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Chapter I

Groups

1 Powers in a group

August 11, 2022

Remark. Unless stated otherwise, the group operation will be denoted by juxtapo-
sition.

Definition 1.1 (Semi-group). A set with an associative binary operation.

Proposition 1.2. A semi-group has at most one identity element. If it exists, then
each element has at most one inverse.

Definition 1.3 (Group). A semi-group which has an identity and each of whose
elements has an inverse.

Remark. This allows to define, in a given group, the inverse of an element a as a−1.

Proposition 1.4. Invertible elements od a semi-group form a group.

Definition 1.5 (Powers). Let G be a group and a ∈ G. Then for n ∈ Z, we define

an :=


e, n = 0

an−1, n > 0

(a−n)−1, n < 0

.

1



CHAPTER I. GROUPS 2

Remark. The above “overloading” of a−1 is actually an extension. Hence we can
interpret a−1 in either way.

Proposition 1.6 (Properties of powers). Let G be a group and a ∈ G. Let m,n ∈ Z.
Then the following hold:

(i) (a−1)−1 = a,

(ii) an±1 = ana±1,

(iii) aman = am+n,

(iv) (an)−1 = a−n, and

(v) (am)n = amn.

2 gcd, lcm, order. . .

August 15, 2022
Prove all these!

Definition 2.1 (gcd and lcm). Let a1, . . . , ak ∈ Z with k ≥ 1. Then

(i) for ai’s not all zero, we define

gcd(a1, . . . , ak) := max{common divisors of ai’s}, and

(ii) for each ai ̸= 0, we define

lcm(a1, . . . , ak) := min{positive common multiples of ai’s}

Proposition 2.2 (Properties of gcd). Let a1, . . . , ak ∈ Z for k ≥ 1, not all zero.
Then the following hold:

(i) We have
gcd(a1, . . . , ak) = gcd(|a1|, . . . , |ak|).

(ii) For k ≥ 2, we have

gcd(a1, . . . , ak) = gcd(gcd(a1, . . . , ak−1), ak).

(iii) gcd(a1, . . . , ak) is the unique integer d > 0 such that

(a) d is a common divisor of ai’s, and
(b) each common divisor of ai’s divides d.
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Proposition 2.3 (Bézout’s lemma). For a, b ∈ Z not both zero, there exist m,n ∈ Z
such that

gcd(a, b) = ma+ nb.

Proposition 2.4 (Properties of lcm). Let a1, . . . , ak ∈ Z \ {0} for k ≥ 1. Then

(i) We have
lcm(a1, . . . , ak) = lcm(|a1|, . . . , |ak|).

(ii) For k ≥ 2, we have

lcm(a1, . . . , ak) = lcm(lcm(a1, . . . , ak−1), ak).

(iii) lcm(a1, . . . , ak) is the unique integer m > 0 such that

(a) m is a common multiple of ai’s, and
(b) m divides each common multiple of ai’s.

Proposition 2.5. Let a, b ∈ Z \ {0}. Then

gcd(a, b) lcm(a, b) = |ab|.

Remark. We’ll take for granted the definition of Zn, and the multiplication opera-
tion on it. We’ll also use Bézout’s lemma. Also, we’ll take the semantic definitions
of the lcm and gcd.

Proposition 2.6 (Multiplicative inverses in Zn). For a, n ∈ Z not both zero, we
have that a is invertible ⇐⇒ gcd(a, b) = 1.

Theorem 2.7. N is well-ordered.

Definition 2.8 (Order of a group element). Let G be a group and a ∈ G. Let

S := {n > 0 : an = e}.

Then we define

|a| :=

{
minS, S ̸= ∅
∞, S = ∅.

Theorem 2.9. Let G be a group and a ∈ G with |a| <∞. Then for any n ∈ Z, the
following hold:

(i) We have
an = e ⇐⇒ |a| | n.
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(ii) We have

|an| = |a|
gcd(|a|, n)

.

Result 2.10. The order of the product of commuting elements of a group divides the
lcm of their respective orders.

If the orders are pairwise coprime, then the order is the product of the respective
orders.

Result 2.11. Let G be a group and a, b ∈ G. Let m ∈ Z such that aba−1 = bm. Then
for any n ≥ 0, we have

anba−n = bm
n

.

It follows that if |a|
∣∣ α, then |b|

∣∣ mα − 1 for α ≥ 0.

3 Modular arithmetic

August 13, 2022

Definition 3.1 (Modulo congruence). Let a, b, n ∈ Z. Then we write

a ≡ b mod n iff n | (a− b).

Proposition 3.2. For any n ∈ Z, congruence modn is an equivalence relation on
Z.

Lemma 3.3. Let a, b, c ∈ Z such that both of a, b are not zero with gcd(a, b) = 1.
Let a | bc. Then a | c.

Proposition 3.4 (Properties of modulo congruence). Let n, a, b, c ∈ Z. Then the
following hold with all the congruences being taken with n:

(i) a ≡ b ⇐⇒ a+ c ≡ b+ c.

(ii) a ≡ b =⇒ ac ≡ bc.

(iii) ac ≡ bc and gcd(n, c) = 1 with n, c not both zero =⇒ a ≡ b.

Definition 3.5 (Modulo). Let n ∈ Z \ {0} and a ∈ Z. Then we define amodn to
be the remainder obtained upon dividing a by n.
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Proposition 3.6 (Properties of modulo). Let n ∈ \{0} and a, b ∈ Z. Then the
following hold:

(i) amodn = bmodn ⇐⇒ a ≡ b mod n.

(ii) (amodn)modn = amodn.

(iii) (a+ bmodn)modn = (a+ b)modn.

(iv) (a(bmodn))modn = abmodn.

Definition 3.7 (Prime integers). p ∈ Z will be called prime iff |p| ≠ 1 and the only
divisors of p are ±1, ±p.

Proposition 3.8 (Zn and Un). Let n ∈ Z with |n| ≠ 0. Then

Zn := {0, . . . , |n| − 1}

forms an abelian group under the operation

(a, b) 7→ (a+ b)modn,

and an abelian semi-group under the operation

(a, b) 7→ (ab)modn

with identity being 1 if |n| > 1 and 0 if |n| = 1.
Further, for n ≥ 1, the set

Un := {a ∈ Zn : gcd(a, n) = 1}

is the set of all invertible elements of Zn, and for a prime p, we have that

|Up| = |p| − 1.

Remark. Note that amod 0 makes no sense, hence we couldn’t define Z0. See
however Definition 9.13 and Theorem 9.14.

4 Permutation groups

August 12, 2022

Proposition 4.1. The set of all permutations of a set forms a group under function
composition.
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Notation. For a set X, we’ll denote by SX the set of all permutations of X. For
n ∈ N, we’ll use Sn := S{1,...,n}.

Definition 4.2 (Dynamic set). Let σ be a permutation of a set A. Then we define
the dynamic set of σ to be the set

{a ∈ A : σ(a) ̸= a}.

Proposition 4.3. Let σ be a permutation of a set A and K be the associated dynamic
set. Then

σ(K) = K.

Definition 4.4 (Disjoint permutations). Two permutations on a set are called dis-
joint iff their associated dynamic sets are disjoint.

Theorem 4.5. Disjoint permutations commute.

Theorem 4.6 (Cycles in a permutation). Let σ be a permutation of a set A and K be
the associated dynamic set. Define a relation ∼A (respectively ∼K) on A (respectively
K) by

a ∼A b (respectively a ∼K b) iff a = σn(b) for some n ∈ Z.

Then the following hold:

(i) The above are equivalence relations.

(ii) We have

{equivalence classes of ∼K}
= {non-singleton equivalence classes of ∼A}

(iii) If C is an equivalence class of ∼A, then we have that

σ(C) = C

and hence we can restrict σ on C, obtaining a permutation on C, the dynamic
set, L, of whose trivial extension is given by

L =

{
C, C is non-singleton

∅, otherwise
.

