Complex Analysis Prof Bipul Saurabh ${ }^{1}$

Organized Results
complied by
Sarthak ${ }^{2}$

April 2023

[^0]
Contents

I Constructing \mathbb{C} 1
1 For a general ordered field 1
2 Specializing to \mathbb{C} 2
II Differentiability 4
1 Basic definitions 4
2 Differentiating power series 6
3 The exponential function 7
4 The trigonometric functions 7
5 Harmonic functions 10
III Line integrals 11
1 General things in normed linear spaces 11
1.1 The derivative of a curve 11
1.2 Operations on curves 12
1.3 Integration of curves 13
1.4 Reparametrizations of curves 15
1.5 Nice paths for line integrals 15
2 Line integrals in \mathbb{C} 16
3 Rectangles, Morera, Cauchy 18
4 Riemann, Liouville, uniqueness 21
5 Max and min modulus, and open mapping 22
6 Analytic branches of $\ln (z)$ 23
IV Laurent series 24
1 Isolated singularities 24
2 The Laurent expansion 25
3 Residues 26

Chapter I

Constructing \mathbb{C}

1 For a general ordered field

February 10, 2023
Proposition 1.1 (Adjoining $\sqrt{-1}$ to ordered fields). Let F be an ordered field. Then the operations

$$
\begin{aligned}
&\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right): \\
& \quad\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right):=\left(a_{1}, b_{1}+b_{2}\right), \text { and } \\
&\left.a_{2}-b_{1} b_{2}, a_{1} b_{2}+b_{1} a_{2}\right)
\end{aligned}
$$

make $F \times F$ into a field with

$$
\begin{aligned}
\text { zero } & =(0,0) \\
-(a, b) & =(-a,-b) \\
\text { one } & =(1,0) \\
(a, b)^{-1} & =\left(\frac{a}{a^{2}+b^{2}}, \frac{b}{a^{2}+b^{2}}\right) \quad \text { for nonzero }(a, b) .
\end{aligned}
$$

Further, the following hold:
(i) $F \times F$ can't be ordered compatibly.
(ii) $a \mapsto(a, 0)$ is an embedding of F into $F \times F .{ }^{1}$
(iii) $F \times F$ forms a two-dimensional vector space over F with a basis $\{1, i\} .{ }^{2}$

[^1]Notation. We'll abuse notation, letting $a+i b$ stand for $a 1+b i=(a, b)$ for $a, b \in F$. The functions \Re, \Im are just the projections onto the first and second coordinates. When $F=\mathbb{R}$, we denote $F \times F$ (or any isomorphic field) by \mathbb{C}.

2 Specializing to \mathbb{C}

Convention. For the rest of the document, we will spacialize to \mathbb{C}.

Definition 2.1 (Conjugate, norm, argument, inner-product). For $a, b, \theta \in \mathbb{R}$, we define

$$
\begin{aligned}
\overline{a+i b} & :=a-i b, \text { and } \\
|a+i b| & :=\sqrt{a^{2}+b^{2}} .
\end{aligned}
$$

For $z, w \in \mathbb{C}$, we also define

$$
\langle z, w\rangle:=z \bar{w} .
$$

Remark. Note that we will follow the usual convention, defining

$$
0^{\alpha}:=\left\{\begin{array}{ll}
1, & \alpha=0 \\
0, & \alpha>0
\end{array} \text { for } \alpha \in \mathbb{R}\right.
$$

Proposition 2.2 (Immediate properties).
(i) We can express $z \in \mathbb{C}$ as

$$
z=\Re(z)+i \Im(z)
$$

(ii) $\langle\cdot, \cdot\rangle$ makes \mathbb{C} into an inner-product space ${ }^{3}$ with $|\cdot|$ being the corresponding norm since

$$
z \bar{z}=|z|^{2}
$$

$(a, b) \mapsto a+i b$ defines a norm-preserving ${ }^{4} \mathbb{R}$-linear isomorphism (and hence also a homeomorphism) $\mathbb{R}^{2} \rightarrow \mathbb{C}$.
(iii) $|\cdot|$ makes \mathbb{C} into a normed algebra with

$$
|z w|=|z||w|
$$

[^2](iv) $z \mapsto \bar{z}$ defines a norm-preserving ${ }^{5}$ field automorphism on \mathbb{C} with its inverse being itself, since
\[

$$
\begin{aligned}
\overline{z+w} & =\bar{z}+\bar{w} \\
\overline{z w} & =\bar{z} \bar{w} \\
|\bar{z}| & =|z|, \text { and } \\
\overline{\bar{z}} & =z .
\end{aligned}
$$
\]

Further,

$$
\begin{aligned}
& \bar{z}=z \Longleftrightarrow z \text { is real; and }, \\
& \bar{z}=-z \Longleftrightarrow z \text { is imaginary. }
\end{aligned}
$$

[^3]
Chapter II

Differentiability

1 Basic definitions

February 10, 2023
Convention. We'll take Ω, Υ to be open subsets of \mathbb{C}.

Definition 1.1 (The derivative). Let $f: \Omega \rightarrow \mathbb{C}$ and $c \in \Omega$. Then if existent, we define

$$
f^{\prime}(c):=\lim _{z \rightarrow c} \frac{f(z)-f(c)}{z-c} .
$$

Definition 1.2 (Entire functions). A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is called entire iff it is differentiable throughout.

Corollary 1.3. Constant and identity functions are differentiable throughout with derivatives being 0 and 1 respectively.

Proposition 1.4. Differentiability \Longrightarrow continuity.

Example 1.5. $z \mapsto \bar{z}$ is continuous everywhere but differentiable nowhere!

