^2 \in H$ for all $a \in G$. Then $H \leq G$ and G/H is abelian.

Proposition 9.12 (\mathbb{Z}_n and $\mathbb{Z}/n\mathbb{Z}$). Let $n \in \mathbb{Z} \setminus \{0\}$. Then

 $a\mapsto \bar{a}$

is a bijection $\mathbb{Z}_n \to \mathbb{Z}/n\mathbb{Z}$ that preserves addition as well as multiplication, i.e.,

$$(a+b) \mod n \mapsto \bar{a} + \bar{b}, and$$

 $ab \mod n \mapsto \bar{a}\bar{b}.$

Definition 9.13 (Defining \mathbb{Z}_0). We define

$$\mathbb{Z}_0 := \mathbb{Z}.$$

Theorem 9.14. For any $n \in \mathbb{Z}$, we have

 $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}.$

Chapter II

Group homomorphisms

1 Basics

August 29, 2022

Definition 1.1 (Group homomorphisms). Let (G, *) and (H, \circ) be groups. then a function $\phi: G \to H$ is called a group homomorphism iff the following diagram commutes.

$$\begin{array}{ccc} G \times G & \xrightarrow{\phi \times \phi} & H \times H \\ * \downarrow & & \downarrow^{\circ} \\ G & \xrightarrow{\phi} & H \end{array}$$

That is,

$$\phi(a * b) = \phi(a) \circ \phi(b).$$

Corollary 1.2.

- (i) Compositions of group homomorphisms are group homomorphisms.
- (ii) Restriction of a group homomorphism to subgroups of domain and codomain is a group homomorphism.
- (iii) The identity map on a group is a group homomorphism.

Proposition 1.3. Let $\phi: G \to H$ be a group homomorphism. Let $a \in G$. Then the following hold:

(i)
$$\phi(e) = e$$
.

- (*ii*) $\phi(a^{-1}) = \phi(a)^{-1}$.
- (iii) $\phi(a^n) = \phi(a)^n$ for $n \in \mathbb{Z}$.

Theorem 1.4 (Preservations under homomorphisms). Under a group homomorphism,

- (i) subgroups are preserved both ways,
- (ii) normal subgroups are preserved in the backward direction,
- (iii) cyclicity and abelian-ness are preserved in forward direction, and
- (iv) order of the image of, say g, divides the order of g.

Remark. The inverse image of normal subgroups needn't be normal: Otherwise each subgroup of any group would be normal.

Similarly for abelian, cyclic.

Proposition 1.5. Under a surjective group homomorphism, the indices of subgroups are preserved.

Definition 1.6. For a group homomorphism $\phi: G \to H$, we define

$$\ker \phi := \phi^{-1}(\{e\}).$$

Corollary 1.7. Let $\phi: G \to H$ be a group homomorphism. Then

$$\operatorname{im} \phi \leq H, and \\
\operatorname{ker} \phi \lhd G.$$

Proposition 1.8. A group homomorphism is injective \iff its kernel is $\{e\}$.

Definition 1.9 (Group isomorphisms). A group isomorphism is a bijective group homomorphism.

An isomorphism from a group to itself is called an *automorphism*.

A group G is said to be *isomorphic* to a group G iff there exists a group isomorphism $G \to H$.

Example 1.10. Conjugation is a group automorphism.

Proposition 1.11. The inverse of a group isomorphism is a homomorphism.

Proposition 1.12. "Being isomorphic" is an equivalence relation for groups.

Notation. We'll denote this equivalence by " \cong ".

Proposition 1.13 (Preservations under isomorphisms). All the preservations in Theorem 1.4 hold in both directions.

Result 1.14. Let G be a group and H be the unique subgroup of G having a given cardinality. Then $H \leq G$.

Result 1.15. Any infinite cyclic group is isomorphic to \mathbb{Z} .

Result 1.16. Any group of order 4 is isomorphic to either \mathbb{Z}_4 or K_4 .

Result 1.17. Any group of order 6 is isomorphic to either \mathbb{Z}_6 or to S_3 .

Theorem 1.18 (Cayley). Any group G is isomorphic to some subgroup of S_G , a possible isomorphism being

$$a \mapsto \phi_a$$
 defined by $\phi_a(g) := ag$.

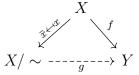
2 Isomorphisms theorems

September 9, 2022

Lemma 2.1 ("Quotienting" a domain with a function). Let $f: X \to Y$ be surjective, and define \sim on X as

$$x_1 \sim x_2 \iff f(x_1) = f(x_2).$$

Then \sim is an equivalence relation and there exists a unique function $g\colon X/\sim \to Y$ such that



commutes. This q is a bijection and

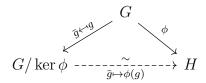
$$\bar{x} \stackrel{g}{\longmapsto} f(x).$$

Lemma 2.2. Let $\phi: G \to H$ be a surjective group homomorphism. Then

$$G/\ker\phi=G/\sim$$
, with $g(\ker\phi)=[g]_{\sim}$

where \sim is as in Lemma 2.1.

Theorem 2.3 (First isomorphism theorem). Let $\phi: G \to H$ be a surjective group homomorphism. Then we have the following commutative diagram:



Result 2.4.

(i) For $n \ge 1$,

 $\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n.$

(ii) Any finite cyclic group G is isomorphic to $\mathbb{Z}_{|G|}$.

Remark. In writing conclusions of implication-based theorems, we'll omit explicitly mentioning " $H \leq G$ ", and directly write statements about G/H.

Theorem 2.5 (Second isomorphism theorem). Let G be a group, $H \leq G$ and $K \leq G$. Then

$$\frac{HK}{K} \cong \frac{H}{H \cap K}.$$

Theorem 2.6 (Third isomorphism theorem). Let $H, K \leq G$ for a group G with $H \subseteq K$. Then

$$\frac{G/H}{K/H} \cong \frac{G}{K}.$$

3 Direct products

3.1 External direct products

September 17, 2022

Proposition 3.1 (External direct product). Let G, H be groups. Then $G \times H$ forms a group under the operation

$$((g_1, h_1), (g_2, h_2)) \mapsto (g_1g_2, h_1h_2).$$

Proposition 3.2. For groups G, H, K, we have

$$G \times H \cong H \times G$$
, and
 $(G \times H) \times K \cong G \times (H \times K).$

Further, G and H sit as normal subgroups inside $G \times H$.