(iv) The (trivial extensions of) restricted σ’s above are disjoint permutations; such
an extension is non-identity ⇐⇒ corresponding equivalence class is of ∼K.
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(v) The composition, whenever finite, (in any order) of (the trivial extensions of)
all the restricted σ’s above (in K or in A) gives σ back.

(vi) Let C be an equivalence class of ∼A. Let a ∈ C and n ≥ 1. Then the following
are equivalent:

(a) C has n elements.
(b) C = {σ0(a), . . . , σn−1(a)} with σi(a)’s being distinct.
(c) n is the smallest positive integer k such that σk(a) = a.

Remark. We call the equivalence classes of A, the cycles of σ. (Note that since σ
is specified, mentioning only the set is sufficient.)

Theorem 4.7 (k-cycles). Let A be a set and a0, . . . , ak−1 ∈ A be distinct for k ≥ 1.
Then there exists a unique function σ : A→ A such that

σ(x) =

{
a(i+1)mod k, x = ai for some 0 ≤ i < k

x, otherwise
.

Further, the following hold:

(i) σ is a permutation on A, with

σ−1(x) =

{
a(i−1)mod k, x = ai for some 0 ≤ i < k

x, otherwise
.

(ii) For any i, j ∈ Z, we have

σi(aj) = a(i+j)mod k.

(iii) The cycle of σ containing a0 is {a0, . . . , ak−1}.
(iv) The trivial extension of the restriction of σ on {a0, . . . , ak−1} is σ itself.

(v) The order of σ is k.

(vi) The induced partition of the dynamic set is
{
{a0, . . . , ak−1}

}
if k > 1, and ∅ if

k = 1.

Notation. For a given A, this allows to denote σ by (a1, . . . , ak).

Remark. Note that 1-cycles are id.
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Result 4.8. Sn is abelian ⇐⇒ n < 3.

Proposition 4.9 (Finite cycles induce k-cycles). Let σ be a permutation of a set A
and C be a cycle with k elements. Then the trivial extension of the restriction of σ
on C is a k-cycle.

Theorem 4.10. Let n ∈ N and σ ∈ Sn. Then there exists a unique finite set of
disjoint non-identity k-cycles (for possibly different k’s) in {1, . . . , n} whose product
is σ.

Definition 4.11 (Transpositions). 2-cycles in a set are called transpositions.

Theorem 4.12 (Decomposing finite cycles in transpositions). Let A be a set and
a0, . . . , ak−1 ∈ A be distinct for k ≥ 1. Then

(a0, . . . , ak−1) = (a0, ak−1) . . . (a0, a1).

Corollary 4.13. Any permutation in Sn can be decomposed as a finite product of
transpositions.

Definition 4.14 (Odd and even permutations). Let n ∈ N. Then a σ ∈ Sn is called
odd (respectively even) iff it can be written as a finite product of an odd (respectively
even) number of transpositions.

Proposition 4.15 (Permutation matrices and Sn). Let n ≥ 1. Define a function
P : Sn →Mn×n(Z) by

(Pσ)i := (eσ(i))
t.

Then P is injective and we have

PσPτ = Pτσ.

Theorem 4.16. σ ∈ Sn for n ≥ 0 can’t be both, odd and even.

Proposition 4.17 (Alternating groups). Let n ∈ N. Then

An := {σ ∈ Sn : σ is even}

forms a group with

|An| =
n!

2
.
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5 Subgroups

Definition 5.1 (Subgroups). Let G be a group. Then a subset H ⊆ G is called a
subgroup of G, written H ≤ G iff the following hold:

(i) G’s operation can be inherited to H, and

(ii) H forms a group under the inherited operation.

Proposition 5.2. The identities and inverses in a subgroup are the same as those
in the parent group.

Remark. This allows to use the same notation for the group operation, the identity
and the inverses as those in the parent group.

Proposition 5.3 (Characterizing subgroups). Let G be a group and H ⊆ G be
nonempty. Then the following are equivalent:

(i) H ≤ G.

(ii) ab−1 ∈ H for any a, b ∈ H.

(iii) H is closed under G’s operation and taking inverses.

Result 5.4. If G is a finite group, then ab−1 above can be replaced with ab.

Proposition 5.5.

(i) Subgroup of a subgroup is a subgroup.

(ii) Nonempty intersection of subgroups is a subgroup.

Result 5.6 (Unions almost never form subgroups). Let G be a group and H,K ≤ G.
Then

H ∪K ≤ G ⇐⇒ H ⊆ K or K ⊆ H.

Theorem 5.7 (Subgroups generated by sets). Let G be a group and S ⊆ G. Then

⟨S⟩ :=
⋂

{H ≤ G : H ⊇ S}

is the smallest subgroup of G that contains S.
Further, we have that

⟨S⟩ = {“finite strings” of elements in S and their inverses}.
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Proposition 5.8. Let G be a group. Then

(i) H,K ≤ G and H ⊆ K =⇒ H ≤ K,

(ii) H ⊆ K ⊆ G =⇒ ⟨H⟩ ≤ ⟨K⟩, and
(iii) H ≤ G =⇒ ⟨H⟩ = H.

Result 5.9. For n ≥ 3, the group An is generated by 3-cycles.

Remark. For a1, . . . , an ∈ G, we’ll often denote ⟨{a1, . . . , an}⟩ by ⟨a1, . . . , an⟩.

Proposition 5.10 (The subgroup ⟨a⟩). Let G be a group and a ∈ G. Then

⟨a⟩ = {an : n ∈ Z}.

Theorem 5.11. Let G be a group and a ∈ G. Then the following hold:

(i) |a| <∞ =⇒ ⟨a⟩ = {a0, . . . , a|a|−1}.
(ii) |a| <∞ ⇐⇒ |⟨a⟩| <∞.

(iii) |a|, |⟨a⟩| <∞ =⇒ |a| = |⟨a⟩|,

Proposition 5.12. An infinite group has infinitely many subgroups.

Notation. We’ll use the usual notation nZ.

Theorem 5.13. The subgroups of Z are precisely nZ for n ∈ Z.

6 Product of subgroups

Definition 6.1 (Product of subsets). Let G be a group and A,B ⊆ G. Then we
define

AB := {ab : a ∈ A, b ∈ B}, and
A−1 := {a−1 : a ∈ A}.

Remark. Even if H,K ≤ G for a group G, we don’t need to have HK ≤ G: Take
any {e, a}, {e, b} ≤ G with ab ̸= ba.
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Proposition 6.2 (Properties of products of subsets). Let G be a group and A,B,C ⊆
G. Then the following hold:

(i) A ⊆ B =⇒ AC ⊆ BC and CA ⊆ CB.

(ii) (AB)C = A(BC), and

(iii) (AB)−1 = B−1A−1.

Proposition 6.3 (Another characterization of subgroups). Let H be a nonempty
subset of a group G. Then the following are equivalent:

(i) H ≤ G.

(ii) HH−1 ⊆ H.

(iii) HH = H and H−1 = H.

Theorem 6.4 (When is HK a subgroup?). Let H,K ≤ G for a group G. Then the
following are equivalent:

(i) HK ≤ G.

(ii) HK = KH.

(iii) KH ≤ G.

Proposition 6.5 (Center of a group). Let G be a group and

ZG := {g ∈ G : gh = hg for all h ∈ G}.

Then
ZG ≤ G.

7 Cyclic groups

Definition 7.1 (Cyclic group). A group G is called cyclic iff there exists a a ∈ G
such that

G = ⟨a⟩.

Proposition 7.2. Cyclic groups are abelian.

Remark. Converse needn’t be true: Consider V , the Klein four-group.

Theorem 7.3. Let G be a finite group and a ∈ G. Then

G = ⟨a⟩ ⇐⇒ |G| = |a|.
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Proposition 7.4. Let G be a group and a ∈ G with |a| < ∞. Then for any k ∈ Z,
we have

G = ⟨ak⟩ ⇐⇒ gcd(|a|, k) = 1.