Proposition 1.6. Let $f, g: \Omega \rightarrow \mathbb{C}$ be differentiable at $c \in \Omega$. Then the following hold:
(i) $(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$.
(ii) $(\alpha f)^{\prime}(c)=\alpha f^{\prime}(c)$ for $\alpha \in \mathbb{C}$.
(iii) $(f g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$.
(iv) $(f / g)^{\prime}(c)=\left(f^{\prime}(c) g(c)-f(c) g^{\prime}(c)\right) / g(c)^{2}$ if $g(c) \neq 0$.

Corollary 1.7 (Differentiating monomials). For $n \geq 1$, the function $z \mapsto z^{n}$ is differentiable throughout with derivative at $z \in \mathbb{C}$ given by $n z^{n-1}$.

Proposition 1.8 (Chain rule). Let $f: \Omega \rightarrow \Upsilon$ and $g: \Upsilon \rightarrow \mathbb{C}$ be differentiable at $c \in \Omega$ and $f(c) \in \Upsilon$ respectively. Then $g \circ f: \Omega \rightarrow \mathbb{C}$ is differentiable at c with

$$
(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) f^{\prime}(c)
$$

Convention. Any bijection $f: X \rightarrow X^{\prime}$ induces a one-to-one correspondence between functions $X \rightarrow Y$ and $X^{\prime} \rightarrow Y$, and between functions $Y \rightarrow X$ and $Y \rightarrow X^{\prime}$ for a given set Y.

We'll take the bijection $(x, y) \leftrightarrow x+i y$ while considering \mathbb{R}^{2} and \mathbb{C}.

Proposition 1.9 (Making \mathbb{R}-linear, \mathbb{C}-linear). The $\mathbb{C} \rightarrow \mathbb{C}$ map corresponding to the \mathbb{R}-linear map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, given by

$$
x \mapsto A x, \quad \text { where } A \in \mathbb{R}^{2 \times 2}
$$

is \mathbb{C}-linear $\Longleftrightarrow A$ is skew-symmetric.
Definition 1.10 (Cauchy-Riemann equations). A function $\tilde{f}: \tilde{\Omega} \rightarrow \mathbb{R}^{2}(\tilde{\Omega}$ open in \mathbb{R}^{2}) is said to satisfy Cauchy-Riemann equations at $\tilde{c} \in \tilde{\Omega}$ iff in the standard basis, the Jacobian exists and is skew-symmetric, at c, i.e.,

$$
\begin{aligned}
\partial_{x} \tilde{f}_{x}(\tilde{c}) & =\partial_{y} \tilde{f}_{y}(\tilde{c}), \text { and } \\
\partial_{x} \tilde{f}_{y}(\tilde{c}) & =-\partial_{y} \tilde{f}_{x}(\tilde{c})
\end{aligned}
$$

Theorem 1.11 (Characterizing differentiability). Let $f: \Omega \rightarrow \mathbb{C}$, and $\tilde{f}: \tilde{\Omega} \rightarrow \mathbb{R}^{2}$ $b e$ the corresponding function. Let $c:=a+i b \in \Omega(a, b \in \mathbb{R})$. Then the following are equivalent:
(i) f is \mathbb{C}-differentiable at c with

$$
f^{\prime}(c)=\alpha+i \beta, \quad \text { where } \alpha, \beta \in \mathbb{R}
$$

(ii) \tilde{f} is Fréchet differentiable with

$$
[D \tilde{f}(a, b)]_{s t d}=\left[\begin{array}{rr}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right]
$$

Convention. We'll reserve \mathscr{D} to denote a domain in \mathbb{C}.
Example 1.12. A differentiable function $f: \mathscr{D} \rightarrow \mathbb{C}$ is constant throughout \mathscr{D} if one of the following holds:
(i) $\Re(f(z))$ or $\Im(f(z))$ is constant.
(ii) $|f(z)|$ is constant.

Definition 1.13 (Higher derivatives). Let $f: \Omega \rightarrow \mathbb{C}$. Then we inductively define the functions $f^{(n)}$'s as:
(i) $f^{(0)}:=f$.
(ii) Having defined $f^{(n)}$, define $f^{(n+1)}: \Upsilon \rightarrow \mathbb{C}$ where Υ is the interior of the set of all the points in the domain of $f^{(n)}$ where it is differentiable, and

$$
f^{(n+1)}(z):=\left(f^{(n)}\right)^{\prime}(z)
$$

We say that f is n times differentiable iff $\operatorname{dom} f^{(n)}=\Omega$.

2 Differentiating power series

February 11, 2023
Remark. The results in this section hold for \mathbb{R} also.

Theorem 2.1 (Differentiating a power series). Let the complex power series $\sum_{n=0}^{\infty} c_{n}(z-$ $\left.z_{0}\right)^{n}$ converge to $f: B_{R}\left(z_{0}\right) \rightarrow \mathbb{C}$ where $R \in(0, \infty) \cup\{\infty\}$ is the radius of convergence. Then f is differentiable with ${ }^{1}$

$$
f^{\prime}(z)=\sum_{n=1}^{\infty} n c_{n}\left(z-z_{0}\right)^{n-1}
$$

Corollary 2.2 (Power series are infinitely differentiable). Let $R \in(0, \infty) \cup\{\infty\}$ be the radius of convergence of the complex power series $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$. Then the following hold:
(i) f is k times differentiable for each $k \geq 0$, with

$$
f^{(k)}(z)=\sum_{n=k}^{\infty} \frac{n!}{(n-k)!} c_{n}\left(z-z_{0}\right)^{n-k} .
$$

[^4](ii) c_{n} 's are given by
$$
c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!} .
$$

Proposition 2.3 (Power series determined by its values on a sequence). Let $R \in$ $(0, \infty) \cup\{\infty\}$ be the radius of convergence of a complex power series $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$, and let the series vanish ${ }^{2}$ on a sequence $\left(w_{n}\right) \in B_{R}\left(z_{0}\right)$ one of whose limit points is z_{0}. Then each $c_{n}=0$.

