COMPLEX ANALYSIS Prof Bipul Saurabh¹

Organized Results complied by Sarthak²

April 2023

 $^{1} \texttt{bipul.saurabh@iitgn.ac.in} \\ ^{2} \texttt{vijaysarthak@iitgn.ac.in}$

Contents

Ι	Cor	structing \mathbb{C} 1
	1	For a general ordered field
	2	Specializing to \mathbb{C}
Π	Diff	Cerentiability 4
	1	Basic definitions
	2	Differentiating power series
	3	The exponential function
	4	The trigonometric functions
	5	Harmonic functions
III Line integrals 11		
	1	General things in normed linear spaces
		1.1 The derivative of a curve
		1.2 Operations on curves
		1.3 Integration of curves
		1.4 Reparametrizations of curves
		1.5 Nice paths for line integrals
	2	Line integrals in \mathbb{C}
	3	Rectangles, Morera, Cauchy
	4	Riemann, Liouville, uniqueness
	5	Max and min modulus, and open mapping
	6	Analytic branches of $\ln(z)$
IV Laurent series 24		
	1	Isolated singularities
	2	The Laurent expansion
	3	Residues

Chapter I

Constructing \mathbb{C}

1 For a general ordered field

February 10, 2023

Proposition 1.1 (Adjoining $\sqrt{-1}$ to ordered fields). Let F be an ordered field. Then the operations

$$(a_1, b_1) + (a_2, b_2) := (a_1 + a_2, b_1 + b_2), and$$

 $(a_1, b_1)(a_2, b_2) := (a_1a_2 - b_1b_2, a_1b_2 + b_1a_2)$

make $F \times F$ into a field with

$$zero = (0,0)
-(a,b) = (-a,-b)
one = (1,0)
(a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{b}{a^2 + b^2}\right)$$
for nonzero (a,b).

Further, the following hold:

(i) $F \times F$ can't be ordered compatibly.

(ii) $a \mapsto (a, 0)$ is an embedding of F into $F \times F$.¹

(iii) $F \times F$ forms a two-dimensional vector space over F with a basis $\{1, i\}$.²

¹This allows an abusive notational identification.

²We'll denote (1,0) by 1 (overloading notation) and (0,1) by *i*.

CHAPTER I. CONSTRUCTING \mathbb{C}

Notation. We'll abuse notation, letting a + ib stand for a1 + bi = (a, b) for $a, b \in F$. The functions \Re , \Im are just the projections onto the first and second coordinates. When $F = \mathbb{R}$, we denote $F \times F$ (or any isomorphic field) by \mathbb{C} .

$2 \quad \text{Specializing to } \mathbb{C}$

Convention. For the rest of the document, we will spacialize to \mathbb{C} .

Definition 2.1 (Conjugate, norm, argument, inner-product). For $a, b, \theta \in \mathbb{R}$, we define

$$\overline{a+ib} := a - ib$$
, and
 $|a+ib| := \sqrt{a^2 + b^2}.$

For $z, w \in \mathbb{C}$, we also define

$$\langle z, w \rangle := z \,\overline{w}.$$

Remark. Note that we will follow the usual convention, defining

$$0^{\alpha} := \begin{cases} 1, & \alpha = 0\\ 0, & \alpha > 0 \end{cases} \text{ for } \alpha \in \mathbb{R}.$$

Proposition 2.2 (Immediate properties).

(i) We can express $z \in \mathbb{C}$ as

$$z = \Re(z) + i\,\Im(z).$$

(ii) $\langle \cdot, \cdot \rangle$ makes \mathbb{C} into an inner-product space³ with $|\cdot|$ being the corresponding norm since

$$z\,\bar{z} = |z|^2.$$

 $(a,b) \mapsto a + ib \ defines \ a \ norm-preserving^4 \ \mathbb{R}$ -linear isomorphism (and hence also a homeomorphism) $\mathbb{R}^2 \to \mathbb{C}$.

(iii) $|\cdot|$ makes \mathbb{C} into a normed algebra with

|zw| = |z| |w|.

³This allows to define (the *standard*) topology on \mathbb{C} .

⁴Note that the inner-product is *not* preserved.

CHAPTER I. CONSTRUCTING $\mathbb C$

(iv) $z \mapsto \bar{z}$ defines a norm-preserving⁵ field automorphism on \mathbb{C} with its inverse being itself, since

$$\overline{z+w} = \overline{z} + \overline{w}$$
$$\overline{zw} = \overline{z} \,\overline{w}$$
$$|\overline{z}| = |z|, \text{ and }$$
$$\overline{\overline{z}} = z.$$

Further,

$$\bar{z} = z \iff z \text{ is real; and,}$$

 $\bar{z} = -z \iff z \text{ is imaginary.}$

 $^{^{5}}$ Again, inner-product is *not* preserved in general.

Chapter II

Differentiability

1 Basic definitions

February 10, 2023

Convention. We'll take Ω , Υ to be open subsets of \mathbb{C} .

Definition 1.1 (The derivative). Let $f: \Omega \to \mathbb{C}$ and $c \in \Omega$. Then if existent, we define

$$f'(c) := \lim_{z \to c} \frac{f(z) - f(c)}{z - c}.$$

Definition 1.2 (Entire functions). A function $f : \mathbb{C} \to \mathbb{C}$ is called entire iff it is differentiable throughout.

Corollary 1.3. Constant and identity functions are differentiable throughout with derivatives being 0 and 1 respectively.

Proposition 1.4. Differentiability \implies continuity.

Example 1.5. $z \mapsto \overline{z}$ is continuous everywhere but differentiable nowhere!

Proposition 1.6. Let $f, g: \Omega \to \mathbb{C}$ be differentiable at $c \in \Omega$. Then the following hold:

- (i) (f+g)'(c) = f'(c) + g'(c).
- (ii) $(\alpha f)'(c) = \alpha f'(c)$ for $\alpha \in \mathbb{C}$.
- (*iii*) (fg)'(c) = f'(c)g(c) + f(c)g'(c).

$$(iv) \ (f/g)'(c) = \left(f'(c) g(c) - f(c) g'(c)\right)/g(c)^2 \ if \ g(c) \neq 0.$$

Corollary 1.7 (Differentiating monomials). For $n \ge 1$, the function $z \mapsto z^n$ is differentiable throughout with derivative at $z \in \mathbb{C}$ given by nz^{n-1} .