Theorem 7.5 (Subgroups of cyclic groups are cyclic). Let G be a cyclic group and
a ∈ G such that G = ⟨a⟩. Let H ≤ G with H ̸= {e}. Then

S := {n ≥ 1 : an ∈ H}

is nonempty, and
H = ⟨aminS⟩.

Theorem 7.6. A group having no non-trivial subgroups is finite cyclic and has prime
order.

Proposition 7.7 (“Converse” of Lagrange for cyclic). Let G be a finite cyclic group
and m ≥ 1 such that m | |G|. Then there exists a unique subgroup H of G such that
|H| = m.

8 Cosets

August, 19, 2022

Definition 8.1 (Cosets). Let G be a group, A ⊆ G and g ∈ G. Then we define

gA := {g}A, and
Ag := A{g}.

Proposition 8.2 (Properties of cosets). Let G be a group, H ≤ G and a ∈ G. Then
the following hold:

(i) The following are equivalent:

(a) aH = H.
(b) a ∈ H.
(c) Ha = H.

(ii) The following are equivalent:

(a) aH = bH.
(b) a−1b ∈ H.
(c) aH ∩ bH ̸= ∅.

(iii) The following are equivalent:
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(a) Ha = Hb.
(b) ab−1 ∈ H.
(c) Ha ∩Hb ̸= ∅.

Proposition 8.3 (Partitioning via cosets). Let G be a group and H ≤ G. Let

ΠL := {aH : a ∈ G}, and
ΠR := {Ha : a ∈ G}.

Then the following hold:

(i) ΠL and ΠR are partitions of G.

(ii) |ΠL| = |ΠR|.
(iii) |aH| = |H| = |Ha|.

Definition 8.4 (Index of a subgroup). Let G be a group and H ≤ G. Then we
define

[G : H] :=
∣∣{left (or right) cosets of H}

∣∣.
Theorem 8.5 (Lagrange’s theorem). Let G be a group and H ≤ G. Then the
following hold:

(i) |G| <∞ ⇐⇒ |H|, [G : H] <∞.

(ii) If |G|, |H|, [G : H] <∞, then

|G| = |H|[G : H].

Proposition 8.6 (Immediate consequences).

(i) If G is a finite group and a ∈ G, then |a|
∣∣ |G|.

(ii) Groups of prime order are cyclic.

(iii) (Fermat’s little theorem) If p is a prime and p ∤ a, then

ap−1 ≡ 1 (mod p).

(iv) Let G be a group and H,K ≤ G with gcd(|H|, |K|) = 1. Then we have that

H ∩K = {e}.

Result 8.7. A group with a prime power order, say pn with n ≥ 1, has an element of
order p.
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Proposition 8.8. Let G be a group and H,K ≤ G. Then the following hold:

(i) H ∩K ≤ H,K.

(ii) |HK| <∞ ⇐⇒ |H|, |K| <∞.

(iii) If |H|, |K|, |HK|, |H ∩K| <∞, then

|HK| = |H||K|
|H ∩K|

.

Result 8.9 (“Converse” of Lagrange’s theorem need not hold). A4, that has 12 elements,
doesn’t have any subgroup of order 6.

9 Normal subgroups

August 29, 2022

Definition 9.1. Normal subgroups A subgroup H of a group G is called normal,
written H ⊴ G, iff gH = Hg for all g ∈ G.

Corollary 9.2 (Immediate results).

(i) Subgroups of abelian groups are normal.

(ii) Center of a group is a normal subgroup.

Result 9.3 (A normal subgroup of a non-abelian group). We have

{id, (123), (132)} ⊴ S3.

Result 9.4. Let G be a group and H ≤ G such that [G : H] = 2. Then H ⊴ G.

Remark. Subgroup of a normal subgroup needn’t be normal: Otherwise, each sub-
group would be normal.

Normal subgroup of a normal subgroup needn’t be normal.1

Theorem 9.5 (Characterizing normal subgroups). Let G be a group and H ≤ G.
Then the following are equivalent:

1D4 provides a minimal example. See here.

https://math.stackexchange.com/a/255314/673223
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(i) H ⊴ G.

(ii) gHg−1 ⊆ H for all g ∈ G.

(iii) gHg−1 = H for all g ∈ G.

(iv) Every left (respectively right) coset is a right (respectively left) coset.

Proposition 9.6. Nonempty intersections of normal subgroups are normal.

Theorem 9.7. Let G be a group and H,K ≤ K. Then the following hold:

(i) H ⊴ G =⇒ HK ≤ G.

(ii) H,K ⊴ G =⇒ HK ⊴ G.

Result 9.8. Let G be a group and H ⊴ G with [G : H] being prime. Then for any
K ≤ G, we have either K ≤ H, or G = HK.

Notation. For H ⊴ G, the left and the right cosets coincide and hence we can
denote the partition by G/H, and equivalence classes aH by a.

Proposition 9.9 (Quotient groups). Let G be a group and H ⊴ G. Then the binary
operation on G/H given by

(a, b) 7→ ab.

is well-defined and G/H forms a group under this operation.

Result 9.10. Let G be a group such that G/Z is cyclic. Then G is abelian.

Result 9.11. Let G be a group and H ≤ G such that a2 ∈ H for all a ∈ G. Then
H ⊴ G and G/H is abelian.

Proposition 9.12 (Zn and Z/nZ). Let n ∈ Z \ {0}. Then

a 7→ a

is a bijection Zn → Z/nZ that preserves addition as well as multiplication, i.e.,

(a+ b)modn 7→ a+ b, and

abmodn 7→ ab.

Definition 9.13 (Defining Z0). We define

Z0 := Z.

Theorem 9.14. For any n ∈ Z, we have

Zn
∼= Z/nZ.



Chapter II

Group homomorphisms

1 Basics

August 29, 2022

Definition 1.1 (Group homomorphisms). Let (G, ∗) and (H, ◦) be groups. then
a function ϕ : G → H is called a group homomorphism iff the following diagram
commutes.

G×G H ×H

G H

ϕ×ϕ

∗ ◦

ϕ

That is,
ϕ(a ∗ b) = ϕ(a) ◦ ϕ(b).

Corollary 1.2.

(i) Compositions of group homomorphisms are group homomorphisms.

(ii) Restriction of a group homomorphism to subgroups of domain and codomain is
a group homomorphism.

(iii) The identity map on a group is a group homomorphism.

Proposition 1.3. Let ϕ : G → H be a group homomorphism. Let a ∈ G. Then the
following hold:

(i) ϕ(e) = e.

(ii) ϕ(a−1) = ϕ(a)−1.

(iii) ϕ(an) = ϕ(a)n for n ∈ Z.

16



CHAPTER II. GROUP HOMOMORPHISMS 17

Theorem 1.4 (Preservations under homomorphisms). Under a group homomor-
phism,

(i) subgroups are preserved both ways,

(ii) normal subgroups are preserved in the backward direction,

(iii) cyclicity and abelian-ness are preserved in forward direction, and

(iv) order of the image of, say g, divides the order of g.

Remark. The inverse image of normal subgroups needn’t be normal: Otherwise
each subgroup of any group would be normal.

Similarly for abelian, cyclic.

Proposition 1.5. Under a surjective group homomorphism, the indices of subgroups
are preserved.

Definition 1.6. For a group homomorphism ϕ : G→ H, we define

kerϕ := ϕ−1({e}).

Corollary 1.7. Let ϕ : G→ H be a group homomorphism. Then

imϕ ≤ H, and

kerϕ ⊴ G.

Proposition 1.8. A group homomorphism is injective ⇐⇒ its kernel is {e}.

Definition 1.9 (Group isomorphisms). A group isomorphism is a bijective group
homomorphism.

An isomorphism from a group to itself is called an automorphism.
A group G is said to be isomorphic to a group G iff there exists a group isomor-

phism G→ H.

Example 1.10. Conjugation is a group automorphism.

Proposition 1.11. The inverse of a group isomorphism is a homomorphism.