3 The exponential function

February 26, 2023
Definition 3.1 (The exponential function). We define $\mathrm{E}: \mathbb{C} \rightarrow \mathbb{C}$ via ${ }^{3}$

$$
z \mapsto \sum_{n=0}^{\infty} \frac{z^{n}}{n!} .
$$

Proposition 3.2 (Properties of E).
(i) $\mathrm{E}(1)=1$.
(ii) E is a group homomorphism on $\mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$ as well as on $\mathbb{R} \rightarrow(0, \infty)$.
(iii) On \mathbb{R}, we have $\mathrm{E}(x) \rightarrow \infty$ as as $x \rightarrow \infty$ and $\mathrm{E}(x) \rightarrow 0$ as $x \rightarrow-\infty$.
(iv) E is differentiable with $\mathrm{E}^{\prime}=\mathrm{E}$.
(v) $\mathrm{E}(\bar{z})=\overline{E(z)}$.

Proposition 3.3. For $x \in \mathbb{R}$, we have

$$
\mathrm{E}(x)=e^{x}
$$

4 The trigonometric functions

February 26, 2023
Definition 4.1 (Cosine and sine). We define cos, $\sin : \mathbb{C} \rightarrow \mathbb{C}$ as

$$
\begin{aligned}
& \cos (z):=\frac{\mathrm{E}(i z)+\mathrm{E}(-i z)}{2}, \text { and } \\
& \sin (z):=\frac{\mathrm{E}(i z)-\mathrm{E}(-i z)}{2}
\end{aligned}
$$

[^5]Proposition 4.2 (Properties of the trigonometric functions).
(i) $\cos 0=1$ and $\sin 0=0$.
(ii) $\cos ^{2} z+\sin ^{2} z=1$.
(iii) $\mathrm{E}(i z)=\cos z+i \sin z$.
(iv) \cos and $\sin \operatorname{map} \mathbb{R}$ in $[-1,1]$.
(v) \cos and \sin are differentiable with $\cos ^{\prime}=-\sin$ and $\sin ^{\prime}=\cos$.

Theorem 4.3. There exists a smallest positive real zero of cos.
Definition $4.4(\pi)$. We define π to be the real number so that $\pi / 2$ is the smallest positive zero of cos.

Proposition 4.5. $\cos (\pi / 2)=0$ and $\sin (\pi / 2)=1$.
Proposition 4.6. On $[0, \pi / 2]$, we have that \cos is strictly decreasing and that \sin is strictly increasing.

Definition 4.7 (Periods of functions). Let G be an additive abelian group and $f: G \rightarrow G$. Then a $p \in \mathbb{G}$ is called a period of a function $f: G \rightarrow G$ iff for each $x \in G$, we have

$$
f(x+p)=f(x)
$$

Lemma 4.8. For each $t \in(0,2 \pi)$, we have that $\mathrm{E}(i t) \neq 0$.
Corollary 4.9. For $t \in \mathbb{R}$, we have that $\mathrm{E}(i t)=1 \Longleftrightarrow t \in 2 \pi \mathbb{Z}$.
Proposition 4.10. For $z \in \mathbb{Z}$, we have that ${ }^{4}$

$$
\mathrm{E}(z)=1 \Longleftrightarrow z \in 2 \pi i \mathbb{Z}
$$

Corollary 4.11 (2π is the smallest possible period of E , \cos, \sin). For $p \in \mathbb{Z}$, the following are equivalent:
(i) ip is a period of E .
(ii) p is a period of \sin.
(iii) p is a period of cos.
(iv) $p \in 2 \pi \mathbb{Z}$.

[^6]Theorem $4.12\left(S^{1} \leftrightarrow[0,2 \pi)\right)$. There exists a one-to-one correspondence:

$$
\begin{array}{ccc}
{[0,2 \pi)} & \longleftrightarrow & \{z \in \mathbb{C}:|z|=1\} \\
\theta & \mathrm{E}(i \theta)
\end{array}
$$

Notation. We use $S^{1}:=\{z \in \mathbb{C}:|z|=1\}$.

Corollary 4.13. Let $x, y \in \mathbb{R}$ not both be zero. Then there exists a unique $\theta \in[0,2 \pi)$ such that

$$
\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}} \quad \text { and } \quad \sin \theta=\frac{y}{x^{2}+y^{2}}
$$

Corollary 4.14 (Polar form). Let $z \in \mathbb{C} \backslash\{0\}$. Then there exists a unique $\theta \in(-\pi, \pi]$ such that

$$
z=|z| \mathrm{E}(i \theta)
$$

Notation. We denote the above θ by $\operatorname{Arg} z$.

Corollary 4.15. $\theta \mapsto \mathrm{E}(i \theta)$ is a continuous surjective group homomorphism on $\mathbb{R} \rightarrow S^{1}$.

Corollary 4.16 (n-th roots of unity). Let $n \geq 1$. Then $\mathrm{E}(i(2 \pi k / n)$), for $0 \leq k<n$ are n distinct (and hence all the) n-th roots of unity.

Proposition 4.17 (Subgroups formed by n-th roots of unity). Define

$$
\Lambda:=\bigcup_{n \geq 1}\{n \text {-th roots of unity }\}
$$

Then the following hold:
(i) $\Lambda \lesseqgtr S^{1} \lesseqgtr \mathbb{C} \backslash\{0\}$.
(ii) Λ is dense in S^{1}.
(iii) Let G be a compact multiplicative subgroup of \mathbb{C} and $f: G \rightarrow \mathbb{C} \backslash\{0\}$ be a continuous group homomorphism. Then $f(G) \subseteq S^{1}$.

5 Harmonic functions

February 11, 2023
DO THIS AFTER DOING CLAIRAIUT!
Definition 5.1 (Harmonic functions). A function $u: \tilde{\Omega} \rightarrow \mathbb{R}\left(\tilde{\Omega}\right.$ open in $\left.\mathbb{R}^{2}\right)$ is called harmonic iff it is C^{2} (with respect to standard bases) and ${ }^{5}$

$$
\partial_{x, x} u+\partial_{y, y} u=0 .
$$

Corollary 5.2. First prove that differentiability implies analyticity!
The real and imaginary parts of a differentiable function on an open set are harmonic.