Proposition 1.8 (Chain rule). Let $f: \Omega \to \Upsilon$ and $g: \Upsilon \to \mathbb{C}$ be differentiable at $c \in \Omega$ and $f(c) \in \Upsilon$ respectively. Then $g \circ f: \Omega \to \mathbb{C}$ is differentiable at c with

$$(g \circ f)'(c) = g'(f(c)) f'(c).$$

Convention. Any bijection $f: X \to X'$ induces a one-to-one correspondence between functions $X \to Y$ and $X' \to Y$, and between functions $Y \to X$ and $Y \to X'$ for a given set Y.

We'll take the bijection $(x, y) \leftrightarrow x + iy$ while considering \mathbb{R}^2 and \mathbb{C} .

Proposition 1.9 (Making \mathbb{R} -linear, \mathbb{C} -linear). The $\mathbb{C} \to \mathbb{C}$ map corresponding to the \mathbb{R} -linear map $\mathbb{R}^2 \to \mathbb{R}^2$, given by

$$x \mapsto Ax$$
, where $A \in \mathbb{R}^{2 \times 2}$,

is \mathbb{C} -linear \iff A is skew-symmetric.

Definition 1.10 (Cauchy-Riemann equations). A function $\tilde{f}: \tilde{\Omega} \to \mathbb{R}^2$ ($\tilde{\Omega}$ open in \mathbb{R}^2) is said to satisfy Cauchy-Riemann equations at $\tilde{c} \in \tilde{\Omega}$ iff in the standard basis, the Jacobian exists and is skew-symmetric, at c, i.e.,

$$\partial_x \tilde{f}_x(\tilde{c}) = -\partial_y \tilde{f}_y(\tilde{c}), \text{ and}$$

 $\partial_x \tilde{f}_y(\tilde{c}) = -\partial_y \tilde{f}_x(\tilde{c}).$

Theorem 1.11 (Characterizing differentiability). Let $f: \Omega \to \mathbb{C}$, and $\tilde{f}: \tilde{\Omega} \to \mathbb{R}^2$ be the corresponding function. Let $c := a + ib \in \Omega$ $(a, b \in \mathbb{R})$. Then the following are equivalent:

(i) f is \mathbb{C} -differentiable at c with

$$f'(c) = \alpha + i\beta, \quad where \ \alpha, \beta \in \mathbb{R}$$

(ii) \tilde{f} is Fréchet differentiable with

$$\left[D\tilde{f}(a,b)\right]_{std} = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}.$$

CHAPTER II. DIFFERENTIABILITY

Convention. We'll reserve \mathcal{D} to denote a domain in \mathbb{C} .

Example 1.12. A differentiable function $f: \mathcal{D} \to \mathbb{C}$ is constant throughout \mathcal{D} if one of the following holds:

- (i) $\Re(f(z))$ or $\Im(f(z))$ is constant.
- (ii) |f(z)| is constant.

Definition 1.13 (Higher derivatives). Let $f: \Omega \to \mathbb{C}$. Then we inductively define the functions $f^{(n)}$'s as:

- (i) $f^{(0)} := f$.
- (ii) Having defined $f^{(n)}$, define $f^{(n+1)}: \Upsilon \to \mathbb{C}$ where Υ is the interior of the set of all the points in the domain of $f^{(n)}$ where it is differentiable, and

$$f^{(n+1)}(z) := (f^{(n)})'(z).$$

We say that f is n times differentiable iff dom $f^{(n)} = \Omega$.

2 Differentiating power series

February 11, 2023

Remark. The results in this section hold for \mathbb{R} also.

Theorem 2.1 (Differentiating a power series). Let the complex power series $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ converge to $f: B_R(z_0) \to \mathbb{C}$ where $R \in (0, \infty) \cup \{\infty\}$ is the radius of convergence. Then f is differentiable with¹

$$f'(z) = \sum_{n=1}^{\infty} nc_n (z - z_0)^{n-1}.$$

Corollary 2.2 (Power series are infinitely differentiable). Let $R \in (0, \infty) \cup \{\infty\}$ be the radius of convergence of the complex power series $\sum_{n=0}^{\infty} c_n (z-z_0)^n$. Then the following hold:

(i) f is k times differentiable for each $k \ge 0$, with

$$f^{(k)}(z) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} c_n (z-z_0)^{n-k}.$$

¹It is implicitly implied that the radius of convergence of the right-hand-side is R as well.

(ii) c_n 's are given by

$$c_n = \frac{f^{(n)}(z_0)}{n!}$$

Proposition 2.3 (Power series determined by its values on a sequence). Let $R \in (0, \infty) \cup \{\infty\}$ be the radius of convergence of a complex power series $\sum_{n=0}^{\infty} c_n (z-z_0)^n$, and let the series vanish² on a sequence $(w_n) \in B_R(z_0)$ one of whose limit points is z_0 . Then each $c_n = 0$.

3 The exponential function

February 26, 2023

Definition 3.1 (The exponential function). We define $E: \mathbb{C} \to \mathbb{C}$ via³

$$z \mapsto \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

Proposition 3.2 (Properties of E).

- (*i*) E(1) = 1.
- (ii) E is a group homomorphism on $\mathbb{C} \to \mathbb{C} \setminus \{0\}$ as well as on $\mathbb{R} \to (0, \infty)$.
- (iii) On \mathbb{R} , we have $\mathbb{E}(x) \to \infty$ as as $x \to \infty$ and $\mathbb{E}(x) \to 0$ as $x \to -\infty$.
- (iv) E is differentiable with E' = E.

$$(v) \ \mathcal{E}(\overline{z}) = E(z).$$

Proposition 3.3. For $x \in \mathbb{R}$, we have

$$\mathbf{E}(x) = e^x.$$

4 The trigonometric functions

February 26, 2023

Definition 4.1 (Cosine and sine). We define $\cos, \sin: \mathbb{C} \to \mathbb{C}$ as

$$\cos(z) := \frac{\mathrm{E}(iz) + \mathrm{E}(-iz)}{2}, \text{ and}$$
$$\sin(z) := \frac{\mathrm{E}(iz) - \mathrm{E}(-iz)}{2}.$$

²That is, it's zero.