Proposition 3.3. For groups, $G_1 \cong G_2$ and $H_1 \cong H_2 \implies G_1 \times H_1 \cong G_2 \times H_2$.

Theorem 3.4 (Order of elements in $G \times H$). Let G, H be groups and $(g, h) \in G \times H$. Then in the group $G \times H$,

$$|(g,h)| = \operatorname{lcm}(|g|,|h|).$$

Theorem 3.5. Let $m, n \in \mathbb{Z}$. Then $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic $\iff \text{gcd}(m, n) = 1$.

3.2 Internal direct products

Proposition 3.6 (Internal direct product). Let G be a group and $H, K \leq G$ such that G = HK and $H \cap K = \{e\}$. Then the following are equivalent:

- (i) $H, K \leq G$.
- (ii) hk = kh for all $h \in H$, $k \in K$.

Lemma 3.7. Let $\phi: G \to G'$ be an injective homomorphism, and $H \leq G$. Then

 $G/H \cong \phi(G)/\phi(H).$

Theorem 3.8. Let G be an internal direct product of the subgroups H, K. Then the following hold:

$$HK = G \cong H \times K$$
$$\frac{HK}{K} \cong H \cong \frac{H \times K}{\{e\} \times K}$$
$$\frac{HK}{H} \cong K \cong \frac{H \times K}{H \times \{e\}}$$

Proposition 3.9. Any abelian group of order 8 is isomorphic to \mathbb{Z}_8 , or to $\mathbb{Z}_2 \times \mathbb{Z}_4$, or to $\mathbb{Z}_2 \times (\mathbb{Z}_2 \times \mathbb{Z}_2)$.

Chapter III

Group actions

1 Basics

October 4, 2022

Definition 1.1 (Group actions, orbits, stabilizers). Let G be a group and X a set. Then a function $G \times X \to X$

 $(g, x) \mapsto gx$

is called a (left) action of G on X iff

(i)
$$ex = x$$
, and

(ii)
$$g(hx) = (gh)x$$
.

Similarly, there are right actions. For an $x \in X$, we define

$$orb(x) := \{gx : g \in G\}, and$$
$$stab(x) := \{g \in G : gx = x\}.$$

We call the action *transitive*, iff some orbit covers then entire G. We call the action *free* iff each stabilizer is trivial, *i.e.*, $\{e\}$.

Corollary 1.2. For a group action, $\operatorname{orb}(x) = x \iff \operatorname{stab}(x) = G$.

Proposition 1.3 (Restricting actions). Let G be a group acting on a set X. Let $H \leq G$ and $x \in X$. Then we can restrict the action in two ways: $H \times X \to X$, and $G \times \operatorname{orb}(x) \to \operatorname{orb}(x)$.

Theorem 1.4 (Facts about actions). Let G be a group acting on a set X. Then the following hold:

(i) Orbits are precisely the equivalence classes of the following equivalence relation on X:

 $x \sim y$ iff x = gy for some $g \in G$.

- (ii) Stabilizers are subgroups of G.
- (iii) $[G: \operatorname{stab}(x)] = |\operatorname{orb}(x)|$ for each $x \in X$.

Example 1.5 (Translations and conjugations). Consider a group G. Then the following are actions by G on X:

$$(g,h) \mapsto gh \qquad X = G$$

$$(g,hK) \mapsto ghK \qquad X = \{hK : h \in G, K \le G\}$$

$$(g,h) \mapsto ghg^{-1} \qquad X = G$$

$$(g,H) \mapsto gHg^{-1} \qquad X = \{H : H \le G\}$$

Example 1.6 (Double cosets). Let G be a group and $H, K \leq G$. Then $H \times K$ acts on G via

$$((h,k),x) \mapsto hxk^{-1}$$

and the orbits here are the double cosets HxK's.

Result 1.7. Let G be a finite group and H < G. Then

$$\bigcup_{x \in G} x H x^{-1} \subsetneq G.$$

2 The class equation

October 5, 2022

Definition 2.1 (Conjugacy classes). Let G be a group and $x \in G$. Then we define

$$cl(x) := \{gxg^{-1} : g \in G\}.$$

Corollary 2.2. Conjugacy classes are precisely the orbits under conjugation.

Theorem 2.3 (Class equation). Let G be a group. Then

$$\{Z\} \cup \{\operatorname{cl}(x) : x \in G \setminus Z\}$$

forms a partition of G.

Result 2.4 (Centers of *p*-groups are non-trivial). Let *G* be a finite group with |G| being some honest *p*-power where *p* is a prime. Then $p \mid |Z|$.

Result 2.5 (Classifying groups with p^2 elements). Let G be a finite group with $|G| = p^2$ where p is a prime. Then $G \cong \mathbb{Z}_p$ or $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Result 2.6. Let G be a finite group having 3 conjugacy classes. Then $|G| \leq 6$.

3 Partial converses to Lagrange's theorem

October 5, 2022

Theorem 3.1 (Cauchy). Let G be a finite group and p be a positive prime dividing |G|. Then there exists an $x \in G$ such that |x| = p.

Result 3.2. Let G be a finite group with |G| = pn where p is a positive prime and n < p. Then G has a unique (and hence normal) subgroup of order p.

Lemma 3.3 (How do subgroups of G/H look like?). Let G be a group and $H \leq G$. Then any subgroup of G/H is of the form K/H for some $K \leq G$ such that $K \supseteq H$.

Theorem 3.4. For finite abelian groups, the converse of Lagrange's theorem (Theorem 1.4) holds.

3.1 Sylow theorems

October 5, 2022

Lemma 3.5. Let p be a prime and $n \ge 0$. Let $a, b \in \mathbb{Z}$ such that $p^n \mid ab$ but $p^n \nmid a$. Then $p \mid b$.

Theorem 3.6 (Sylow's first). Let G be a finite group. Let p be a positive prime and $n \ge 0$ such that $p^n \mid |G|$. Then there exists an $H \le G$ such that $|H| = p^n$.