Definition 5.3 (Harmonic conjugate). Let $u: \tilde{\Omega} \rightarrow \mathbb{R}\left(\Omega\right.$ open in $\left.\mathbb{R}^{2}\right)$ be harmonic. Then a harmonic conjugate of u is a harmonic function $v: \Omega \rightarrow \mathbb{R}$ such that the

[^7]
Chapter III

Line integrals

1 General things in normed linear spaces

February 27, 2023
Convention. V will stand for a generic normed linear space over $\mathbb{R} .{ }^{1} \mathcal{B}$ will stand for a generic basis for V.

Convention. Whenever we'll write $[a, b]$, it will be understood that $a<b$.

1.1 The derivative of a curve

February 27, 2023
Definition 1.1 (The derivative of a curve). Let $\gamma:[a, b] \rightarrow V$ be differentiable at $c \in(a, b) .{ }^{2}$ Then we define ${ }^{3}$

$$
\begin{aligned}
\gamma^{\prime}(c) & :=D \gamma(c)(1) \\
& =D_{1} \gamma(c) .
\end{aligned}
$$

Remark. This extends the notation for the case when $V=\mathbb{R}$.

[^8]Corollary 1.2 (Chain rule for curves). Let $\phi:[a, b] \rightarrow[c, d]$ be (continuously) differentiable at $x_{0} \in(a, b)$ and $\gamma:[c, d] \rightarrow V$ be (continuously) differentiable at $\phi\left(x_{0}\right) \in(c, d)$. Then $\gamma \circ \phi:[a, b] \rightarrow V$ is (continuously) differentiable at x_{0} with 4

$$
(\gamma \circ \phi)^{\prime}\left(x_{0}\right)=\phi^{\prime}\left(x_{0}\right) \gamma^{\prime}\left(\phi\left(x_{0}\right)\right) .
$$

Corollary 1.3. Let V be finite-dimensional. Then $\gamma:[a, b] \rightarrow V$ is differentiable at $c \in(a, b) \Longleftrightarrow$ each $\gamma_{i}:[a, b] \rightarrow \mathbb{R}$ is differentiable at c, in which case,

$$
\left[\gamma^{\prime}(c)\right]_{\mathcal{B}}=\left[\begin{array}{c}
\gamma_{1}^{\prime}(c) \\
\vdots \\
\gamma_{n}^{\prime}(c)
\end{array}\right]
$$

Corollary $1.4\left(C^{1}\right.$-ness for curves). Let V be finite-dimensional. Then for $\gamma:[a, b] \rightarrow$ V, the following are equivalent: ${ }^{5}$
(i) $\gamma^{\prime}:(a, b) \rightarrow V$ is continuous.
(ii) γ is continuously differentiable on (a, b).
(iii) Each $\gamma_{i}^{\prime}:(a, b) \rightarrow \mathbb{R}$ is continuous.

1.2 Operations on curves

February 27, 2023
Definition 1.5 (Negation and join of curves). Let $\gamma:[a, b] \rightarrow X$ and $\delta:[c, d] \rightarrow X$ for a set X. Then we define the following:
(i) $-\gamma:[a, b] \rightarrow X$ given by

$$
t \mapsto a+b-t
$$

(ii) $\gamma * \delta:[a, b+d-c] \rightarrow X$ given by

$$
t \mapsto \begin{cases}\gamma(t), & t \in[a, b] \\ \delta(t-b+c), & t \in(b, b+d-c]\end{cases}
$$

Corollary 1.6.

(i) Double negation gives back the original curve.
(ii) Join is associative.

[^9]Corollary 1.7. Continuing Definition 1.5, the following hold:
(i) If X is a topological space, then the following hold: ${ }^{6}$
(a) $-\gamma$ preserves the continuity of γ.
(b) $\gamma * \delta$ preserves the continuity of γ and δ on $[a, b)$ and $(c, d]$ respectively. It is continuous at $b \Longleftrightarrow \gamma(b)=\delta(c)$, and γ and δ are continuous at b and c respectively.
(ii) If $X=V$, then we further have the following:
(a) $-\gamma$ preserves the (continuous) differentiability of γ.
(b) $\gamma * \delta$ preserves the (continuous) differentiability of γ and $\delta .{ }^{7}$

1.3 Integration of curves

February 27, 2023
Proposition 1.8 (Integrating a curve). Let V be finite-dimensional and $\gamma:[a, b] \rightarrow$ V be such that each $\gamma_{e}:[a, b] \rightarrow \mathbb{R}$ is Riemann-integrable. Then for any other basis \mathcal{C}, we also have that each $\gamma_{\tilde{e}}$ is Riemann-integrable with

$$
\sum_{e \in \mathcal{B}}\left(\int_{a}^{b} \gamma_{e}\right) e=\sum_{\tilde{e} \in \mathcal{C}}\left(\int_{a}^{b} \gamma_{\tilde{e}}\right) \tilde{e} .
$$

Notation. This allows to denote the above integral by $\int_{a}^{b} \gamma$ and also define Riemannintegrability for curves as in Definition 1.9.

Definition 1.9 (Riemann-integrability for curves). Let $\gamma:[a, b] \rightarrow V$ with V being finite-dimensional. Then γ is called Riemann-integrable iff there exists a basis of V in which each induced component function $[a, b] \rightarrow \mathbb{R}$ is Riemann-integrable.