³Well-defined since the radius of convergence is ∞ .

Proposition 4.2 (Properties of the trigonometric functions).

- (i) $\cos 0 = 1$ and $\sin 0 = 0$.
- (*ii*) $\cos^2 z + \sin^2 z = 1$.
- (*iii*) $E(iz) = \cos z + i \sin z$.
- (iv) \cos and \sin map \mathbb{R} in [-1, 1].
- (v) \cos and \sin are differentiable with $\cos' = -\sin$ and $\sin' = \cos$.

Theorem 4.3. There exists a smallest positive real zero of cos.

Definition 4.4 (π). We define π to be the real number so that $\pi/2$ is the smallest positive zero of cos.

Proposition 4.5. $\cos(\pi/2) = 0$ and $\sin(\pi/2) = 1$.

Proposition 4.6. On $[0, \pi/2]$, we have that \cos is strictly decreasing and that \sin is strictly increasing.

Definition 4.7 (Periods of functions). Let G be an additive abelian group and $f: G \to G$. Then a $p \in \mathbb{G}$ is called a period of a function $f: G \to G$ iff for each $x \in G$, we have

$$f(x+p) = f(x).$$

Lemma 4.8. For each $t \in (0, 2\pi)$, we have that $E(it) \neq 0$.

Corollary 4.9. For $t \in \mathbb{R}$, we have that $E(it) = 1 \iff t \in 2\pi\mathbb{Z}$.

Proposition 4.10. For $z \in \mathbb{Z}$, we have that⁴

$$\mathbf{E}(z) = 1 \iff z \in 2\pi i \mathbb{Z}$$

Corollary 4.11 (2π is the smallest possible period of E, cos, sin). For $p \in \mathbb{Z}$, the following are equivalent:

- (i) ip is a period of E.
- (ii) p is a period of sin.
- (iii) p is a period of cos.
- (iv) $p \in 2\pi\mathbb{Z}$.

⁴Use the unboundedness of E on \mathbb{R} .

Theorem 4.12 $(S^1 \leftrightarrow [0, 2\pi))$. There exists a one-to-one correspondence:

$$\begin{array}{ccc} [0,2\pi) & \longleftrightarrow & \{z \in \mathbb{C} : |z| = 1\} \\ \theta & & \mathbf{E}(i\theta) \end{array}$$

Notation. We use $S^1 := \{z \in \mathbb{C} : |z| = 1\}.$

Corollary 4.13. Let $x, y \in \mathbb{R}$ not both be zero. Then there exists a unique $\theta \in [0, 2\pi)$ such that

$$\cos \theta = \frac{x}{\sqrt{x^2 + y^2}}$$
 and $\sin \theta = \frac{y}{x^2 + y^2}$.

Corollary 4.14 (Polar form). Let $z \in \mathbb{C} \setminus \{0\}$. Then there exists a unique $\theta \in (-\pi, \pi]$ such that

$$z = |z| \operatorname{E}(i\theta).$$

Notation. We denote the above θ by Arg z.

Corollary 4.15. $\theta \mapsto E(i\theta)$ is a continuous surjective group homomorphism on $\mathbb{R} \to S^1$.

Corollary 4.16 (*n*-th roots of unity). Let $n \ge 1$. Then $E(i(2\pi k/n))$, for $0 \le k < n$ are *n* distinct (and hence all the) *n*-th roots of unity.

Proposition 4.17 (Subgroups formed by *n*-th roots of unity). Define

$$\Lambda := \bigcup_{n \ge 1} \{ n \text{-th roots of unity} \}.$$

Then the following hold:

- (i) $\Lambda \leq S^1 \leq \mathbb{C} \setminus \{0\}.$
- (ii) Λ is dense in S^1 .
- (iii) Let G be a compact multiplicative subgroup of \mathbb{C} and $f: G \to \mathbb{C} \setminus \{0\}$ be a continuous group homomorphism. Then $f(G) \subseteq S^1$.

5 Harmonic functions

February 11, 2023 DO THIS AFTER DOING CLAIRAIUT!

Definition 5.1 (Harmonic functions). A function $u: \tilde{\Omega} \to \mathbb{R}$ ($\tilde{\Omega}$ open in \mathbb{R}^2) is called harmonic iff it is C^2 (with respect to standard bases) and⁵

$$\partial_{x,x}u + \partial_{y,y}u = 0.$$

Corollary 5.2. First prove that differentiability implies analyticity!

The real and imaginary parts of a differentiable function on an open set are harmonic.

Definition 5.3 (Harmonic conjugate). Let $u: \tilde{\Omega} \to \mathbb{R}$ (Ω open in \mathbb{R}^2) be harmonic. Then a harmonic conjugate of u is a harmonic function $v: \tilde{\Omega} \to \mathbb{R}$ such that the

⁵We're using a looser notation, not using $\partial_{x,x}u_{(1)}$, etc.

Chapter III

Line integrals

1 General things in normed linear spaces

February 27, 2023

Convention. V will stand for a generic normed linear space over $\mathbb{R}^1 \mathcal{B}$ will stand for a generic basis for V.

Convention. Whenever we'll write [a, b], it will be understood that a < b.

1.1 The derivative of a curve

February 27, 2023

Definition 1.1 (The derivative of a curve). Let $\gamma: [a, b] \to V$ be differentiable at $c \in (a, b)$.² Then we define³

$$\gamma'(c) := D\gamma(c)(1)$$
$$= D_1\gamma(c).$$

Remark. This extends the notation for the case when $V = \mathbb{R}$.