Definition 3.7 (*p*-groups). For a positive prime p, a group is called a *p*-group iff each of its elements has a *p*-power order.

Definition 3.8 (Sylow *p*-subgroups). Let G be a group and p be a positive prime. Then an $H \leq G$ is called a Sylow *p*-subgroup of G iff H is a maximal (with respect to inclusion) *p*-subgroup of G.

The set of all *p*-subgroups of G will be denoted by $Syl_p(G)$.

Proposition 3.9. Let G be a finite group and p be a positive prime. Then G is a p-group $\iff |G|$ is some p-power.

Proposition 3.10 (Normalizers and centralizers). Let G be a group. Let $x \in G$ and $H \leq G$. Then

$$C(x) := \{g \in G : gx = xg\}, and N(H) := \{g \in G : gH = Hg\}$$

are subgroups of G, being the stabilizers of G's conjugation action.

Further, C(x) is the largest subgroup of G in which x is in the center, and N(H) is the largest subgroup of G in which H is normal.

Proposition 3.11. Let P be a Sylow p-subgroup of a group G, for a positive prime p, such that $|N(P)| < \infty$. Then $p \nmid |N(P)/P|$.

Proposition 3.12. *Isomorphisms preserve p-group-ness as well as Sylow p-subgroupness.*

Lemma 3.13. Let G be a finite group, and P, Q be Sylow p-subgroups of G for a positive prime p. Then Q acts on $\mathcal{P} := \{xPx^{-1} : x \in G\}$ via conjugation, and for any $T \in \mathcal{P}$, we have that

$$\operatorname{orb}(T) = \{T\} \iff Q = T.$$

Theorem 3.14 (Sylow's second and third). Let G be a finite group and p be a positive prime. Let $P \in \text{Syl}_p(G)$ and \mathcal{P} be the set of conjugates of P. Then the following hold:

- (i) $|\mathcal{P}| \equiv 1 \pmod{p}$.
- (*ii*) $\operatorname{Syl}_n(G) = \mathcal{P}$.

Corollary 3.15. Let G be a finite group and p be a positive prime. Let p^n be the largest p-power that divides G. Then

$$Syl_p(G) = \{H \le G : |H| = p^n\}.$$

Result 3.16 (Normalization is idempotent for Sylow subgroups). Let G be a group and $P \in Syl_p(G)$ for a positive prime p. Then

$$N(N(P)) = N(P).$$

Theorem 3.17 (Classifying groups with pq elements). Let G be a finite group with |G| = pq where p < q are positive primes. Then there exist $a, b \in G$ and $1 \le r < q$ such that

- (i) $G = \langle a, b \rangle$,
- (*ii*) $a^p = e = b^q$,
- (iii) $a^{-1}ba = b^r$, and
- (iv) $r^p \equiv 1 \pmod{q}$.

4 Simple groups

October 6, 2022

Definition 4.1 (Simple groups). A group is called simple iff it has no non-trivial normal subgroups.

Proposition 4.2. Simple abelian groups are precisely \mathbb{Z}_p for prime p's.

Lemma 4.3 (Self-inverse bijections partition the set). Let X be a set and $f: X \to X$ such that $f \circ f = id$. Then the following hold:

- (i) $\mathcal{C} := \{\{x, f(x)\} : x \in X\}$ is a partition of X.
- (ii) For each $A \in C$, define $\overline{f|_A}$ to be the trivial extension of $f|_A$. These $\overline{f|_A}$'s commute with each other.
- (iii) If C is finite, then

$$f = \prod_{A \in \mathcal{C}} \overline{f|_A}$$

Theorem 4.4 ($|G| = 2(\text{odd}) \implies \text{not simple}$). Let G be a finite group of even order with |G|/2 being odd. Then G has a normal subgroup of order n.

Theorem 4.5 (Cayley's extended). Let G be a group and $H \leq G$. Then there exists a homomorphism $\tau: G \to S_{\{qH:q \in G\}}$ with ker $\tau \subseteq H$.

Result 4.6. Let G be a finite group and $H \leq G$ such that $[G : H] \neq 1$ and $|G| \nmid [G : H]!$. Then G is not simple.

Result 4.7. Let G be a finite group and p be a positive prime dividing |G| such that $|G| \nmid |Syl_p(G)|!$. Then G is not simple.

Theorem 4.8 (Ernst Strauss). Let G be a finite group and $H \leq G$ such that [G : H] is the smallest (positive) prime dividing |G|. Then $H \leq G$.

5 $|G| = p^n q$ violates simplicity

October 6, 2022

Theorem 5.1. Let G be a finite p-group for a positive prime p and H < G. Then

$$N(H) \supseteq H.$$

Theorem 5.2. Let G be a finite group and p be a positive prime. Then

$$\bigcap \operatorname{Syl}_p(G) \trianglelefteq G.$$

Theorem 5.3 (Miller). Let G be a finite group with $|G| = p^n q$ for positive primes p, q and $n \ge 1$. Then G is not simple.

Chapter IV

Rings

1 Basics

October 12, 2022

Definition 1.1 (Rings). Let R be a set along with binary operations of addition and multiplication. Then R is called a ring iff the following hold:

- (i) (R, +) is an abelian group.
- (ii) (R, \cdot) is a semi-group.
- (iii) $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ and $(a + b) \cdot c = (a \cdot c) + (b \cdot c)$.

R is called *commutative* iff \cdot is commutative.

R is said to have an identity iff \cdot has an identity.

We call the additive (respectively multiplicative) identity as *zero* (respectively *one*).

Notation. We'll denote often zero by 0 and one by 1. We'll denote additive inverse of a by -a, and multiplicative inverse (if existent), by a^{-1} , and call them respectively negation and inverse of a.

We'll also omit parentheses in $(a \cdot b) + (c \cdot d)$, etc. assuming the usual convention that multiplication precedes over addition.

We'll also drop the \cdot as usual and just denote that by juxtaposition.

Remark. It's unfortunate that the same juxtaposition is used for both na, and ab. To alleviate some of the confusion, we'll sometimes use 0_R and 1_R , and $n_{\mathbb{Z}}$ while (left) multiplying ring elements by these.