Remark. Note that we define $\int_{a}^{b} \gamma$ only for finite-dimensional V 's.
Proposition 1.10 (Properties of integrating a curve). Let V be finite-dimensional and $\gamma, \gamma_{1}, \gamma_{2}:[a, b] \rightarrow V$, and $\delta:[c, d] \rightarrow V$ be Riemann-integrable. Then the following hold: ${ }^{8}$

$$
\int_{a}^{b}\left(\gamma_{1}+\gamma_{2}\right)=\int_{a}^{b} \gamma_{1}+\int_{a}^{b} \gamma_{2}
$$

[^10]\[

$$
\begin{aligned}
\int_{a}^{b}(\alpha \gamma) & =\alpha \int_{a}^{b} \gamma & & \text { for any } \alpha \in \mathbb{R} \\
\int_{a}^{b}(-\gamma) & =\int_{a}^{b} \gamma & & \text { if } \gamma \text { is continuous } \\
\int_{a}^{b+d-c}(\gamma * \delta) & =\int_{a}^{b} \gamma+\int_{c}^{d} \delta & & \text { if } \gamma, \delta \text { are continuous }
\end{aligned}
$$
\]

Further, if $V=\mathbb{C}$, then we can also allow $\alpha \in \mathbb{C}$.
Proposition 1.11. Let V be a finite-dimensional inner-product space (over \mathbb{R}) and $\gamma:[a, b] \rightarrow V$ be Riemann-integrable. Then $\|\gamma\|$ is Riemann-integrable with

$$
\left\|\int_{a}^{b} \gamma\right\| \leq \int_{a}^{b}\|\gamma\|
$$

Remark. Next thing would've been an $M L$ formula for inner-product spaces. But we are not defining the line integrals for normed linear spaces...

Corollary 1.12. Let V be a finite-dimensional inner-product space (over \mathbb{R}). Let $\gamma, \gamma_{n}:[a, b] \rightarrow V$ be Riemann-integrable with $\gamma_{n} \rightarrow \gamma$ uniformly. ${ }^{9}$ Then we have ${ }^{10}$

$$
\int_{a}^{b} \gamma_{n} \rightarrow \int_{a}^{b} \gamma
$$

Proposition 1.13. For $\operatorname{dim} V<\infty$, a uniform limit of Riemann-integrable functions is Riemann-integrable.

Proposition 1.14 ("Integral of derivative"). Let $\operatorname{dim} V<\infty$. Let $\Gamma:[a, b] \rightarrow V$ be continuous on $[a, b]$ and (Fréchet) differentiable on (a, b). Let $\gamma:[a, b] \rightarrow V$ be Riemann-integrable with $\gamma=\Gamma^{\prime}$ on (a, b). Then ${ }^{11}$

$$
\int_{a}^{b} \gamma=\Gamma(b)-\Gamma(a)
$$

[^11]
1.4 Reparametrizations of curves

February 27, 2023
Definition 1.15 (C^{1} parameter transformations). A bijection $\phi:[a, b] \rightarrow[c, d]$ is called a c.p.t. iff ϕ and ϕ^{-1} are C^{1}.

Remark. Equivalently, we could have demanded that ϕ be C^{1} with its derivative never vanishing.

Corollary 1.16. The derivative of a c.p.t. never vanishes.
Definition 1.17 (Orientation-preserving and -reversing C^{1} parameter transformations). A c.p.t. $\phi:[a, b] \rightarrow[c, d]$ is called an o.p.c.p.t. iff $\phi^{\prime}>0 .{ }^{12}$

We similarly define o.r.c.p.t.'s.
Proposition 1.18. The compositions and inverses of c.p.t.'s (respectively o.p.c.p.t.'s) are c.p.t.'s (respectively o.p.c.p.t.'s).
Definition 1.19 (C^{1} reparametrizations). We say that $\delta:[c, d] \rightarrow V$ is a c.r. of $\gamma:[a, b] \rightarrow V$ iff $\delta=\gamma \circ \phi$ for some c.r. $\phi:[c, d] \rightarrow[a, b]$.
Definition 1.20 (Orientation-preserving and -reversing C^{1} reparametrizations). We say that $\delta:[c, d] \rightarrow V$ is an o.p.c.r of $\gamma:[a, b] \rightarrow V$ iff $\delta=\gamma \circ \phi$ for some o.p.c.p.t. $\phi:[c, d] \rightarrow[a, b]$.

We similarly define o.r.c.r.'s.
Corollary 1.21. "Being c.r." (respectively"being o.p.c.r") is an equivalence relation.

1.5 Nice paths for line integrals

February 28, 2023
Definition 1.22 (Nice paths and induced partitions). A continuous function $\gamma:[a, b] \rightarrow$ V will be called a nice path (or a nice curve) iff there are only finitely many points in (a, b) on which γ is not differentiable or is not continuously differentiable, and iff $\left\|\gamma^{\prime}\right\|$ is bounded (wherever γ^{\prime} exists on (a, b)).

This induces a unique smallest partition $a=x_{0}<\cdots<x_{n}=b$ with $n \geq 1$ such that γ is continuously differentiable in each $\left(x_{i}, x_{i+1}\right){ }^{13}$ We will call this the partition of $[a, b]$ induced by γ.

[^12]Remark. We won't develop the theory of line integrals in normed linear spaces here.

Proposition 1.23 (O.p.c.r.'s preserve nice-ness). Let $\gamma:[a, b] \rightarrow V$ be nice, inducing the partition $a=x_{0}<\cdots<x_{n}=b$. Let $\phi:[c, d] \rightarrow[a, b]$ be a c.p.t.. Then $\gamma \circ \phi:[c, d] \rightarrow V$ is also nice, with the induced partition being
(i) $c=\phi^{-1}\left(x_{0}\right)<\cdots<\phi^{-1}\left(x_{n}\right)=d$ if ϕ is orientation-preserving; and,
(ii) $c=\phi^{-1}\left(x_{n}\right)<\cdots<\phi^{-1}\left(x_{0}\right)=d$ if ϕ is orientation-reversing.