¹Since a curve is a function $[a, b] \to V$, we better have V over \mathbb{R} in order to take Fréchet (or directional) derivatives.

²Since Fréchet differentiability is defined only for open domains.

³Since the domain is a subset of \mathbb{R} , the directional differentiability is equivalent to Fréchet differentiability.

Corollary 1.2 (Chain rule for curves). Let $\phi: [a, b] \to [c, d]$ be (continuously) differentiable at $x_0 \in (a, b)$ and $\gamma: [c, d] \to V$ be (continuously) differentiable at $\phi(x_0) \in (c, d)$. Then $\gamma \circ \phi: [a, b] \to V$ is (continuously) differentiable at x_0 with⁴

$$(\gamma \circ \phi)'(x_0) = \phi'(x_0) \,\gamma'(\phi(x_0))$$

Corollary 1.3. Let V be finite-dimensional. Then $\gamma: [a, b] \to V$ is differentiable at $c \in (a, b) \iff each \ \gamma_i: [a, b] \to \mathbb{R}$ is differentiable at c, in which case,

$$\left[\gamma'(c)\right]_{\mathcal{B}} = \begin{bmatrix} \gamma_1'(c) \\ \vdots \\ \gamma_n'(c) \end{bmatrix}.$$

Corollary 1.4 (C¹-ness for curves). Let V be finite-dimensional. Then for $\gamma : [a, b] \rightarrow V$, the following are equivalent:⁵

- (i) $\gamma': (a, b) \to V$ is continuous.
- (ii) γ is continuously differentiable on (a, b).
- (iii) Each γ'_i : $(a, b) \to \mathbb{R}$ is continuous.

1.2 Operations on curves

February 27, 2023

Definition 1.5 (Negation and join of curves). Let $\gamma : [a, b] \to X$ and $\delta : [c, d] \to X$ for a set X. Then we define the following:

(i) $-\gamma \colon [a, b] \to X$ given by

$$t \mapsto a + b - t$$
.

(ii) $\gamma * \delta \colon [a, b + d - c] \to X$ given by

$$t \mapsto \begin{cases} \gamma(t), & t \in [a, b] \\ \delta(t - b + c), & t \in (b, b + d - c] \end{cases}.$$

Corollary 1.6.

- (i) Double negation gives back the original curve.
- (ii) Join is associative.

⁴Note that ϕ' is a scalar and $\gamma' \circ \phi$ a vector.

⁵Implicitly is being said in (i) and (iii), that γ and γ'_i 's are differentiable in (a, b).

Corollary 1.7. Continuing Definition 1.5, the following hold:

- (i) If X is a topological space, then the following hold:⁶
 - (a) $-\gamma$ preserves the continuity of γ .
 - (b) $\gamma * \delta$ preserves the continuity of γ and δ on [a, b) and (c, d] respectively. It is continuous at $b \iff \gamma(b) = \delta(c)$, and γ and δ are continuous at b and c respectively.
- (ii) If X = V, then we further have the following:
 - (a) $-\gamma$ preserves the (continuous) differentiability of γ .
 - (b) $\gamma * \delta$ preserves the (continuous) differentiability of γ and δ .⁷

1.3 Integration of curves

February 27, 2023

Proposition 1.8 (Integrating a curve). Let V be finite-dimensional and $\gamma: [a, b] \rightarrow V$ be such that each $\gamma_e: [a, b] \rightarrow \mathbb{R}$ is Riemann-integrable. Then for any other basis \mathcal{C} , we also have that each $\gamma_{\tilde{e}}$ is Riemann-integrable with

$$\sum_{e \in \mathcal{B}} \left(\int_a^b \gamma_e \right) e = \sum_{\tilde{e} \in \mathcal{C}} \left(\int_a^b \gamma_{\tilde{e}} \right) \tilde{e}.$$

Notation. This allows to denote the above integral by $\int_a^b \gamma$ and also define Riemann-integrability for curves as in Definition 1.9.

Definition 1.9 (Riemann-integrability for curves). Let $\gamma: [a, b] \to V$ with V being finite-dimensional. Then γ is called Riemann-integrable iff there exists a basis of V in which each induced component function $[a, b] \to \mathbb{R}$ is Riemann-integrable.

Remark. Note that we define $\int_a^b \gamma$ only for finite-dimensional V's.

Proposition 1.10 (Properties of integrating a curve). Let V be finite-dimensional and $\gamma, \gamma_1, \gamma_2: [a, b] \to V$, and $\delta: [c, d] \to V$ be Riemann-integrable. Then the following hold:⁸

$$\int_{a}^{b} (\gamma_1 + \gamma_2) = \int_{a}^{b} \gamma_1 + \int_{a}^{b} \gamma_2$$

⁷Cf. Corollary 1.2.

⁶In the following, the preservation is both ways.

⁸Implicitly is being said that the integrand curves on the left-hand-side are Riemann-integrable.

$$\int_{a}^{b} (\alpha \gamma) = \alpha \int_{a}^{b} \gamma \qquad for \ any \ \alpha \in \mathbb{R}$$
$$\int_{a}^{b} (-\gamma) = \int_{a}^{b} \gamma \qquad if \ \gamma \ is \ continuous$$
$$\int_{a}^{b+d-c} (\gamma * \delta) = \int_{a}^{b} \gamma + \int_{c}^{d} \delta \qquad if \ \gamma, \ \delta \ are \ continuous$$

Further, if $V = \mathbb{C}$, then we can also allow $\alpha \in \mathbb{C}$.

Proposition 1.11. Let V be a finite-dimensional inner-product space (over \mathbb{R}) and $\gamma: [a, b] \to V$ be Riemann-integrable. Then $\|\gamma\|$ is Riemann-integrable with

$$\left\|\int_{a}^{b}\gamma\right\| \leq \int_{a}^{b}\|\gamma\|.$$

Remark. Next thing would've been an *ML* formula for inner-product spaces. But we are not defining the line integrals for normed linear spaces...