Proposition 1.12. “Being isomorphic” is an equivalence relation for groups.

Notation. We’ll denote this equivalence by “∼=”.
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Proposition 1.13 (Preservations under isomorphisms). All the preservations in
Theorem 1.4 hold in both directions.

Result 1.14. Let G be a group and H be the unique subgroup of G having a given
cardinality. Then H ⊴ G.

Result 1.15. Any infinite cyclic group is isomorphic to Z.

Result 1.16. Any group of order 4 is isomorphic to either Z4 or K4.

Result 1.17. Any group of order 6 is isomorphic to either Z6 or to S3.

Theorem 1.18 (Cayley). Any group G is isomorphic to some subgroup of SG, a
possible isomorphism being

a 7→ ϕa defined by ϕa(g) := ag.

2 Isomorphisms theorems

September 9, 2022

Lemma 2.1 (“Quotienting” a domain with a function). Let f : X → Y be surjective,
and define ∼ on X as

x1 ∼ x2 ⇐⇒ f(x1) = f(x2).

Then ∼ is an equivalence relation and there exists a unique function g : X/ ∼→ Y
such that

X

X/ ∼ Y

f
x←

[x

g

commutes. This g is a bijection and

x
g7−→ f(x).

Lemma 2.2. Let ϕ : G→ H be a surjective group homomorphism. Then

G/ kerϕ = G/ ∼ , with

g(kerϕ) = [g]∼

where ∼ is as in Lemma 2.1.
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Theorem 2.3 (First isomorphism theorem). Let ϕ : G → H be a surjective group
homomorphism. Then we have the following commutative diagram:

G

G/ kerϕ H

g←
[g ϕ

∼
g 7→ϕ(g)

Result 2.4.

(i) For n ≥ 1,
Z/nZ ∼= Zn.

(ii) Any finite cyclic group G is isomorphic to Z|G|.

Remark. In writing conclusions of implication-based theorems, we’ll omit explicitly
mentioning “H ⊴ G”, and directly write statements about G/H.

Theorem 2.5 (Second isomorphism theorem). Let G be a group, H ≤ G and K ⊴ G.
Then

HK

K
∼=

H

H ∩K
.

Theorem 2.6 (Third isomorphism theorem). Let H,K ⊴ G for a group G with
H ⊆ K. Then

G/H

K/H
∼=
G

K
.

3 Direct products

3.1 External direct products

September 17, 2022

Proposition 3.1 (External direct product). Let G, H be groups. Then G×H forms
a group under the operation(

(g1, h1), (g2, h2)
)
7→ (g1g2, h1h2).
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Proposition 3.2. For groups G, H, K, we have

G×H ∼= H ×G, and

(G×H)×K ∼= G× (H ×K).

Further, G and H sit as normal subgroups inside G×H.

Proposition 3.3. For groups, G1
∼= G2 and H1

∼= H2 =⇒ G1 ×H1
∼= G2 ×H2.

Theorem 3.4 (Order of elements in G×H). Let G, H be groups and (g, h) ∈ G×H.
Then in the group G×H,

|(g, h)| = lcm(|g|, |h|).

Theorem 3.5. Let m,n ∈ Z. Then Zm × Zn is cyclic ⇐⇒ gcd(m,n) = 1.

3.2 Internal direct products

Proposition 3.6 (Internal direct product). Let G be a group and H,K ≤ G such
that G = HK and H ∩K = {e}. Then the following are equivalent:

(i) H,K ⊴ G.

(ii) hk = kh for all h ∈ H, k ∈ K.

Lemma 3.7. Let ϕ : G→ G′ be an injective homomorphism, and H ⊴ G. Then

G/H ∼= ϕ(G)/ϕ(H).

Theorem 3.8. Let G be an internal direct product of the subgroups H, K. Then the
following hold:

HK = G ∼= H ×K

HK

K
∼= H ∼=

H ×K

{e} ×K

HK

H
∼= K ∼=

H ×K

H × {e}

Proposition 3.9. Any abelian group of order 8 is isomorphic to Z8, or to Z2 × Z4,
or to Z2 × (Z2 × Z2).



Chapter III

Group actions

1 Basics

October 4, 2022

Definition 1.1 (Group actions, orbits, stabilizers). Let G be a group and X a set.
Then a function G×X → X

(g, x) 7→ gx

is called a (left) action of G on X iff

(i) ex = x, and

(ii) g(hx) = (gh)x.

Similarly, there are right actions.
For an x ∈ X, we define

orb(x) := {gx : g ∈ G}, and
stab(x) := {g ∈ G : gx = x}.

We call the action transitive, iff some orbit covers then entire G. We call the
action free iff each stabilizer is trivial, i.e., {e}.

Corollary 1.2. For a group action, orb(x) = x ⇐⇒ stab(x) = G.

Proposition 1.3 (Restricting actions). Let G be a group acting on a set X. Let
H ≤ G and x ∈ X. Then we can restrict the action in two ways: H ×X → X, and
G× orb(x) → orb(x).

Theorem 1.4 (Facts about actions). Let G be a group acting on a set X. Then the
following hold:

21
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(i) Orbits are precisely the equivalence classes of the following equivalence relation
on X:

x ∼ y iff x = gy for some g ∈ G.

(ii) Stabilizers are subgroups of G.

(iii) [G : stab(x)] = |orb(x)| for each x ∈ X.

Example 1.5 (Translations and conjugations). Consider a group G. Then the following
are actions by G on X:

(g, h) 7→ gh X = G

(g, hK) 7→ ghK X = {hK : h ∈ G,K ≤ G}
(g, h) 7→ ghg−1 X = G

(g,H) 7→ gHg−1 X = {H : H ≤ G}

Example 1.6 (Double cosets). Let G be a group and H,K ≤ G. Then H ×K acts on
G via

((h, k), x) 7→ hxk−1

and the orbits here are the double cosets HxK’s.

Result 1.7. Let G be a finite group and H < G. Then⋃
x∈G

xHx−1 ⊊ G.

2 The class equation

October 5, 2022

Definition 2.1 (Conjugacy classes). Let G be a group and x ∈ G. Then we define

cl(x) := {gxg−1 : g ∈ G}.

Corollary 2.2. Conjugacy classes are precisely the orbits under conjugation.

Theorem 2.3 (Class equation). Let G be a group. Then

{Z} ∪ {cl(x) : x ∈ G \ Z}

forms a partition of G.
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Result 2.4 (Centers of p-groups are non-trivial). Let G be a finite group with |G| being
some honest p-power where p is a prime. Then p

∣∣ |Z|.
Result 2.5 (Classifying groups with p2 elements). Let G be a finite group with |G| = p2

where p is a prime. Then G ∼= Zp or G ∼= Zp × Zp.

Result 2.6. Let G be a finite group having 3 conjugacy classes. Then |G| ≤ 6.

3 Partial converses to Lagrange’s theorem

October 5, 2022

Theorem 3.1 (Cauchy). Let G be a finite group and p be a positive prime dividing
|G|. Then there exists an x ∈ G such that |x| = p.

Result 3.2. Let G be a finite group with |G| = pn where p is a positive prime and
n < p. Then G has a unique (and hence normal) subgroup of order p.

Lemma 3.3 (How do subgroups of G/H look like?). Let G be a group and H ⊴ G.
Then any subgroup of G/H is of the form K/H for some K ≤ G such that K ⊇ H.

Theorem 3.4. For finite abelian groups, the converse of Lagrange’s theorem (The-
orem 1.4) holds.

3.1 Sylow theorems

October 5, 2022

Lemma 3.5. Let p be a prime and n ≥ 0. Let a, b ∈ Z such that pn | ab but pn ∤ a.
Then p | b.

Theorem 3.6 (Sylow’s first). Let G be a finite group. Let p be a positive prime and
n ≥ 0 such that pn

∣∣ |G|. Then there exists an H ≤ G such that |H| = pn.