Corollary 1.24 (Negation and joins preserve nice-ness).
(i) Negation preserves the nice-ness of curves.
(ii) Joining nice curves, that match at the joining point, yields a nice curve with the induced partition being "same" except possibly at the joining point.

2 Line integrals in \mathbb{C}

February 27, 2023
Remark. Note that \mathbb{C} is 2-dimensional over \mathbb{R} with $\|\cdot\|=|\cdot|$.
Definition 2.1 (Line integrals). Let $\gamma:[a, b] \rightarrow S$ with $S \subseteq \mathbb{C}$ be nice and let $a=x_{0}<\cdots<x_{n}=b$ be the induced partition. Let $f: S \rightarrow \mathbb{C}$ be continuous on $\gamma([a, b]) \rightarrow \mathbb{C}$. Then ${ }^{14}(f \circ \gamma) \gamma^{\prime}$ is Riemann-integrable in each $^{15}\left[x_{i}, x_{i+1}\right]$ and we define

$$
\int_{\gamma} f:=\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}}(f \circ \gamma) \gamma^{\prime} .
$$

Remark. Note that we are defining line integrals only for continuous f 's and nice γ 's.

Remark. In the following, we'll write $\gamma:[a, b] \rightarrow \mathbb{C}$ and $f: \gamma([a, b]) \rightarrow \mathbb{C}$.

[^13]Example 2.2. Define $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ by $t \mapsto \mathrm{E}(i t)$. Take $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ given by $z \mapsto z^{n}$ for $n \in \mathbb{Z}$. Then we have

$$
\int_{\gamma} f=\left\{\begin{array}{ll}
0, & n \neq-1 \\
2 \pi i, & n=-1
\end{array} .\right.
$$

Proposition 2.3 (O.p.c.r.'s preserve line integrals). Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be nice and $f: \gamma([a, b]) \rightarrow \mathbb{C}$ be continuous. Let $\phi:[c, d] \rightarrow[a, b]$ be an o.p.c.p.t. Then we have

$$
\int_{\gamma} f=\int_{\gamma \circ \phi} f
$$

Proposition 2.4 (Properties of line integrals). Let the curves $\gamma:[a, b] \rightarrow \mathbb{C}$ and $\delta:[c, d] \rightarrow \mathbb{C}$ be nice, and match at endpoints. Let $f, g: \gamma([a, b]) \rightarrow \mathbb{C}$ and $h:(\gamma *$ $\delta)([a, b+d-c]) \rightarrow \mathbb{C}$ be continuous. Then the following hold:

$$
\begin{aligned}
\int_{\gamma}(f+g) & =\int_{\gamma} f+\int_{\gamma} g \\
\int_{\gamma}(\alpha f) & =\alpha \int_{\gamma} f \quad \text { for any } \alpha \in \mathbb{C} \\
\int_{-\gamma} f & =-\int_{\gamma} f \\
\int_{\gamma * \delta} h & =\int_{\gamma} h+\int_{\delta} h
\end{aligned}
$$

Proposition 2.5 (A version of "change of variables"). Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be nice and $f: \gamma([a, b]) \rightarrow \mathbb{C}$ be continuous. Let $a, b \in \mathbb{C}$ with $a \neq 0$, and $\phi: \mathbb{C} \rightarrow \mathbb{C}$ be given by $z \mapsto a z+b$. Then $\gamma \circ \phi$ is nice and $f \circ \phi^{-1}$ continuous as well, and we have

$$
a \int_{\gamma} f=\int_{\phi \circ \gamma} f \circ \phi^{-1} .
$$

Proposition 2.6. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be Riemann-integrable. Then $|\gamma|$ is Riemannintegrable as well with

$$
\left|\int_{a}^{b} \gamma\right| \leq \int_{b}^{b}|\gamma|
$$

Theorem 2.7 (ML formula). Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be nice and $f: \gamma([a, b]) \rightarrow \mathbb{C}$ be continuous. Then

$$
\left|\int_{\gamma} f\right| \leq\left(\sup _{a \leq t \leq b}|f(\gamma(t))|\right) \underbrace{\sum_{i} \int_{x_{i}}^{x_{i+1}}\left|\gamma^{\prime}\right|}_{\text {length of } \gamma}
$$

Corollary 2.8. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be nice and $f, f_{n}: \gamma([a, b]) \rightarrow \mathbb{C}$ be continuous such that $f_{n} \rightarrow f$ uniformly on $\gamma([a, b])$. Then

$$
\int_{\gamma} f_{n} \rightarrow \int_{\gamma} f
$$

Theorem 2.9 (Integral of derivative). Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be nice and $F: \Omega \rightarrow \mathbb{C}$ be differentiable on $\gamma([a, b]) \subseteq \Omega$. Let $f: \gamma([a, b]) \rightarrow \mathbb{C}$ be continuous with $f=F^{\prime}$ on $\gamma([a, b])$. Then

$$
\int_{\gamma} f=F(\gamma(b))-F(\gamma(a)) .
$$

Corollary 2.10. The function $z \mapsto 1 / z$ doesn't have any"antiderivative" on $\mathbb{C} \backslash$ $\{0\} \rightarrow \mathbb{C}$.

3 Rectangles, Morera, Cauchy

April 8, 2023
Definition 3.1 (Open rectangles and integrals along them). The (complex sets corresponding to ${ }^{16}$ the) basic open sets of \mathbb{R}^{2} will be called open rectangles.