Corollary 1.12. Let V be a finite-dimensional inner-product space (over \mathbb{R}). Let $\gamma, \gamma_n: [a, b] \to V$ be Riemann-integrable with $\gamma_n \to \gamma$ uniformly.⁹ Then we have¹⁰

$$\int_{a}^{b} \gamma_{n} \to \int_{a}^{b} \gamma_{\cdot}$$

Proposition 1.13. For dim $V < \infty$, a uniform limit of Riemann-integrable functions is Riemann-integrable.

Proposition 1.14 ("Integral of derivative"). Let dim $V < \infty$. Let $\Gamma: [a, b] \to V$ be continuous on [a, b] and (Fréchet) differentiable on (a, b). Let $\gamma: [a, b] \to V$ be Riemann-integrable with $\gamma = \Gamma'$ on (a, b). Then¹¹

$$\int_{\underline{a}}^{b} \gamma = \Gamma(b) - \Gamma(a).$$

⁹Due to Proposition 1.13, the Riemann-integrability of γ is implied by that of γ_n 's.

¹⁰Corollary 2.8 is the analogue of this result for the *line integrals* in \mathbb{C} .

¹¹Proposition 2.6 is the analogue of this result for the *line integrals* in \mathbb{C} .

1.4 Reparametrizations of curves

February 27, 2023

Definition 1.15 (C^1 parameter transformations). A bijection $\phi: [a, b] \to [c, d]$ is called a c.p.t. iff ϕ and ϕ^{-1} are C^1 .

Remark. Equivalently, we could have demanded that ϕ be C^1 with its derivative never vanishing.

Corollary 1.16. The derivative of a c.p.t. never vanishes.

Definition 1.17 (Orientation-preserving and -reversing C^1 parameter transformations). A c.p.t. $\phi: [a, b] \rightarrow [c, d]$ is called an o.p.c.p.t. iff $\phi' > 0$.¹² We similarly define o.r.c.p.t.'s.

Proposition 1.18. The compositions and inverses of c.p.t.'s (respectively o.p.c.p.t.'s) are c.p.t.'s (respectively o.p.c.p.t.'s).

Definition 1.19 (C^1 reparametrizations). We say that $\delta : [c,d] \to V$ is a c.r. of $\gamma : [a,b] \to V$ iff $\delta = \gamma \circ \phi$ for some c.r. $\phi : [c,d] \to [a,b]$.

Definition 1.20 (Orientation-preserving and -reversing C^1 reparametrizations). We say that $\delta : [c, d] \to V$ is an o.p.c.r of $\gamma : [a, b] \to V$ iff $\delta = \gamma \circ \phi$ for some o.p.c.p.t. $\phi : [c, d] \to [a, b]$.

We similarly define o.r.c.r.'s.

Corollary 1.21. "Being c.r." (respectively "being o.p.c.r") is an equivalence relation.

1.5 Nice paths for line integrals

February 28, 2023

Definition 1.22 (Nice paths and induced partitions). A continuous function $\gamma: [a, b] \rightarrow V$ will be called a *nice path* (or a *nice curve*) iff there are only finitely many points in (a, b) on which γ is not differentiable or is not continuously differentiable, and iff $\|\gamma'\|$ is bounded (wherever γ' exists on (a, b)).

This induces a unique smallest partition $a = x_0 < \cdots < x_n = b$ with $n \ge 1$ such that γ is continuously differentiable in each (x_i, x_{i+1}) .¹³ We will call this the partition of [a, b] induced by γ .

¹²The sign of ϕ' at one point determines its sign for the entire interval.

¹³The boundedness of γ' ensure the Riemann-integrability of $\|\gamma'\|(f \circ \gamma)$ in each of the $[x_i, x_{i+1}]$'s.

Remark. We won't develop the theory of line integrals in normed linear spaces here.

Proposition 1.23 (O.p.c.r.'s preserve nice-ness). Let $\gamma : [a, b] \to V$ be nice, inducing the partition $a = x_0 < \cdots < x_n = b$. Let $\phi : [c, d] \to [a, b]$ be a c.p.t.. Then $\gamma \circ \phi : [c, d] \to V$ is also nice, with the induced partition being

- (i) $c = \phi^{-1}(x_0) < \cdots < \phi^{-1}(x_n) = d$ if ϕ is orientation-preserving; and,
- (ii) $c = \phi^{-1}(x_n) < \cdots < \phi^{-1}(x_0) = d$ if ϕ is orientation-reversing.

Corollary 1.24 (Negation and joins preserve nice-ness).

- (i) Negation preserves the nice-ness of curves.
- (ii) Joining nice curves, that match at the joining point, yields a nice curve with the induced partition being "same" except possibly at the joining point.

2 Line integrals in \mathbb{C}

February 27, 2023

Remark. Note that \mathbb{C} is 2-dimensional over \mathbb{R} with $\|\cdot\| = |\cdot|$.

Definition 2.1 (Line integrals). Let $\gamma: [a, b] \to S$ with $S \subseteq \mathbb{C}$ be nice and let $a = x_0 < \cdots < x_n = b$ be the induced partition. Let $f: S \to \mathbb{C}$ be continuous on $\gamma([a, b]) \to \mathbb{C}$. Then¹⁴ $(f \circ \gamma)\gamma'$ is Riemann-integrable in each¹⁵ $[x_i, x_{i+1}]$ and we define

$$\int_{\gamma} f := \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} (f \circ \gamma) \gamma'.$$

Remark. Note that we are defining line integrals only for continuous f's and nice γ 's.

Remark. In the following, we'll write $\gamma \colon [a, b] \to \mathbb{C}$ and $f \colon \gamma([a, b]) \to \mathbb{C}$.

¹⁴Note that the multiplication of $f \circ \gamma$ and γ' is possible since \mathbb{C} is an algebra. For a general normed linear space, only $\|\gamma'\|(f \circ \gamma)$ would've made sense.

Also note that γ' is the Fréchet derivative and not the complex derivative (which doesn't even make sense here).