Definition 3.7 (p-groups). For a positive prime p, a group is called a p-group iff
each of its elements has a p-power order.
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Definition 3.8 (Sylow p-subgroups). Let G be a group and p be a positive prime.
Then an H ≤ G is called a Sylow p-subgroup of G iff H is a maximal (with respect
to inclusion) p-subgroup of G.

The set of all p-subgroups of G will be denoted by Sylp(G).

Proposition 3.9. Let G be a finite group and p be a positive prime. Then G is a
p-group ⇐⇒ |G| is some p-power.

Proposition 3.10 (Normalizers and centralizers). Let G be a group. Let x ∈ G and
H ≤ G. Then

C(x) := {g ∈ G : gx = xg}, and
N(H) := {g ∈ G : gH = Hg}

are subgroups of G, being the stabilizers of G’s conjugation action.
Further, C(x) is the largest subgroup of G in which x is in the center, and N(H)

is the largest subgroup of G in which H is normal.

Proposition 3.11. Let P be a Sylow p-subgroup of a group G, for a positive prime
p, such that |N(P )| <∞. Then p ∤ |N(P )/P |.

Proposition 3.12. Isomorphisms preserve p-group-ness as well as Sylow p-subgroup-
ness.

Lemma 3.13. Let G be a finite group, and P , Q be Sylow p-subgroups of G for a
positive prime p. Then Q acts on P := {xPx−1 : x ∈ G} via conjugation, and for
any T ∈ P, we have that

orb(T ) = {T} ⇐⇒ Q = T .

Theorem 3.14 (Sylow’s second and third). Let G be a finite group and p be a
positive prime. Let P ∈ Sylp(G) and P be the set of conjugates of P . Then the
following hold:

(i) |P| ≡ 1 (mod p).

(ii) Sylp(G) = P.

Corollary 3.15. Let G be a finite group and p be a positive prime. Let pn be the
largest p-power that divides G. Then

Sylp(G) = {H ≤ G : |H| = pn}.
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Result 3.16 (Normalization is idempotent for Sylow subgroups). Let G be a group and
P ∈ Sylp(G) for a positive prime p. Then

N(N(P )) = N(P ).

Theorem 3.17 (Classifying groups with pq elements). Let G be a finite group with
|G| = pq where p < q are positive primes. Then there exist a, b ∈ G and 1 ≤ r < q
such that

(i) G = ⟨a, b⟩,
(ii) ap = e = bq,

(iii) a−1ba = br, and

(iv) rp ≡ 1 (mod q).

4 Simple groups

October 6, 2022

Definition 4.1 (Simple groups). A group is called simple iff it has no non-trivial
normal subgroups.

Proposition 4.2. Simple abelian groups are precisely Zp for prime p’s.

Lemma 4.3 (Self-inverse bijections partition the set). Let X be a set and f : X → X
such that f ◦ f = id. Then the following hold:

(i) C := {{x, f(x)} : x ∈ X} is a partition of X.

(ii) For each A ∈ C, define f |A to be the trivial extension of f |A. These f |A’s
commute with each other.

(iii) If C is finite, then

f =
∏
A∈C

f |A.

Theorem 4.4 (|G| = 2(odd) =⇒ not simple). Let G be a finite group of even order
with |G|/2 being odd. Then G has a normal subgroup of order n.

Theorem 4.5 (Cayley’s extended). Let G be a group and H ≤ G. Then there exists
a homomorphism τ : G→ S{gH:g∈G} with ker τ ⊆ H.
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Result 4.6. LetG be a finite group andH ≤ G such that [G : H] ̸= 1 and |G| ∤ [G : H]!.
Then G is not simple.

Result 4.7. Let G be a finite group and p be a positive prime dividing |G| such that
|G| ∤ |Sylp(G)|!. Then G is not simple.

Theorem 4.8 (Ernst Strauss). Let G be a finite group and H ≤ G such that [G : H]
is the smallest (positive) prime dividing |G|. Then H ⊴ G.

5 |G| = pnq violates simplicity

October 6, 2022

Theorem 5.1. Let G be a finite p-group for a positive prime p and H < G. Then

N(H) ⊋ H.

Theorem 5.2. Let G be a finite group and p be a positive prime. Then⋂
Sylp(G) ⊴ G.

Theorem 5.3 (Miller). Let G be a finite group with |G| = pnq for positive primes
p, q and n ≥ 1. Then G is not simple.



Chapter IV

Rings

1 Basics

October 12, 2022

Definition 1.1 (Rings). Let R be a set along with binary operations of addition
and multiplication. Then R is called a ring iff the following hold:

(i) (R,+) is an abelian group.

(ii) (R, ·) is a semi-group.

(iii) a · (b+ c) = (a · b) + (a · c) and (a+ b) · c = (a · c) + (b · c).
R is called commutative iff · is commutative.
R is said to have an identity iff · has an identity.
We call the additive (respectively multiplicative) identity as zero (respectively

one).

Notation. We’ll denote often zero by 0 and one by 1. We’ll denote additive inverse
of a by −a, and multiplicative inverse (if existent), by a−1, and call them respectively
negation and inverse of a.

We’ll also omit parentheses in (a · b) + (c · d), etc. assuming the usual convention
that multiplication precedes over addition.

We’ll also drop the · as usual and just denote that by juxtaposition.

Remark. It’s unfortunate that the same juxtaposition is used for both na, and ab.
To alleviate some of the confusion, we’ll sometimes use 0R and 1R, and nZ while
(left) multiplying ring elements by these.

27
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Example 1.2 (One-sided inverses1). Consider the vector space RN over R. Then the
linear operators f , g in the ring2 L(RN,RN) defined by

f : (x0, x1, x2 . . .) 7→ (x1, x2, x3, . . .), and

g : (x0, x1, x2 . . .) 7→ (0, x0, x1, . . .)

are only invertible from one side.

Proposition 1.3. Let R be a ring. Then

(i) 0Rx = 0R = x0R.

(ii) (−1R)x = −x = x(−1R) (if R has identity 1R).

(iii) (−a)b = −(ab) = a(−b).
(iv) (−a)(−b) = ab.

Remark. Note that the ring multiplication by 0R and ±1R yield exactly the same
result that we get by integer multiplication by 0 and ±1.

Proposition 1.4 (Generalized distributivity). Let R be a ring and a1, . . . , am, b1, . . . , bn ∈
R for m,n ≥ 0. Then we have( m∑

i=1

ai

)( n∑
j=1

bj

)
=

m∑
i=1

n∑
j=1

aibj.

Proposition 1.5 (Rings form associative Z-algebras). Let R be a ring and a, b ∈ R.
Then for any m,n ∈ Z, we have

(ma)(nb) = (mn)(ab).

Remark. Note that na is defined for each n ∈ Z. However, an may only be defined
for n ≥ 1.

1Also see Example 3.2
2This is in fact an R-algebra!
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Result 1.6 (Binomial theorem for commutative rings). Let R be a commutative ring
and a, b ∈ R. Then for any n ≥ 1, we have

(a+ b)n = an +
n−1∑
i=1

(
n

i

)
aibn−i + bn.

If R further has identity, then for any n ≥ 0, we have

(a+ b) =
n∑

i=0

(
n

i

)
aibn−i.

Proposition 1.7 (Characterizing the zero ring). Let R be a ring. Then

R = {0R} ⇐⇒ R has identity and 1R = 0R.

Definition 1.8 (Ring characteristic). Let R be a ring. Let S := {n ≥ 1 : na =
0R for all a ∈ R}. Then we define

charR :=

{
0, S = ∅
minS, S ̸= ∅

.

Proposition 1.9. Let R be a ring. Then the following hold:

(i) charR = 0 =⇒ |R| = ∞.

(ii) charR ̸= 0 and R has identity 1R =⇒ charR is precisely the order of 1R in
the additive group (R,+).

Result 1.10. Let R be a commutative ring with prime characteristic p. Then we have

(a+ b)p = ap + bp.