Example 1.2 (One-sided inverses¹). Consider the vector space $\mathbb{R}^{\mathbb{N}}$ over \mathbb{R} . Then the linear operators f, g in the ring² $\mathcal{L}(\mathbb{R}^{\mathbb{N}}, \mathbb{R}^{\mathbb{N}})$ defined by

$$f: (x_0, x_1, x_2...) \mapsto (x_1, x_2, x_3, ...), \text{ and} g: (x_0, x_1, x_2...) \mapsto (0, x_0, x_1, ...)$$

are only invertible from one side.

Proposition 1.3. Let R be a ring. Then

(i) $0_R x = 0_R = x 0_R$. (ii) $(-1_R) x = -x = x (-1_R)$ (if R has identity 1_R). (iii) (-a)b = -(ab) = a(-b). (iv) (-a)(-b) = ab.

Remark. Note that the ring multiplication by 0_R and $\pm 1_R$ yield exactly the same result that we get by integer multiplication by 0 and ± 1 .

Proposition 1.4 (Generalized distributivity). Let R be a ring and $a_1, \ldots, a_m, b_1, \ldots, b_n \in R$ for $m, n \ge 0$. Then we have

$$\left(\sum_{i=1}^{m} a_i\right)\left(\sum_{j=1}^{n} b_j\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j.$$

Proposition 1.5 (Rings form associative \mathbb{Z} -algebras). Let R be a ring and $a, b \in R$. Then for any $m, n \in \mathbb{Z}$, we have

(ma)(nb) = (mn)(ab).

Remark. Note that *na* is defined for each $n \in \mathbb{Z}$. However, a^n may only be defined for $n \ge 1$.

¹Also see Example 3.2

²This is in fact an \mathbb{R} -algebra!

Result 1.6 (Binomial theorem for commutative rings). Let R be a commutative ring and $a, b \in R$. Then for any $n \ge 1$, we have

$$(a+b)^n = a^n + \sum_{i=1}^{n-1} \binom{n}{i} a^i b^{n-i} + b^n.$$

If R further has identity, then for any $n \ge 0$, we have

$$(a+b) = \sum_{i=0}^{n} \binom{n}{i} a^{i} b^{n-i}.$$

Proposition 1.7 (Characterizing the zero ring). Let R be a ring. Then

$$R = \{0_R\} \iff R \text{ has identity and } 1_R = 0_R$$

Definition 1.8 (Ring characteristic). Let R be a ring. Let $S := \{n \ge 1 : na = 0_R \text{ for all } a \in R\}$. Then we define

$$\operatorname{char} R := \begin{cases} 0, & S = \emptyset \\ \min S, & S \neq \emptyset \end{cases}.$$

Proposition 1.9. Let R be a ring. Then the following hold:

- (i) char $R = 0 \implies |R| = \infty$.
- (ii) char $R \neq 0$ and R has identity $1_R \implies$ char R is precisely the order of 1_R in the additive group (R, +).

Result 1.10. Let R be a commutative ring with prime characteristic p. Then we have

$$(a+b)^p = a^p + b^p.$$

Example 1.11 (The rings \mathbb{Z}_n). Let $n \in \mathbb{Z}$. Then \mathbb{Z}_n forms a ring under the *n*-modulo addition and multiplication. Here, the additive identity is 0 and for $|n| \neq 1$, the multiplicative identity is 1.

Example 1.12 (Ring of endomorphisms). Let G be an additive abelian group and set

$$End(G) := \{homomorphisms \ G \to G\}.$$

Then the following hold:

(i) We can define the operations on End(G) as

$$(\phi + \psi)(x) := \phi(x) + \psi(x)$$
, and
 $(\phi\psi)(x) := \phi(\psi(x)).$

(ii) These make End(G) a ring with identity wherein 0, 1 and negations are given by

$$\begin{array}{l} 0(x)=0,\\ 1(x)=x, \text{ and}\\ (-\phi(x))=-(\phi(x)) \end{array}$$

(iii) End(G) is commutative $\iff |G| \leq 2$.

Example 1.13 (Ring of matrices). Let R be a ring and $n \ge 1$. Then the set $M_{n \times n}(R)$, of $n \times n$ matrices over R, forms a ring under the usual matrix operations.

In this ring, 0 is the null matrix and additive inverses of matrices are given by entrywise negation.

Also, the following hold:

- (i) R has identity $\implies R^{n \times n}$ has identity too, which is given by the usual identity matrix.
- (ii) $R^{n \times n}$ has an identity $\implies R$ has an identity.
- (iii) $M_{n \times n}(R)$ is commutative \iff either R is the zero ring, or n = 1 with R commutative.

Example 1.14 (Alternate ring structure on \mathbb{Z}). \mathbb{Z} forms a commutative ring with identity under the following operations:

$$m \oplus n := m + n - 1$$
$$m \odot n := m + n - mn$$

The additive and multiplicative identities here are 1 and 0 respectively.

2 Rings of polynomials

October 12, 2022

Remark. In this section, fix R to be a ring and $n \ge 0$.

Definition 2.1 (The set $R[x_1, \ldots, x_n]$). We define $R[x_1, \ldots, x_n]$ to be the set of all functions $p: \mathbb{N}^n \to R$ such that $p_\alpha \neq 0_R$ for only finitely many α 's in \mathbb{N}^n .

We'll call such functions as *polynomials*.

Proposition 2.2 $((R[x_1, \ldots, x_n], +) \text{ forms a group})$. We can define a binary operation on $R[x_1, \ldots, x_n]$ by component-wise addition. This makes $R[x_1, \ldots, x_n]$ into an abelian group with identity and inverses given by

$$0_{\alpha} = 0_R, and$$
$$(-p)_{\alpha} = -(p_{\alpha}).$$

Definition 2.3 (Degrees and sums of indices). For $\alpha, \beta \in \mathbb{N}^n$, we define $|\alpha| \in \mathbb{N}$ and $\alpha + \beta \in \mathbb{N}^n$ as

$$|\alpha| := \sum_{i=1}^{n} \alpha_i, \text{ and}$$
$$\alpha + \beta_i := \alpha_i + \beta_i.$$

Proposition 2.4 (Properties of indices and degrees).