¹⁵Note that even though the integrand is not defined at x_i 's, we know that the (lower, upper, Riemann) integral are preserved if we change function values at finitely many points.

Example 2.2. Define $\gamma \colon [0, 2\pi] \to \mathbb{C}$ by $t \mapsto \mathrm{E}(it)$. Take $f \colon \mathbb{C} \setminus \{0\} \to \mathbb{C}$ given by $z \mapsto z^n$ for $n \in \mathbb{Z}$. Then we have

$$\int_{\gamma} f = \begin{cases} 0, & n \neq -1\\ 2\pi i, & n = -1 \end{cases}.$$

Proposition 2.3 (O.p.c.r.'s preserve line integrals). Let $\gamma: [a, b] \to \mathbb{C}$ be nice and $f: \gamma([a, b]) \to \mathbb{C}$ be continuous. Let $\phi: [c, d] \to [a, b]$ be an o.p.c.p.t.. Then we have

$$\int_{\gamma} f = \int_{\gamma \circ \phi} f.$$

Proposition 2.4 (Properties of line integrals). Let the curves $\gamma: [a, b] \to \mathbb{C}$ and $\delta: [c, d] \to \mathbb{C}$ be nice, and match at endpoints. Let $f, g: \gamma([a, b]) \to \mathbb{C}$ and $h: (\gamma * \delta)([a, b+d-c]) \to \mathbb{C}$ be continuous. Then the following hold:

$$\begin{split} \int_{\gamma} (f+g) &= \int_{\gamma} f + \int_{\gamma} g \\ \int_{\gamma} (\alpha f) &= \alpha \int_{\gamma} f \quad \text{for any } \alpha \in \mathbb{C} \\ \int_{-\gamma} f &= -\int_{\gamma} f \\ \int_{\gamma*\delta} h &= \int_{\gamma} h + \int_{\delta} h \end{split}$$

Proposition 2.5 (A version of "change of variables"). Let $\gamma : [a, b] \to \mathbb{C}$ be nice and $f : \gamma([a, b]) \to \mathbb{C}$ be continuous. Let $a, b \in \mathbb{C}$ with $a \neq 0$, and $\phi : \mathbb{C} \to \mathbb{C}$ be given by $z \mapsto az + b$. Then $\gamma \circ \phi$ is nice and $f \circ \phi^{-1}$ continuous as well, and we have

$$a\int_{\gamma} f = \int_{\phi\circ\gamma} f \circ \phi^{-1}.$$

Proposition 2.6. Let $\gamma: [a, b] \to \mathbb{C}$ be Riemann-integrable. Then $|\gamma|$ is Riemann-integrable as well with

$$\left|\int_{a}^{b}\gamma\right| \leq \int_{b}^{b}|\gamma|.$$

Theorem 2.7 (*ML* formula). Let $\gamma: [a, b] \to \mathbb{C}$ be nice and $f: \gamma([a, b]) \to \mathbb{C}$ be continuous. Then

$$\left| \int_{\gamma} f \right| \leq \left(\sup_{a \leq t \leq b} |f(\gamma(t))| \right) \underbrace{\sum_{i} \int_{x_{i}}^{x_{i+1}} |\gamma'|}_{length of \gamma}.$$

Corollary 2.8. Let $\gamma: [a, b] \to \mathbb{C}$ be nice and $f, f_n: \gamma([a, b]) \to \mathbb{C}$ be continuous such that $f_n \to f$ uniformly on $\gamma([a, b])$. Then

$$\int_{\gamma} f_n \to \int_{\gamma} f.$$

Theorem 2.9 (Integral of derivative). Let $\gamma: [a, b] \to \mathbb{C}$ be nice and $F: \Omega \to \mathbb{C}$ be differentiable on $\gamma([a, b]) \subseteq \Omega$. Let $f: \gamma([a, b]) \to \mathbb{C}$ be continuous with f = F' on $\gamma([a, b])$. Then

$$\int_{\gamma} f = F(\gamma(b)) - F(\gamma(a)).$$

Corollary 2.10. The function $z \mapsto 1/z$ doesn't have any "antiderivative" on $\mathbb{C} \setminus \{0\} \to \mathbb{C}$.

3 Rectangles, Morera, Cauchy

April 8, 2023

Definition 3.1 (Open rectangles and integrals along them). The (complex sets corresponding to¹⁶ the) basic open sets of \mathbb{R}^2 will be called open rectangles.

Let R be a nonempty open rectangle and $f: S \to \mathbb{C}$ with $S \supseteq \partial R$. Let f be continuous on $\partial R \to \mathbb{C}$. Then we define

$$\oint_{\partial R} f := \int_{\gamma} f$$

where γ is the nice closed curve given by

$$\gamma := \gamma_1 * \gamma_2 * \gamma_3 * \gamma_4$$

where γ_i 's are defined like so:

 γ_i 's have domains [0, 1], and are linear, beginning and ending at vertices.

Lemma 3.2. Let R be a nonempty open rectangle. Let $z_0 \in \overline{R}$ be a "non-corner" point.¹⁷ Let S_1, \ldots, S_n be the subrectangles formed as shown, depending whether $z_0 \in \partial R$ or $z_0 \in int(R)$, respectively:

Let $f: \overline{R} \to \mathbb{C}$ be continuous. Then we have

$$\oint_{\partial R} f = \sum_{i=1}^{n} \oint_{\partial R} f.$$

¹⁶Note that $(x, y) \to x + iy$ is a homeomorphism.

¹⁷The "corner points" are not interesting.