Example 1.11 (The rings Zn). Let n ∈ Z. Then Zn forms a ring under the n-modulo
addition and multiplication. Here, the additive identity is 0 and for |n| ̸= 1, the multi-
plicative identity is 1.

Example 1.12 (Ring of endomorphisms). Let G be an additive abelian group and set

End(G) := {homomorphisms G→ G}.

Then the following hold:
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(i) We can define the operations on End(G) as

(ϕ+ ψ)(x) := ϕ(x) + ψ(x), and

(ϕψ)(x) := ϕ(ψ(x)).

(ii) These make End(G) a ring with identity wherein 0, 1 and negations are given by

0(x) = 0,

1(x) = x, and

(−ϕ(x)) = −(ϕ(x)).

(iii) End(G) is commutative ⇐⇒ |G| ≤ 2.

Example 1.13 (Ring of matrices). Let R be a ring and n ≥ 1. Then the set Mn×n(R),
of n× n matrices over R, forms a ring under the usual matrix operations.

In this ring, 0 is the null matrix and additive inverses of matrices are given by entry-
wise negation.

Also, the following hold:

(i) R has identity =⇒ Rn×n has identity too, which is given by the usual identity
matrix.

(ii) Rn×n has an identity =⇒ R has an identity.

(iii) Mn×n(R) is commutative ⇐⇒ either R is the zero ring, or n = 1 with R
commutative.

Example 1.14 (Alternate ring structure on Z). Z forms a commutative ring with identity
under the following operations:

m⊕ n := m+ n− 1

m⊙ n := m+ n−mn

The additive and multiplicative identities here are 1 and 0 respectively.

2 Rings of polynomials

October 12, 2022

Remark. In this section, fix R to be a ring and n ≥ 0.
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Definition 2.1 (The set R[x1, . . . , xn]). We define R[x1, . . . , xn] to be the set of all
functions p : Nn → R such that pα ̸= 0R for only finitely many α’s in Nn.

We’ll call such functions as polynomials.

Proposition 2.2 ((R[x1, . . . , xn],+) forms a group). We can define a binary opera-
tion on R[x1, . . . , xn] by component-wise addition. This makes R[x1, . . . , xn] into an
abelian group with identity and inverses given by

0α = 0R, and

(−p)α = −(pα).

Definition 2.3 (Degrees and sums of indices). For α, β ∈ Nn, we define |α| ∈ N and
α + β ∈ Nn as

|α| :=
n∑

i=1

αi, and

(α + β)i := αi + βi.

Proposition 2.4 (Properties of indices and degrees).

(i) Let α, β ∈ Nn. Then
|α + β| = |α|+ |β|.

(ii) Let N ∈ N. Then there are only finitely many α’s in Nn such that

|α| < N .

Definition 2.5 (Degree of nonzero polynomials). Let p ∈ R[x1, . . . , xn] be nonzero.
Then we define

deg p := max
α∈Nn:
pα ̸=0R

|α|.

Remark. Thus degree of the zero polynomial is left undefined.

Proposition 2.6 (Multiplication of polynomials). Let p, q ∈ R[x1, . . . , xn]. Then for
each α ∈ Nn, there are only finitely many pairs (β, γ) ∈ Nn×Nn such that β+γ = α.

Thus we can define p : Nn → R as

(pq)α :=
∑

β,γ∈Nn:
β+γ=α

pβqγ.

Then pα = 0 whenever |α| > deg p+ deg q for p, q ̸= 0, and hence p ∈ R[x1, . . . , xn].
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Definition 2.7 (Monomials in multi-index notation). Let a ∈ R and α ∈ Nn. Then
we define the polynomial axα ∈ R[x1, . . . , xn] as

(axα)β := aδαβ.

We call polynomials of such forms as monomials, and if we further have a = 1R,
then we call this a monic monomial.

Proposition 2.8 (Polynomials as sums of monomials). Let p ∈ R[x1, . . . , xn]. Then

p =
∑
α∈Nn:
pα ̸=0R

pαx
α.

Theorem 2.9. R[x1, . . . , xn] forms a ring under the above operations.

Proposition 2.10.

(i) R is commutative ⇐⇒ R[x1, . . . , xn] is commutative.

(ii) 1R is the identity in R =⇒ 1Rx
(0,...,0) is the identity in R[x1, . . . , xn].

(iii) R[x1, . . . , xn] has an identity =⇒ R has an identity.

3 Idempotents, nilpotents, zero divisors. . .

October 13, 2022

Definition 3.1 (Idempotents, nilpotents, zero divisors). Let R be a ring. Then an
x ∈ R is called

(i) idempotent iff x2 = x;

(ii) nilpotent iff xn = 0R for some n ≥ 1; and

(iii) a zero divisor iff xy = 0R or yx = 0R for some y ∈ R \ {0R}.

Example 3.2 (One-sided zero divisor). Let G be an abelian group. Then in the ring
End(GN), the “left-shift” function

(x1, x2, . . .) 7→ (x2, x3, . . .)

is a left-sided zero divisor.

Definition 3.3 (Boolean rings). A ring in which each element is idempotent is called
a Boolean ring.
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Proposition 3.4. Let R be a Boolean ring. Then

(i) −x = x, and

(ii) xy = yx.

Example 3.5. Let X be a set. Then (2X ,∆,∩) forms a Boolean ring with 1 = X.

Definition 3.6 (Cancellation property). A ring R is said to obey left-cancellation
property iff

ab = ac and a ̸= 0R =⇒ b = c.

Similarly, there is right-cancellation property.

Proposition 3.7 (Characterizing “no nonzero divisors”). Let R be a ring. Then the
following are equivalent:

(i) R has no nonzero zero divisors.

(ii) R obeys left-cancellation.

(iii) R obeys right-cancellation.

(iv) ab = 0R =⇒ a = 0R or b = 0R.

Corollary 3.8 (Further characterization of the zero ring). Let R be a ring. Then
0R is a zero divisor ⇐⇒ R ̸= {0R}.

Theorem 3.9. Let R be a nonzero ring with identity such that it has no nonzero
zero divisor. Then the following hold:

(i) charR = 0 or charR is prime.

(ii) R is finite =⇒ |R| is some power of charR.

Result 3.10 (On idempotents).

(i) A ring with identity having no nonzero zero divisors has 0 and 1 as its only idem-
potents.

(ii) In a commutative ring, sum of nilpotents is a nilpotent.

(iii) In a ring with identity, if a is nilpotent, then 1± a are invertible.
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4 Subrings

October 22, 2022

Definition 4.1 (Subrings). Let R be a ring. The a subset S ⊆ R is called a subring
of R iff the operations of R can be inherited to S and S forms a ring under those
inherited operations.

Proposition 4.2 (Characterizing subrings). Let R be a ring and S ⊆ R. Then the
following are equivalent:

(i) S is a subring of R.

(ii) S ̸= ∅, and S − S, SS ⊆ S.

Remark. We’ll define the addition and multiplication of subsets of a ring in the
obvious manner.

Result 4.3 (The identities of the ring and subring need not be same!). Let R be a ring
and e ∈ R be idempotent. Define

S := {a ∈ R : ea = a = ae}.

Then S is the largest subring of R that has identity e. Also,

S = eRe.

Example 4.4. {0, 3} and {0, 2, 4} are subrings of Z6 with identities respectively 3 and
4.

Proposition 4.5.

(i) Subrings of subrings are subrings of the parent ring.

(ii) Nonempty intersections of subrings is a subring of the parent ring.

Proposition 4.6. Let S, T be subrings of a ring R such that T ⊆ S. Then T is a
subring of S.

Proposition 4.7. Let R be a ring and a ∈ R. Then aR and Ra are subrings of R.
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Example 4.8 (Sum of subrings needn’t be subrings!). Take R := Q[x]. Then

S := {a0 + a2x
2 + · · ·+ a2nx

2n : a2i ∈ Q}, and
T := {a0 + a3x

3 + · · ·+ a3nx
3n : a3i ∈ Q}

are subrings of R.
But S + T is not closed under multiplication: x2 x3 = x5 /∈ S + T .