(

(i) Let $\alpha, \beta \in \mathbb{N}^n$. Then

$$|\alpha + \beta| = |\alpha| + |\beta|.$$

(ii) Let $N \in \mathbb{N}$. Then there are only finitely many α 's in \mathbb{N}^n such that

 $|\alpha| < N.$

Definition 2.5 (Degree of nonzero polynomials). Let $p \in R[x_1, \ldots, x_n]$ be nonzero. Then we define

$$\deg p := \max_{\substack{\alpha \in \mathbb{N}^n: \\ p_\alpha \neq 0_R}} |\alpha|.$$

Remark. Thus degree of the zero polynomial is left undefined.

Proposition 2.6 (Multiplication of polynomials). Let $p, q \in R[x_1, \ldots, x_n]$. Then for each $\alpha \in \mathbb{N}^n$, there are only finitely many pairs $(\beta, \gamma) \in \mathbb{N}^n \times \mathbb{N}^n$ such that $\beta + \gamma = \alpha$. Thus we can define $m \in \mathbb{N}^n \to R$ as

Thus we can define $p \colon \mathbb{N}^n \to R$ as

$$(pq)_{\alpha} := \sum_{\substack{\beta,\gamma \in \mathbb{N}^n:\\\beta+\gamma=\alpha}} p_{\beta} q_{\gamma}.$$

Then $p_{\alpha} = 0$ whenever $|\alpha| > \deg p + \deg q$ for $p, q \neq 0$, and hence $p \in R[x_1, \ldots, x_n]$.

Definition 2.7 (Monomials in multi-index notation). Let $a \in R$ and $\alpha \in \mathbb{N}^n$. Then we define the polynomial $ax^{\alpha} \in R[x_1, \ldots, x_n]$ as

$$(ax^{\alpha})_{\beta} := a\delta_{\alpha\beta}.$$

We call polynomials of such forms as *monomials*, and if we further have $a = 1_R$, then we call this a *monic monomial*.

Proposition 2.8 (Polynomials as sums of monomials). Let $p \in R[x_1, \ldots, x_n]$. Then

$$p = \sum_{\substack{\alpha \in \mathbb{N}^n : \\ p_\alpha \neq 0_R}} p_\alpha x^\alpha.$$

Theorem 2.9. $R[x_1, \ldots, x_n]$ forms a ring under the above operations.

Proposition 2.10.

- (i) R is commutative $\iff R[x_1, \ldots, x_n]$ is commutative.
- (ii) 1_R is the identity in $R \implies 1_R x^{(0,\ldots,0)}$ is the identity in $R[x_1,\ldots,x_n]$.
- (iii) $R[x_1, \ldots, x_n]$ has an identity \implies R has an identity.

3 Idempotents, nilpotents, zero divisors...

October 13, 2022

Definition 3.1 (Idempotents, nilpotents, zero divisors). Let R be a ring. Then an $x \in R$ is called

- (i) *idempotent* iff $x^2 = x$;
- (ii) *nilpotent* iff $x^n = 0_R$ for some $n \ge 1$; and
- (iii) a zero divisor iff $xy = 0_R$ or $yx = 0_R$ for some $y \in R \setminus \{0_R\}$.

Example 3.2 (One-sided zero divisor). Let G be an abelian group. Then in the ring $End(G^{\mathbb{N}})$, the "left-shift" function

$$(x_1, x_2, \ldots) \mapsto (x_2, x_3, \ldots)$$

is a left-sided zero divisor.

Definition 3.3 (Boolean rings). A ring in which each element is idempotent is called a Boolean ring.

Proposition 3.4. Let R be a Boolean ring. Then

(i) -x = x, and (ii) xy = yx.

Example 3.5. Let X be a set. Then $(2^X, \Delta, \cap)$ forms a Boolean ring with 1 = X.

Definition 3.6 (Cancellation property). A ring R is said to obey *left-cancellation* property iff

ab = ac and $a \neq 0_R \implies b = c$.

Similarly, there is *right-cancellation property*.

Proposition 3.7 (Characterizing "no nonzero divisors"). Let R be a ring. Then the following are equivalent:

- (i) R has no nonzero zero divisors.
- (ii) R obeys left-cancellation.
- (iii) R obeys right-cancellation.
- (iv) $ab = 0_R \implies a = 0_R \text{ or } b = 0_R.$

Corollary 3.8 (Further characterization of the zero ring). Let R be a ring. Then 0_R is a zero divisor $\iff R \neq \{0_R\}$.

Theorem 3.9. Let R be a nonzero ring with identity such that it has no nonzero zero divisor. Then the following hold:

- (i) char R = 0 or char R is prime.
- (ii) R is finite \implies |R| is some power of char R.

Result 3.10 (On idempotents).

- (i) A ring with identity having no nonzero zero divisors has 0 and 1 as its only idempotents.
- (ii) In a commutative ring, sum of nilpotents is a nilpotent.
- (iii) In a ring with identity, if a is nilpotent, then $1 \pm a$ are invertible.

4 Subrings

October 22, 2022

Definition 4.1 (Subrings). Let R be a ring. The a subset $S \subseteq R$ is called a subring of R iff the operations of R can be inherited to S and S forms a ring under those inherited operations.

Proposition 4.2 (Characterizing subrings). Let R be a ring and $S \subseteq R$. Then the following are equivalent:

- (i) S is a subring of R.
- (*ii*) $S \neq \emptyset$, and $S S, SS \subseteq S$.

Remark. We'll define the addition and multiplication of subsets of a ring in the obvious manner.

Result 4.3 (The identities of the ring and subring need not be same!). Let R be a ring and $e \in R$ be idempotent. Define

$$S := \{ a \in R : ea = a = ae \}.$$

Then S is the largest subring of R that has identity e. Also,

$$S = eRe$$

Example 4.4. $\{0,3\}$ and $\{0,2,4\}$ are subrings of \mathbb{Z}_6 with identities respectively 3 and 4.

Proposition 4.5.

- (i) Subrings of subrings are subrings of the parent ring.
- (ii) Nonempty intersections of subrings is a subring of the parent ring.