Theorem 3.3 (Rectangle theorem). Let $f: \Omega \to \mathbb{C}$ be differentiable throughout and R be an open rectangle such that $\overline{R} \subseteq \Omega$. Then

$$\oint_{\partial R} f = 0$$

Further, for a fixed $z_0 \in \Omega$, if we define $g: \Omega \to \mathbb{C}$ by

$$g(z) := \begin{cases} \frac{f(z) - f(z_0)}{z - z_0}, & z \neq z_0 \\ f'(z_0), & z = z_0 \end{cases},$$

then also we have 18

$$\oint_{\partial R} g = 0.$$

Theorem 3.4 (Morera). Let Ω be convex and contain a point z_0 such that for every $z \in \Omega$, the shown nice path¹⁹ γ_z lies in Ω .²⁰

Let $f: \Omega \to \mathbb{C}$ be continuous and such that for every nonempty open rectangle R so that $\overline{R} \subseteq \Omega$, we have

$$\oint_{\partial R} f = 0.$$

The $F: \Omega \to \mathbb{C}$ defined by

$$F(z) := \int_{\gamma_z} f.$$

 $^{^{18}}$ Note that g is continuous throughout, so that we can integrate.

¹⁹Defined similarly as in Definition 3.1.

 $^{^{20}\}mathrm{For}$ instance, open balls and $\mathbb C$ are such sets.

is differentiable throughout with

$$F' = f$$
.

Remark. Once Theorem 3.4 holds, we can apply closed curve theorem to f for nice paths lying inside Ω .

Lemma 3.5. Let $D_R(z_0) \subseteq \Omega$. Then $B_{R+\varepsilon}(z_0) \subseteq \Omega$ for some $\varepsilon > 0$.²¹

Remark. We'll use $\int_{\gamma} f(z) dz$ notation when the "rule f(z)" can be made into a continuous function on (the image of) γ .

Theorem 3.6 (Cauchy's integral formula). Let $f: \Omega \to \mathbb{C}$ be differentiable throughout. Let $a \in B_R(z_0)$ with $D_R(z_0) \subseteq \Omega$. Let $\gamma: [0, 2\pi] \to \mathbb{C}$ be given by $t \mapsto z_0 + R \operatorname{E}(it)$. Then we have

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-a} \, \mathrm{d}z.$$

Corollary 3.7 (Mean value). Continuing Theorem 3.6, we also have

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f \circ \gamma.$$

Theorem 3.8 (Differentiability \implies analyticity). Let $f: \Omega \to \mathbb{C}$ be differentiable throughout and $B_R(z_0) \subseteq \Omega$. Then the following hold:

²¹Prove theis! Generalize this!

(i) f is infinitely differentiable at z_0 with

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} \, \mathrm{d}z$$

where $\gamma : [0, 2\pi] \to \mathbb{C}$ is any curve given by $t \mapsto z_0 + r \operatorname{E}(it)$, for some 0 < r < R. (ii) For all $z \in B_R(z_0)$, we have a power series representation for f:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$

Corollary 3.9 (Cauchy's inequality). Let $f: \Omega \to \mathbb{C}$ be differentiable at $z_0 \in \Omega$. Then for every R such that $B_R(z_0) \subseteq \Omega$, there exists an M > 0 such that for each $n \geq 0$, we have

$$|f^{(n)}(z_0)| \le \frac{n!M}{R^n}.$$

4 Riemann, Liouville, uniqueness

April 9, 2023

Theorem 4.1 (Riemann's removable singularity). Let $z_0 \in \Omega$ and $f: \Omega \setminus \{z_0\} \to \mathbb{C}$ be differentiable throughout. Then the following are equivalent:

- (i) f is differentiably extensible to Ω .
- (ii) f is continuously extensible to Ω .
- (iii) f is bounded around z_0 .²²
- (*iv*) $\lim_{z \to z_0} (z z_0) f(z) = 0.$

Corollary 4.2 (Quotient function of differentiable is differentiable). Let $f: \Omega \to \mathbb{C}$ be differentiable at $z_0 \in \Omega$. Then the function $g: \Omega \to \mathbb{C}$ given by

$$g(z) := \begin{cases} \frac{f(z) - f(z_0)}{z - z_0}, & z \neq z_0\\ f'(z_0), & z = z_0 \end{cases}$$

is differentiable at z_0 as well, with the derivative being $f''(z_0)/2$.

²²That is, in a neighborhood of z_0 .

Corollary 4.3. Let $f: \Omega \to \mathbb{C}$ be differentiable throughout and c_1, \ldots, c_n be distinct zeroes of f. Then for the function

$$g: z \mapsto \frac{f(z)}{(z-c_1)\cdots(z-c_n)}$$

defined on $\Omega \setminus \{c_1, \ldots, c_n\}$, each of the limits $\lim_{z\to c_i} g(z)$ exists and the continuous extension of g on Ω is differentiable.

Theorem 4.4 (Liouville). Let f be entire with

$$|f(z)| \le A + B|z|^{\alpha}$$

for some $A, B \ge 0$, $B \ne 0$, $\alpha \in \mathbb{R}$. Then f is a polynomial of degree at most $\max(0, |\alpha|)$.

Corollary 4.5. A nonconstant entire function can't have two \mathbb{R} -independent periods.²³

Theorem 4.6. An entire function f such that $|f(z)| \to \infty$ as $|z| \to \infty$ must have zeroes.

Lemma 4.7. For any polynomial p, we have that $|p(z)| \to \infty$ as $|z| \to \infty$.²⁴

Corollary 4.8 (The fundamental theorem of algebra). Any nonconstant complex polynomial must have a root.

Theorem 4.9 (Uniqueness theorem). Let $f: \mathscr{D} \to \mathbb{C}$ be differentiable throughout. Let f vanish uniformly on $S \subseteq \mathscr{D}$, which has a limit point in \mathscr{D} . Then f vanishes everywhere.²⁵

5 Max and min modulus, and open mapping

April 9, 2023

Definition 5.1 (Relative maxima and minima). A point $z_0 \in S \subseteq \mathbb{C}$ is called a relative maximum (respectively minimum) of $f: S \to \mathbb{C}$ iff there exists an $\varepsilon > 0$ such that for each $z_{\varepsilon} B_{\varepsilon}(z_0) \cap S$, we have

 $|f(z_0)| \ge |f(z)| \text{ (respectively } |f(z_0)| \le |f(z)|).$

 $^{^{23}}$ In fact, the such a function in any of the "primitive strips" has to be unbounded! 24 The usual definition.