Remark. See

Proposition 4.9 (Centers of rings). Let R be a ring. Then the set

C := {a ∈ R : ax = xa for all x ∈ R}

is a subring of R.

Notation. We call elements of C being “central” in R.

Result 4.10. Monic monomials are central in the rings of polynomials.

5 Integral domains, division rings, fields, . . .

October 21, 2022

Definition 5.1 (Integral domains). A ring R is called an integral domain iff the
following hold:

(i) R ̸= {0}.
(ii) R has an identity.

(iii) R is commutative.

(iv) R has no nonzero zero divisors.

Corollary 5.2. Characteristic of integral domains is either 0 or it is prime.

Theorem 5.3. Let n ∈ Z. Then Zn is an integral domain ⇐⇒ n = 0 or n is
prime.

Definition 5.4 (Division rings). A ring R is called a division ring iff the following
hold:
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(i) R ̸= {0}.
(ii) R has an identity.

(iii) Nonzero elements are invertible.

Example 5.5 (Quaternions in disguise). The set{[
x y

−y x

]
: x, y ∈ C

}

forms a non-commutative division ring under the usual matrix operations.

Proposition 5.6. Division rings have no nonzero zero divisors.

Proposition 5.7 (Multiplicative group of a division ring). Let R be a division ring.
The the multiplication can be inherited to R \ {0R} making it a group with identity
1R and inverses given by the multiplicative inverses in R.

Definition 5.8 (Fields). Commutative division rings are called fields.

Corollary 5.9. Fields are integral domains.

Theorem 5.10. Finite nontrivial rings with no nonzero zero divisors are division
rings.

Corollary 5.11. Finite integral domains are fields.

Corollary 5.12. Let p ∈ Z. Then Zp is a field ⇐⇒ p is prime.

Definition 5.13 (Subfields). Let F be a field. Then a subset K ⊆ F is called a
subfield of F iff the operations of F can be inherited to K and K forms a field under
these operations.

Proposition 5.14 (Characterizing subfields). Let F be a field and K ⊆ F . Then
the following are equivalent:

(i) K is a subfield of F .

(ii) |K| ≥ 2, and K −K ⊆ K and K(K \ {0F})−1 ⊆ K.
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6 Ideals

October 23, 2022

Definition 6.1 (Ideals). Let R be a ring. Then a subring I of R is called an ideal
iff

IR,RI ⊆ I.

Remark. If RI ⊆ I, then I is called the “left ideal”, and if IR ⊆ I, then I is called
the “right ideal”.

Example 6.2 (One-sided ideals). Let R be a ring. Then the set{[
x 0R
y 0R

]
: x, y ∈ R

}

is a left ideal.

Corollary 6.3 (Characterizing an ideal). Let R be a ring and I ⊆ R. Then the
following are equivalent:

(i) I is an ideal of R.

(ii) I ̸= ∅, and I − I, RI, IR ⊆ I.

Proposition 6.4. Nonempty intersections of ideals are ideals.

Proposition 6.5 (nR’s are ideals). Let R be a ring and n ∈ R. Then

nR := {nr : r ∈ R}

is an ideal of R.

Example 6.6 (Ideal of an ideal needn’t be an ideal). Consider Q[x]. Then xQ[x] is an
ideal of Q[x] (see Corollary 7.3). Now, {a1x + a2x

2 + · · · + anx
n : a1 ∈ Z} is an ideal

of xQ[x], but not of Q[x].

Proposition 6.7 (Subring + ideal = subring). Let S be a subring of a ring R and
I be an ideal. Then S + I is a subring of R.
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Example 6.8 (Subring + ideal ̸= ideal!). Let R := Q[x]. Then

S := {a0 + a2x
2 + · · ·+ a2nx

2n : a2i ∈ Q}, and
I := x2Q[x]

are respectively a subring and an ideal of R (see Corollary 7.3). But

S + I = {a0 + · · ·+ anx
n : a1 = 0}

is not an ideal since x ∈ R(S + I) but x /∈ S + I.

Definition 6.9 (“Ideal” product of subsets of rings). Let R be a ring and A,B ⊆ R.
Then we define

A ·B := {finite sums in AB}.

Remark. We could have alternatively viewed it as
∑∞

i=1AB. But let’s be lazy to
not formalize arbitrary sums or products of sets in a ring.

Definition 6.10 (Ideals generated by subsets). Let R be a ring and S ⊆ R. Then
we define

LSM := the smallest ideal in R that contains S.

Theorem 6.11 (Sums and products of ideals are ideals). Let I, J be ideals of a
ring. Then the following hold:

(i) I + J = LI ∪ JM.
(ii) I · J = LIJM ⊆ I ∩ J .

Proposition 6.12 (Principal ideals). Let R be a ring and a ∈ R. Then

LaM =
{
na+ ra+

m∑
i=1

riasi + as : m,n ∈ Z,m ≥ 0, r, r1, . . . , rm, s, s1, . . . , sm ∈ R

}
.

If R is commutative, then this simplifies to

LaM =
{
na+ ra : n ∈ Z, r ∈ R

}
.

If R has identity, then we have

LaM =
{ m∑

i=1

riasi : m ≥ 0, r1, . . . , rm, s1, . . . , sm ∈ R

}
.

If R is both commutative and has identity, then we simply have

Ra = LaM = aR.
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Definition 6.13 (Principal ideal rings and domains). Let R be a ring. Then ideals
of the form LaM are called principal.

If R’s ideals are all principal, then it’s called a principal ideal ring. If R is an
integral domain too, then we call it a principal ideal domain.

Example 6.14.

(i) 2Z is a principal ideal ring, but not an integral domain.

(ii) Z[x] has non-principal ideals like L2, x2M.

Definition 6.15 (Simple rings). Nontrivial rings with no nontrivial ideals are called
simple.

Proposition 6.16. Division rings are simple.

Proposition 6.17. Simple commutative rings with identity are fields.

7 Studying aR and Ra’s

October 24, 2022

Proposition 7.1 (Ideals via central elements). Let R be a ring and a ∈ R. Then
we have the following implications:

a is central =⇒ aR = Ra =⇒ aR,Ra are ideals

If R has an identity, the the converse of the last implication is true.

Example 7.2 (The converses are false!).

(i) For the first implication: Take R := R2×2 and a to be any non-commutative
invertible matrix.

(ii) Take R :=
{[

x 0
y 0

]
: x, y ∈ R

}
(which is a left ideal of R2×2) and a := [ 1 0

0 0 ].

(iii) See this.

Corollary 7.3. Let R be a ring and n ≥ 0. Let m ∈ R[x1, . . . , xn] be a monic
monomial. Then mR = Rm is an ideal of R[x1, . . . , xn].

Definition 7.4 (Ideals generated by a set). Let R be a ring and S ⊆ R. Then we
define

LSM := smallest ideal of R containing S.

https://math.stackexchange.com/a/4559879/673223
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Proposition 7.5 (LaM and aR). Let R be a ring and a ∈ R. Then

LaM ⊇ aR +Ra ⊇ LaRM, LRaM.

If R has identity, then the above become equalities.

Example 7.6. For R := xQ[x] and a := x, we have LaM ⊋ Ra = aR.

8 Quotient rings

October 31, 2022

Proposition 8.1 (Quotient rings). Let R be a ring with an ideal I. Then the binary
operations on R/I

+: (a, b) 7→ a+ b, and

juxtapositive product : (a, b) 7→ ab

are well-defined and make R/I a ring with 0R/I = 0R.

9 Ring homomorphisms

November 23, 2022

Definition 9.1 (Ring homomorphism). Let R, S be rings. Then a function ϕ : R →
S is called a ring homomorphism iff

ϕ(a+ b) = ϕ(a) + ϕ(b), and

ϕ(ab) = ϕ(a)ϕ(b).