Proposition 4.6. Let S, T be subrings of a ring R such that $T \subseteq S$. Then T is a subring of S.

Proposition 4.7. Let R be a ring and $a \in R$. Then aR and Ra are subrings of R.

Example 4.8 (Sum of subrings needn't be subrings!). Take $R := \mathbb{Q}[x]$. Then

$$S := \{a_0 + a_2 x^2 + \dots + a_{2n} x^{2n} : a_{2i} \in \mathbb{Q}\}, \text{ and}$$
$$T := \{a_0 + a_3 x^3 + \dots + a_{3n} x^{3n} : a_{3i} \in \mathbb{Q}\}$$

are subrings of R.

But S + T is not closed under multiplication: $x^2 x^3 = x^5 \notin S + T$.

Remark. See

Proposition 4.9 (Centers of rings). Let R be a ring. Then the set

 $C := \{a \in R : ax = xa \text{ for all } x \in R\}$

is a subring of R.

Notation. We call elements of C being "central" in R.

Result 4.10. Monic monomials are central in the rings of polynomials.

5 Integral domains, division rings, fields, ...

October 21, 2022

Definition 5.1 (Integral domains). A ring R is called an integral domain iff the following hold:

(i) $R \neq \{0\}.$

- (ii) R has an identity.
- (iii) R is commutative.
- (iv) R has no nonzero zero divisors.

Corollary 5.2. Characteristic of integral domains is either 0 or it is prime.

Theorem 5.3. Let $n \in \mathbb{Z}$. Then \mathbb{Z}_n is an integral domain $\iff n = 0$ or n is prime.

Definition 5.4 (Division rings). A ring R is called a division ring iff the following hold:

- (i) $R \neq \{0\}.$
- (ii) R has an identity.
- (iii) Nonzero elements are invertible.

Example 5.5 (Quaternions in disguise). The set

$$\left\{ \begin{bmatrix} x & y \\ -\overline{y} & \overline{x} \end{bmatrix} : x, y \in \mathbb{C} \right\}$$

forms a non-commutative division ring under the usual matrix operations.

Proposition 5.6. Division rings have no nonzero zero divisors.

Proposition 5.7 (Multiplicative group of a division ring). Let R be a division ring. The the multiplication can be inherited to $R \setminus \{0_R\}$ making it a group with identity 1_R and inverses given by the multiplicative inverses in R.

Definition 5.8 (Fields). Commutative division rings are called fields.

Corollary 5.9. Fields are integral domains.

Theorem 5.10. Finite nontrivial rings with no nonzero zero divisors are division rings.

Corollary 5.11. Finite integral domains are fields.

Corollary 5.12. Let $p \in \mathbb{Z}$. Then \mathbb{Z}_p is a field $\iff p$ is prime.

Definition 5.13 (Subfields). Let F be a field. Then a subset $K \subseteq F$ is called a subfield of F iff the operations of F can be inherited to K and K forms a field under these operations.

Proposition 5.14 (Characterizing subfields). Let F be a field and $K \subseteq F$. Then the following are equivalent:

- (i) K is a subfield of F.
- (ii) $|K| \ge 2$, and $K K \subseteq K$ and $K(K \setminus \{0_F\})^{-1} \subseteq K$.

6 Ideals

October 23, 2022

Definition 6.1 (Ideals). Let R be a ring. Then a subring I of R is called an ideal iff

$$IR, RI \subseteq I.$$

Remark. If $RI \subseteq I$, then I is called the "left ideal", and if $IR \subseteq I$, then I is called the "right ideal".

Example 6.2 (One-sided ideals). Let R be a ring. Then the set

$$\left\{ \begin{bmatrix} x & 0_R \\ y & 0_R \end{bmatrix} : x, y \in R \right\}$$

is a left ideal.

Corollary 6.3 (Characterizing an ideal). Let R be a ring and $I \subseteq R$. Then the following are equivalent:

- (i) I is an ideal of R.
- (ii) $I \neq \emptyset$, and $I I, RI, IR \subseteq I$.

Proposition 6.4. Nonempty intersections of ideals are ideals.

Proposition 6.5 (*nR*'s are ideals). Let *R* be a ring and $n \in \mathbb{R}$. Then

$$nR := \{nr : r \in R\}$$

is an ideal of R.

Example 6.6 (Ideal of an ideal needn't be an ideal). Consider $\mathbb{Q}[x]$. Then $x \mathbb{Q}[x]$ is an ideal of Q[x] (see Corollary 7.3). Now, $\{a_1x + a_2x^2 + \cdots + a_nx^n : a_1 \in \mathbb{Z}\}$ is an ideal of $x \mathbb{Q}[x]$, but not of $\mathbb{Q}[x]$.

Proposition 6.7 (Subring + ideal = subring). Let S be a subring of a ring R and I be an ideal. Then S + I is a subring of R.

Example 6.8 (Subring + ideal \neq ideal!). Let $R := \mathbb{Q}[x]$. Then

$$S := \{a_0 + a_2 x^2 + \dots + a_{2n} x^{2n} : a_{2i} \in \mathbb{Q}\}, \text{ and } I := x^2 \mathbb{Q}[x]$$

are respectively a subring and an ideal of R (see Corollary 7.3). But

 $S + I = \{a_0 + \dots + a_n x^n : a_1 = 0\}$

is not an ideal since $x \in R(S+I)$ but $x \notin S+I$.

Definition 6.9 ("Ideal" product of subsets of rings). Let R be a ring and $A, B \subseteq R$. Then we define

$$A \cdot B := \{ \text{finite sums in } AB \}.$$

Remark. We could have alternatively viewed it as $\sum_{i=1}^{\infty} AB$. But let's be lazy to not formalize arbitrary sums or products of sets in a ring.

Definition 6.10 (Ideals generated by subsets). Let R be a ring and $S \subseteq R$. Then we define

(S) := the smallest ideal in R that contains S.

Theorem 6.11 (Sums and products of ideals are ideals). Let I, J be ideals of a ring. Then the following hold:

(i)
$$I + J = (I \cup J)$$
.
(ii) $I \cdot J = (IJ) \subseteq I \cap J$.