Let R be a nonempty open rectangle and $f: S \rightarrow \mathbb{C}$ with $S \supseteq \partial R$. Let f be continuous on $\partial R \rightarrow \mathbb{C}$. Then we define

$$
\oint_{\partial R} f:=\int_{\gamma} f
$$

where γ is the nice closed curve given by

$$
\gamma:=\gamma_{1} * \gamma_{2} * \gamma_{3} * \gamma_{4}
$$

where γ_{i} 's are defined like so:
γ_{i} 's have domains $[0,1]$, and are linear, beginning and ending at vertices.
Lemma 3.2. Let R be a nonempty open rectangle. Let $z_{0} \in \bar{R}$ be a "non-corner" point. ${ }^{17}$ Let S_{1}, \ldots, S_{n} be the subrectangles formed as shown, depending whether $z_{0} \in \partial R$ or $z_{0} \in \operatorname{int}(R)$, respectively:
Let $f: \bar{R} \rightarrow \mathbb{C}$ be continuous. Then we have

$$
\oint_{\partial R} f=\sum_{i=1}^{n} \oint_{\partial R} f
$$

[^14]

Theorem 3.3 (Rectangle theorem). Let $f: \Omega \rightarrow \mathbb{C}$ be differentiable throughout and R be an open rectangle such that $\bar{R} \subseteq \Omega$. Then

$$
\oint_{\partial R} f=0 .
$$

Further, for a fixed $z_{0} \in \Omega$, if we define $g: \Omega \rightarrow \mathbb{C}$ by

$$
g(z):= \begin{cases}\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}, & z \neq z_{0} \\ f^{\prime}\left(z_{0}\right), & z=z_{0}\end{cases}
$$

then also we have ${ }^{18}$

$$
\oint_{\partial R} g=0 .
$$

Theorem 3.4 (Morera). Let Ω be convex and contain a point z_{0} such that for every $z \in \Omega$, the shown nice path ${ }^{19} \gamma_{z}$ lies in $\Omega .{ }^{20}$
Let $f: \Omega \rightarrow \mathbb{C}$ be continuous and such that for every nonempty open rectangle R so that $\bar{R} \subseteq \Omega$, we have

$$
\oint_{\partial R} f=0 .
$$

The $F: \Omega \rightarrow \mathbb{C}$ defined by

$$
F(z):=\int_{\gamma_{z}} f
$$

[^15]
is differentiable throughout with
$$
F^{\prime}=f
$$

Remark. Once Theorem 3.4 holds, we can apply closed curve theorem to f for nice paths lying inside Ω.

Lemma 3.5. Let $D_{R}\left(z_{0}\right) \subseteq \Omega$. Then $B_{R+\varepsilon}\left(z_{0}\right) \subseteq \Omega$ for some $\varepsilon>0 .{ }^{21}$

Remark. We'll use $\int_{\gamma} f(z) \mathrm{d} z$ notation when the "rule $f(z)$ " can be made into a continuous function on (the image of) γ.

Theorem 3.6 (Cauchy's integral formula). Let $f: \Omega \rightarrow \mathbb{C}$ be differentiable throughout. Let $a \in B_{R}\left(z_{0}\right)$ with $D_{R}\left(z_{0}\right) \subseteq \Omega$. Let $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ be given by $t \mapsto$ $z_{0}+R \mathrm{E}(i t)$. Then we have

$$
f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} \mathrm{~d} z
$$

Corollary 3.7 (Mean value). Continuing Theorem 3.6, we also have

$$
f(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f \circ \gamma
$$

Theorem 3.8 (Differentiability \Longrightarrow analyticity). Let $f: \Omega \rightarrow \mathbb{C}$ be differentiable throughout and $B_{R}\left(z_{0}\right) \subseteq \Omega$. Then the following hold:

[^16](i) f is infinitely differentiable at z_{0} with
$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} z
$$
where $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ is any curve given by $t \mapsto z_{0}+r \mathrm{E}(i t)$, for some $0<r<R$.
(ii) For all $z \in B_{R}\left(z_{0}\right)$, we have a power series representation for f :
$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}
$$

Corollary 3.9 (Cauchy's inequality). Let $f: \Omega \rightarrow \mathbb{C}$ be differentiable at $z_{0} \in \Omega$. Then for every R such that $B_{R}\left(z_{0}\right) \subseteq \Omega$, there exists an $M>0$ such that for each $n \geq 0$, we have

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}}
$$

4 Riemann, Liouville, uniqueness

April 9, 2023
Theorem 4.1 (Riemann's removable singularity). Let $z_{0} \in \Omega$ and $f: \Omega \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be differentiable throughout. Then the following are equivalent:
(i) f is differentiably extensible to Ω.
(ii) f is continuously extensible to Ω.
(iii) f is bounded around $z_{0} \cdot{ }^{22}$
(iv) $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0$.

Corollary 4.2 (Quotient function of differentiable is differentiable). Let $f: \Omega \rightarrow \mathbb{C}$ be differentiable at $z_{0} \in \Omega$. Then the function $g: \Omega \rightarrow \mathbb{C}$ given by

$$
g(z):= \begin{cases}\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}, & z \neq z_{0} \\ f^{\prime}\left(z_{0}\right), & z=z_{0}\end{cases}
$$

is differentiable at z_{0} as well, with the derivative being $f^{\prime \prime}\left(z_{0}\right) / 2$.

[^17]Corollary 4.3. Let $f: \Omega \rightarrow \mathbb{C}$ be differentiable throughout and c_{1}, \ldots, c_{n} be distinct zeroes of f. Then for the function

$$
g: z \mapsto \frac{f(z)}{\left(z-c_{1}\right) \cdots\left(z-c_{n}\right)}
$$

defined on $\Omega \backslash\left\{c_{1}, \ldots, c_{n}\right\}$, each of the limits $\lim _{z \rightarrow c_{i}} g(z)$ exists and the continuous extension of g on Ω is differentiable.

Theorem 4.4 (Liouville). Let f be entire with

$$
|f(z)| \leq A+B|z|^{\alpha}
$$

for some $A, B \geq 0, B \neq 0, \alpha \in \mathbb{R}$. Then f is a polynomial of degree at most $\max (0,\lfloor\alpha\rfloor)$.