 $^{^{25}}$ We used CC.

CHAPTER III. LINE INTEGRALS

Theorem 5.2 (Maximum modulus). A nonconstant differentiable function on a domain can't have a relative maximum.

Corollary 5.3 (Minimum modulus). The relative minima of a nonconstant differentiable function on a domain are precisely its zeroes.

Remark. This furnishes another proof of Theorem 4.6.

Theorem 5.4 (Open mapping theorem). A differentiable map on an open set is open.

6 Analytic branches of $\ln(z)$

Do this after doing simply connected regions!

Chapter IV

Laurent series

1 Isolated singularities

April 29, 2023

Definition 1.1. z_0 is called an isolated singularity of a function $f: \Omega \to \mathbb{C}$ iff f is defined, and is differentiable in a deleted neighborhood of z_0 .

Example 1.2 (An example of a non-isolated singularity). z = 0 for $1/\sin(1/z)$.

Definition 1.3 (Zero of order k). $z_0 \in \mathbb{C}$ is called a zero of order $k \ge 1$ of a function f iff f is differentiable in some $B_R(z_0)$ and if

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

is the power series representation of f around z_0 , then

- (i) $c_0 = \cdots = c_{k-1} = 0$; and,
- (ii) $c_k \neq 0$.

Lemma 1.4 (Order of a pole well-defined). For j = 1, 2, let $g_j, h_j: \Omega \to \mathbb{C}$ be differentiable with

(*i*)
$$g_j(z_0) \neq 0$$
;

(ii) $z_0 \in \Omega$ being a zero of h_j order $k_j \ge 1$;

(iii) h_i 's vanish only at z_0 ;¹ and,

(iv) $g_j(z)/h_j(z)$'s coincide on $\Omega \setminus \{z_0\}$.

Then
$$k_1 = k_2$$
.

Definition 1.5 (Types of isolated singularities). An isolated singularity z_0 of $f: \Omega \to \mathbb{C}$ is called

- (i) removable iff there exists an differentiable function in a neighborhood of z_0 which coincides with f in a deleted neighborhood of z_0 ;
- (ii) pole of order $k \ge 1$ iff there exist differentiable functions g, h in a neighborhood of z_0 such that the following hold:
 - (a) $g(z_0) \neq 0;$
 - (b) z_0 is a zero of h of order k;
 - (c) f and g/h coincide in a deleted neighborhood of z_0 ;
- (iii) essential iff neither of the above.

Proposition 1.6 (Characterizing poles). Let z_0 be an isolated singularity of $f: \Omega \to \mathbb{C}$ and $k \geq 1$. Then the following are equivalent:

- (i) z_0 is a pole of f of order k.
- (*ii*) $(z z_0)^k f(z) \not\to 0 \text{ as } z \to z_0 \text{ but } \lim_{z \to z_0} (z z_0)^{k+1} = 0.$

2 The Laurent expansion

Definition 2.1 (Doubly infinite series). Let $N \in \mathbb{Z}$ and $a_n \in \mathbb{Z}$ for each integer $n \leq N$. Then we define²

$$\sum_{n=-\infty}^{N} a_n := \sum_{n=-N}^{\infty} a_{-n}.$$

If $a_n \in \mathbb{C}$ for $n \in \mathbb{Z}$, then we define

$$\sum_{n=-\infty}^{\infty} a_n := \sum_{n=-\infty}^{-1} a_n + \sum_{n=0}^{\infty} a_n.$$

Definition 2.2 (Annulus). For r, R > 0 and $z_0 \in \mathbb{Z}$, we define

$$A_r^R(z_0) := B_R(z_0) \setminus D_r(z_0).$$

¹Since $h_j \neq 0$, we can always take a small enough subset of Ω wherein h_j vanishes precisely at z_0 .

 $^{^{2}}$ Of course, the following are defined when the series on the right-hand-side converge.

Corollary 2.3 (Annulus of convergence). Let the doubly infinite complex series $\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$ converge to the function f in $A_r^R(z_0)$. Then f is differentiable with

$$f'(z) = \sum_{n=-\infty}^{\infty} nc_n (z - z_0)^{n-1}.$$

Remark. Complex series of the form $\sum_{n=\infty}^{\infty} c_n (z - z_n)$ are called Laurent series.

Theorem 2.4 (Finding the Laurent series). Let $f: A_r^R(z_0) \to \mathbb{Z}$ be differentiable. Then f admits a Laurent series

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

where the coefficients are given by

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^n + 1} \, \mathrm{d}z.$$

Proposition 2.5 (Characterizing isolated singularities via Laurent series). Let z_0 be an isolated singularity of $f: \Omega \to \mathbb{C}$. Then f admits a Laurent series representation

$$f(z) = \sum_{n=\infty}^{\infty} c_n \left(z - z_0\right)^n$$

in a deleted neighborhood of z_0 , and we have that z_0 is

- (i) a removable singularity $\iff c_n = 0$ for all n < 0;
- (ii) a pole of order $k \ge \iff c_{-1} = \cdots = c_{-(k-1)} = 0$ but $c_{-k} \neq 0$; and,
- (iii) an essential singularity $\iff c_n \neq 0$ for infinitely many n < 0.

3 Residues

April 29, 2023

Definition 3.1 (Residue around an isolated singularity). Let $f: \Omega \to \mathbb{C}$ have an isolated singularity at z_0 , and consequently have a Laurent expansion

$$f(z) = \sum_{n = -\infty}^{\infty} c_n \left(z - z_0\right)^n$$

in a deleted neighborhood of z_0 . Then we define

$$\operatorname{Res}(f; z_0) := a_{-1}.$$

Proposition 3.2 (Residue at poles). Let z_0 be a pole of order $k \ge 1$ for $f: \Omega \to \mathbb{C}$. Then we have

$$\operatorname{Res}(f; z_0) = \frac{1}{(k-1)!} \frac{\mathrm{d}^{k-1}}{\mathrm{d}z^{k-1}} \bigg|_{z=z_0} ((z-z_0)^k f(z)).$$