Proposition 6.12 (Principal ideals). Let R be a ring and $a \in R$. Then

$$(a) = \left\{ na + ra + \sum_{i=1}^{m} r_i as_i + as : m, n \in \mathbb{Z}, m \ge 0, r, r_1, \dots, r_m, s, s_1, \dots, s_m \in R \right\}.$$

If R is commutative, then this simplifies to

$$(a) = \Big\{ na + ra : n \in \mathbb{Z}, r \in R \Big\}.$$

If R has identity, then we have

$$(a) = \left\{ \sum_{i=1}^{m} r_i a s_i : m \ge 0, r_1, \dots, r_m, s_1, \dots, s_m \in R \right\}$$

If R is both commutative and has identity, then we simply have

$$Ra = (a) = aR$$

Definition 6.13 (Principal ideal rings and domains). Let R be a ring. Then ideals of the form (a) are called *principal*.

If R's ideals are all principal, then it's called a *principal ideal ring*. If R is an integral domain too, then we call it a *principal ideal domain*.

Example 6.14.

- (i) $2\mathbb{Z}$ is a principal ideal ring, but not an integral domain.
- (ii) $\mathbb{Z}[x]$ has non-principal ideals like $(2, x^2)$.

Definition 6.15 (Simple rings). Nontrivial rings with no nontrivial ideals are called simple.

Proposition 6.16. Division rings are simple.

Proposition 6.17. Simple commutative rings with identity are fields.

7 Studying aR and Ra's

October 24, 2022

Proposition 7.1 (Ideals via central elements). Let R be a ring and $a \in R$. Then we have the following implications:

 $a \text{ is central} \implies aR = Ra \implies aR, Ra \text{ are ideals}$

If R has an identity, the the converse of the last implication is true.

Example 7.2 (The converses are false!).

- (i) For the first implication: Take $R := \mathbb{R}^{2 \times 2}$ and a to be any non-commutative invertible matrix.
- (ii) Take $R := \left\{ \begin{bmatrix} x & 0 \\ y & 0 \end{bmatrix} : x, y \in \mathbb{R} \right\}$ (which is a left ideal of $\mathbb{R}^{2 \times 2}$) and $a := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.
- (iii) See this.

Corollary 7.3. Let R be a ring and $n \ge 0$. Let $m \in R[x_1, \ldots, x_n]$ be a monic monomial. Then mR = Rm is an ideal of $R[x_1, \ldots, x_n]$.

Definition 7.4 (Ideals generated by a set). Let R be a ring and $S \subseteq R$. Then we define

(S) := smallest ideal of R containing S.

Proposition 7.5 ((a) and aR). Let R be a ring and $a \in R$. Then

 $(a) \supseteq aR + Ra \supseteq (aR), (Ra).$

If R has identity, then the above become equalities.

Example 7.6. For $R := x \mathbb{Q}[x]$ and a := x, we have $(a) \supseteq Ra = aR$.

8 Quotient rings

October 31, 2022

Proposition 8.1 (Quotient rings). Let R be a ring with an ideal I. Then the binary operations on R/I

$$+: (\bar{a}, \bar{b}) \mapsto \overline{a+b}, and$$

juxtapositive product: $(\bar{a}, \bar{b}) \mapsto \overline{ab}$

are well-defined and make R/I a ring with $0_{R/I} = \overline{0_R}$.

9 Ring homomorphisms

November 23, 2022

Definition 9.1 (Ring homomorphism). Let R, S be rings. Then a function $\phi: R \to S$ is called a ring homomorphism iff

$$\phi(a+b) = \phi(a) + \phi(b)$$
, and
 $\phi(ab) = \phi(a) \phi(b)$.

Corollary 9.2.

- (i) For an ideal I of a ring R, the canonical function $R \to R/I$ is a ring homomorphism.
- (ii) Compositions of ring homomorphisms are ring homomorphism.
- *(iii)* Restrictions of ring homomorphisms to subrings of domain and codomain are ring homomorphisms.
- (iv) Identity map on a ring is a ring homomorphism.

Remark. " ϕ : $R \to S$ is a ring homomorphism" will be taken to also imply that R, S are rings.

Proposition 9.3 (Properties of ring homomorphisms). Let $\phi: R \to S$ be a ring homomorphism. Then the following hold:

- (*i*) $\phi(0_R) = 0_S$.
- (*ii*) $\phi(-a) = -\phi(a)$.
- (iii) $\phi(na) = n\phi(a)$ for $n \in \mathbb{Z}$.
- (iv) $\phi(a^n) = \phi(a)^n$ for $n \ge 1$.
- (v) $\phi(R)$ is a subring of S.
- (vi) Let R have identity. Then the following hold:
 - (a) $\phi(1_R)$ is the identity of $\phi(R)$.
 - (b) $\phi(a^n) = \phi(a)^n$ for $n \ge 0$.
 - (c) $a \in R$ is invertible $\implies \phi(a) \in \phi(R)$ is invertible in with $\phi(a^n) = \phi(a)^n$ for each $n \in \mathbb{Z}$.

Proposition 9.4 (Preservations under ring homomorphisms). Under a ring homomorphism,

- (i) subrings are preserved both ways,
- (ii) ideals are preserved in the backward direction, and
- (iii) commutativity is preserved in the forward direction.

Definition 9.5 (Kernel). For a ring homomorphism $\phi: R \to S$, we define

$$\ker \phi := \phi^{-1}(\{0_S\}).$$

Corollary 9.6.

- (i) Kernel of a ring homomorphism is an ideal of the domain ring.
- (ii) A ring homomorphism is injective \iff its kernel is the zero ideal.

Definition 9.7 (Ring isomorphisms). A ring isomorphism is a bijective ring homomorphism.

A ring R is said to be *isomorphic* to S iff there exists a ring isomorphism $R \to S$.

Proposition 9.8. The inverse of a ring isomorphism is a ring homomorphism.

Proposition 9.9. "Being isomorphic" is an equivalence relation for rings.

Notation. As before, we'll denote this congruence by " \cong ".