Corollary 9.2.

(i) For an ideal I of a ring R, the canonical function R → R/I is a ring homo-
morphism.

(ii) Compositions of ring homomorphisms are ring homomorphism.

(iii) Restrictions of ring homomorphisms to subrings of domain and codomain are
ring homomorphisms.

(iv) Identity map on a ring is a ring homomorphism.
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Remark. “ϕ : R → S is a ring homomorphism” will be taken to also imply that R,
S are rings.

Proposition 9.3 (Properties of ring homomorphisms). Let ϕ : R → S be a ring
homomorphism. Then the following hold:

(i) ϕ(0R) = 0S.

(ii) ϕ(−a) = −ϕ(a).
(iii) ϕ(na) = nϕ(a) for n ∈ Z.
(iv) ϕ(an) = ϕ(a)n for n ≥ 1.

(v) ϕ(R) is a subring of S.

(vi) Let R have identity. Then the following hold:

(a) ϕ(1R) is the identity of ϕ(R).
(b) ϕ(an) = ϕ(a)n for n ≥ 0.
(c) a ∈ R is invertible =⇒ ϕ(a) ∈ ϕ(R) is invertible in with ϕ(an) = ϕ(a)n

for each n ∈ Z.

Proposition 9.4 (Preservations under ring homomorphisms). Under a ring homo-
morphism,

(i) subrings are preserved both ways,

(ii) ideals are preserved in the backward direction, and

(iii) commutativity is preserved in the forward direction.

Definition 9.5 (Kernel). For a ring homomorphism ϕ : R → S, we define

kerϕ := ϕ−1({0S}).

Corollary 9.6.

(i) Kernel of a ring homomorphism is an ideal of the domain ring.

(ii) A ring homomorphism is injective ⇐⇒ its kernel is the zero ideal.

Definition 9.7 (Ring isomorphisms). A ring isomorphism is a bijective ring homo-
morphism.

A ring R is said to be isomorphic to S iff there exists a ring isomorphism R → S.

Proposition 9.8. The inverse of a ring isomorphism is a ring homomorphism.

Proposition 9.9. “Being isomorphic” is an equivalence relation for rings.
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Notation. As before, we’ll denote this congruence by “∼=”.

Theorem 9.10 (First isomorphism). Let ϕ : R → S be a surjective ring homomor-
phism. Then

R/ kerϕ ∼= S.

Theorem 9.11 (Second isomorphism). Let I be an ideal and S be a subring of a
ring R. Then3

S

I ∩ S
∼=
I + S

I
.

Theorem 9.12 (Third isomorphism). Let I, J be ideals of a ring R with I ⊆ J .
Then

R/I

J/I
=
R

J
.

Theorem 9.13 (Correspondence). Let ϕ : R → S be a surjective ring homomor-
phism. Then we have the following one-to-one correspondence:{

ideals of R containing kerϕ
} {

ideals of S
}

I ϕ(I)

ϕ−1(J) J

10 Maximal and prime ideals

November 23, 2022

Definition 10.1 (Maximal and prime ideals). A proper ideal I of a ring R is said
to be

(i) maximal iff the only ideal properly containing it is R itself; and,

(ii) prime iff the following holds: ab ∈ I =⇒ a ∈ I or b ∈ I.

Proposition 10.2.

(i) Maximal ideals of Z are precisely pZ for prime p’s.

(ii) Prime ideals of Z are precisely nZ where n = 0 or n is prime.

3As before, when we’ll quotient a ring with a subset, we’ll omit mentioning that the subset is
an ideal.
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Theorem 10.3 (Characterizing fields and integral domains). Let R be a commutative
ring with identity. Then the following hold:

(i) R is a field ⇐⇒ {0R} is a maximal ideal.

(ii) R is an integral domain ⇐⇒ {0R} is a prime ideal.

Further, if I is an ideal of R, then the following hold:

(i) R/I is a field ⇐⇒ I is maximal.

(ii) R/I is an integral domain ⇐⇒ I is prime.

Theorem 10.4. In a commutative ring with identity, maximal ideals are prime.

Example 10.5 (A non-maximal prime). Consider 0Z× 2Z in Z× Z.

Proposition 10.6 (When can primes be maximal?).

(i) In a principal ideal domain, nonzero prime ideals are maximal.

(ii) In a Boolean ring with identity, prime ideals are maximal.

11 Embedding rings in larger rings

November 23, 2022

Lemma 11.1. Let R be a ring and k := charR. Then the following hold:

(i) Z×R forms a ring under the following operations:

(m, a) + (n, b) := (m+ n, a+ b)

(m, a) (n, b) := (mn, mb+ na+ ab)

(ii) Zk ×R forms a ring with the following well-defined operations:

(m, a) + (n, b) :=
(
(m+ n)mod k, a+ b

)
(m, a) (n, b) :=

(
(mn)mod k, mb+ na+ ab

)
Theorem 11.2. Let R be a (commutative) ring. Then there exists a (commutative)
ring S with identity, having charS = 0,4 which contains a copy5 of R as an ideal.

4Instead, we can also have charS = charR.
5That is, an isomorphic image
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Theorem 11.3 (Field of fractions). Let R be an integral domain. Then the relation
on R×R \ {0R} defined by

(a, b) ∼ (c, d) iff ad = bc

is an equivalence relation, whose equivalence classes form a field under the following
well-defined operations:

[(a, b)] + [(c, d)] = [(ad+ bc), bd]

[(a, b)] [(c, d)] = [(ac, bd)]

Further, this field of fractions of R contains a copy of R via a 7→ [(a, 1R)].

Theorem 11.4. Let F be a field and R ⊆ F form an integral domain under the
inherited operations.6 Then

{ab−1 : a, b ∈ R, b ̸= 0F}

is the smallest subfield of F that contains R. It is further isomorphic to the field of
fractions of R.

Corollary 11.5. Any field containing a copy of an integral domain also contains a
copy of its field of fractions.

12 Factorizations

November 24, 2022

Definition 12.1 (Divisors and associates). Let R be a commutative ring and a, b ∈
R. Then we say

(i) that a divides b or a is a divisor of b, written a | b, iff b = ac for some c ∈ R;
and,

(ii) that a and b are associates, written a ∼ b, iff a | b and b | a.

Corollary 12.2. In commutative rings, being a divisor is a transitive relation, and
being associates is an equivalence relation.

Proposition 12.3 (Properties when we also have identity). Let R be a commutative
ring with identity and a, b, u ∈ R. Then the following hold:

6Implicit is the fact that the operations can in the first place be inherited.
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(i) a | b ⇐⇒ b ∈ LaM ⇐⇒ LbM ⊆ LaM.
(ii) a ∼ b ⇐⇒ LaM = LbM.
(iii) u is invertible ⇐⇒ u ∼ 1R ⇐⇒ LuM = R.

(iv) If R has no nonzero zero divisors, then a ∼ b ⇐⇒ b = av for some invertible
v ∈ R.

Definition 12.4 (Primes and irreducibles). Let R be a commutative ring. Then a
nonzero non-invertible a ∈ R is called

(i) prime iff a | bc =⇒ a | b or a | c.
(ii) irreducible iff a doesn’t factor into two non-invertibles.

Proposition 12.5 (Properties when we also have identity). Let R be a commutative
ring with identity and a ∈ R be nonzero and non-invertible. Then the following hold:

(i) a is prime ⇐⇒ LaM is a nonzero prime ideal.

(ii) a is irreducible =⇒ only divisors of a are invertibles and associates of a.

(iii) If R further has no nonzero zero divisors, then the following hold:

(a) Converse of (ii).
(b) a is prime or LaM is maximal =⇒ a is irreducible.

Theorem 12.6 (Primes and irreducibles coincide in PID’s). Let R be a principal
ideal domain and a ∈ R. Then the following are equivalent:

(i) a is prime.

(ii) LaM is nonzero prime.

(iii) LaM is maximal.

(iv) a is irreducible.
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