Theorem 9.10 (First isomorphism). Let $\phi: R \to S$ be a surjective ring homomorphism. Then

$$R/\ker\phi\cong S.$$

Theorem 9.11 (Second isomorphism). Let I be an ideal and S be a subring of a ring R. Then³

$$\frac{S}{I \cap S} \cong \frac{I+S}{I}.$$

Theorem 9.12 (Third isomorphism). Let I, J be ideals of a ring R with $I \subseteq J$. Then

$$\frac{R/I}{J/I} = \frac{R}{J}.$$

Theorem 9.13 (Correspondence). Let $\phi: R \to S$ be a surjective ring homomorphism. Then we have the following one-to-one correspondence:

$$\begin{aligned} \{ ideals \ of \ R \ containing \ \ker \phi \} & \longleftrightarrow \{ ideals \ of \ S \} \\ I & \phi(I) \\ \phi^{-1}(J) & J \end{aligned}$$

10 Maximal and prime ideals

November 23, 2022

Definition 10.1 (Maximal and prime ideals). A proper ideal I of a ring R is said to be

- (i) maximal iff the only ideal properly containing it is R itself; and,
- (ii) prime iff the following holds: $ab \in I \implies a \in I$ or $b \in I$.

Proposition 10.2.

- (i) Maximal ideals of \mathbb{Z} are precisely $p\mathbb{Z}$ for prime p's.
- (ii) Prime ideals of \mathbb{Z} are precisely $n\mathbb{Z}$ where n = 0 or n is prime.

 $^{^{3}}$ As before, when we'll quotient a ring with a subset, we'll omit mentioning that the subset is an ideal.

Theorem 10.3 (Characterizing fields and integral domains). Let R be a commutative ring with identity. Then the following hold:

- (i) R is a field $\iff \{0_R\}$ is a maximal ideal.
- (ii) R is an integral domain $\iff \{0_R\}$ is a prime ideal. Further, if I is an ideal of R, then the following hold:
- (i) R/I is a field $\iff I$ is maximal.
- (ii) R/I is an integral domain $\iff I$ is prime.

Theorem 10.4. In a commutative ring with identity, maximal ideals are prime.

Example 10.5 (A non-maximal prime). Consider $0\mathbb{Z} \times 2\mathbb{Z}$ in $\mathbb{Z} \times \mathbb{Z}$.

Proposition 10.6 (When can primes be maximal?).

- (i) In a principal ideal domain, nonzero prime ideals are maximal.
- (ii) In a Boolean ring with identity, prime ideals are maximal.

11 Embedding rings in larger rings

November 23, 2022

Lemma 11.1. Let R be a ring and $k := \operatorname{char} R$. Then the following hold: (i) $\mathbb{Z} \times R$ forms a ring under the following operations:

$$(m, a) + (n, b) := (m + n, a + b)$$

 $(m, a) (n, b) := (mn, mb + na + ab)$

(ii) $\mathbb{Z}_k \times R$ forms a ring with the following well-defined operations:

$$(m, a) + (n, b) := ((m + n) \mod k, a + b)$$
$$(m, a) (n, b) := ((mn) \mod k, mb + na + ab)$$

Theorem 11.2. Let R be a (commutative) ring. Then there exists a (commutative) ring S with identity, having char S = 0,⁴ which contains a copy⁵ of R as an ideal.

⁴Instead, we can also have char $S = \operatorname{char} R$.

⁵That is, an isomorphic image

Theorem 11.3 (Field of fractions). Let R be an integral domain. Then the relation on $R \times R \setminus \{0_R\}$ defined by

$$(a,b) \sim (c,d)$$
 iff $ad = bc$

is an equivalence relation, whose equivalence classes form a field under the following well-defined operations:

$$[(a,b)] + [(c,d)] = [(ad+bc),bd]$$
$$[(a,b)] [(c,d)] = [(ac,bd)]$$

Further, this field of fractions of R contains a copy of R via $a \mapsto [(a, 1_R)]$.

Theorem 11.4. Let F be a field and $R \subseteq F$ form an integral domain under the inherited operations.⁶ Then

$${ab^{-1}: a, b \in R, b \neq 0_F}$$

is the smallest subfield of F that contains R. It is further isomorphic to the field of fractions of R.

Corollary 11.5. Any field containing a copy of an integral domain also contains a copy of its field of fractions.

12 Factorizations

November 24, 2022

Definition 12.1 (Divisors and associates). Let R be a commutative ring and $a, b \in R$. Then we say

- (i) that a divides b or a is a divisor of b, written $a \mid b$, iff b = ac for some $c \in R$; and,
- (ii) that a and b are associates, written $a \sim b$, iff $a \mid b$ and $b \mid a$.

Corollary 12.2. In commutative rings, being a divisor is a transitive relation, and being associates is an equivalence relation.

Proposition 12.3 (Properties when we also have identity). Let R be a commutative ring with identity and $a, b, u \in R$. Then the following hold:

⁶Implicit is the fact that the operations can in the first place be inherited.

- (i) $a \mid b \iff b \in (a) \iff (b) \subseteq (a)$.
- $(ii) \ a \sim b \iff (a) = (b).$
- (iii) u is invertible $\iff u \sim 1_R \iff (u) = R$.
- (iv) If R has no nonzero zero divisors, then $a \sim b \iff b = av$ for some invertible $v \in R$.

Definition 12.4 (Primes and irreducibles). Let R be a commutative ring. Then a nonzero non-invertible $a \in R$ is called

- (i) prime iff $a \mid bc \implies a \mid b \text{ or } a \mid c$.
- (ii) *irreducible* iff a doesn't factor into two non-invertibles.

Proposition 12.5 (Properties when we also have identity). Let R be a commutative ring with identity and $a \in R$ be nonzero and non-invertible. Then the following hold:

- (i) a is prime \iff (a) is a nonzero prime ideal.
- (ii) a is irreducible \implies only divisors of a are invertibles and associates of a.
- (iii) If R further has no nonzero zero divisors, then the following hold:
 - (a) Converse of (ii).
 - (b) a is prime or (a) is maximal \implies a is irreducible.

Theorem 12.6 (Primes and irreducibles coincide in PID's). Let R be a principal ideal domain and $a \in R$. Then the following are equivalent:

- (i) a is prime.
- (ii) (a) is nonzero prime.
- (iii) (a) is maximal.
- (iv) a is irreducible.