Corollary 4.5. A nonconstant entire function can't have two \mathbb{R}-independent periods. ${ }^{23}$

Theorem 4.6. An entire function f such that $|f(z)| \rightarrow \infty$ as $|z| \rightarrow \infty$ must have zeroes.

Lemma 4.7. For any polynomial p, we have that $|p(z)| \rightarrow \infty$ as $|z| \rightarrow \infty .{ }^{24}$
Corollary 4.8 (The fundamental theorem of algebra). Any nonconstant complex polynomial must have a root.

Theorem 4.9 (Uniqueness theorem). Let $f: \mathscr{D} \rightarrow \mathbb{C}$ be differentiable throughout. Let f vanish uniformly on $S \subseteq \mathscr{D}$, which has a limit point in \mathscr{D}. Then f vanishes everywhere. ${ }^{25}$

5 Max and min modulus, and open mapping

April 9, 2023
Definition 5.1 (Relative maxima and minima). A point $z_{0} \in S \subseteq \mathbb{C}$ is called a relative maximum (respectively minimum) of $f: S \rightarrow \mathbb{C}$ iff there exists an $\varepsilon>0$ such that for each $z_{\in} B_{\varepsilon}\left(z_{0}\right) \cap S$, we have

$$
\left.\left|f\left(z_{0}\right)\right| \geq|f(z)| \text { (respectively }\left|f\left(z_{0}\right)\right| \leq|f(z)|\right)
$$

[^18]Theorem 5.2 (Maximum modulus). A nonconstant differentiable function on a domain can't have a relative maximum.

Corollary 5.3 (Minimum modulus). The relative minima of a nonconstant differentiable function on a domain are precisely its zeroes.

Remark. This furnishes another proof of Theorem 4.6.

Theorem 5.4 (Open mapping theorem). A differentiable map on an open set is open.

6 Analytic branches of $\ln (z)$

Do this after doing simply connected regions!

Chapter IV

Laurent series

1 Isolated singularities

April 29, 2023
Definition 1.1. z_{0} is called an isolated singularity of a function $f: \Omega \rightarrow \mathbb{C}$ iff f is defined, and is differentiable in a deleted neighborhood of z_{0}.

Example 1.2 (An example of a non-isolated singularity). $z=0$ for $1 / \sin (1 / z)$.

Definition 1.3 (Zero of order k). $z_{0} \in \mathbb{C}$ is called a zero of order $k \geq 1$ of a function f iff f is differentiable in some $B_{R}\left(z_{0}\right)$ and if

$$
f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

is the power series representation of f around z_{0}, then
(i) $c_{0}=\cdots=c_{k-1}=0$; and,
(ii) $c_{k} \neq 0$.

Lemma 1.4 (Order of a pole well-defined). For $j=1,2$, let $g_{j}, h_{j}: \Omega \rightarrow \mathbb{C}$ be differentiable with
(i) $g_{j}\left(z_{0}\right) \neq 0$;
(ii) $z_{0} \in \Omega$ being a zero of h_{j} order $k_{j} \geq 1$;
(iii) h_{j} 's vanish only at $z_{0} ;{ }^{1}$ and,
(iv) $g_{j}(z) / h_{j}(z)$'s coincide on $\Omega \backslash\left\{z_{0}\right\}$.

Then $k_{1}=k_{2}$.
Definition 1.5 (Types of isolated singularities). An isolated singularity z_{0} of $f: \Omega \rightarrow$ \mathbb{C} is called
(i) removable iff there exists an differentiable function in a neighborhood of z_{0} which coincides with f in a deleted neighborhood of z_{0};
(ii) pole of order $k \geq 1$ iff there exist differentiable functions g, h in a neighborhood of z_{0} such that the following hold:
(a) $g\left(z_{0}\right) \neq 0$;
(b) z_{0} is a zero of h of order k;
(c) f and g / h coincide in a deleted neighborhood of z_{0};
(iii) essential iff neither of the above.

Proposition 1.6 (Characterizing poles). Let z_{0} be an isolated singularity of $f: \Omega \rightarrow$ \mathbb{C} and $k \geq 1$. Then the following are equivalent:
(i) z_{0} is a pole of f of order k.
(ii) $\left(z-z_{0}\right)^{k} f(z) \nrightarrow 0$ as $z \rightarrow z_{0}$ but $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k+1}=0$.

2 The Laurent expansion

Definition 2.1 (Doubly infinite series). Let $N \in \mathbb{Z}$ and $a_{n} \in \mathbb{Z}$ for each integer $n \leq N$. Then we define ${ }^{2}$

$$
\sum_{n=-\infty}^{N} a_{n}:=\sum_{n=-N}^{\infty} a_{-n} .
$$

If $a_{n} \in \mathbb{C}$ for $n \in \mathbb{Z}$, then we define

$$
\sum_{n=-\infty}^{\infty} a_{n}:=\sum_{n=-\infty}^{-1} a_{n}+\sum_{n=0}^{\infty} a_{n}
$$

Definition 2.2 (Annulus). For $r, R>0$ and $z_{0} \in \mathbb{Z}$, we define

$$
A_{r}^{R}\left(z_{0}\right):=B_{R}\left(z_{0}\right) \backslash D_{r}\left(z_{0}\right)
$$

[^19]Corollary 2.3 (Annulus of convergence). Let the doubly infinite complex series $\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converge to the function f in $A_{r}^{R}\left(z_{0}\right)$. Then f is differentiable with

$$
f^{\prime}(z)=\sum_{n=-\infty}^{\infty} n c_{n}\left(z-z_{0}\right)^{n-1} .
$$

Remark. Complex series of the form $\sum_{n=\infty}^{\infty} c_{n}\left(z-z_{n}\right)$ are called Laurent series.
Theorem 2.4 (Finding the Laurent series). Let $f: A_{r}^{R}\left(z_{0}\right) \rightarrow \mathbb{Z}$ be differentiable. Then f admits a Laurent series

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where the coefficients are given by

$$
a_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{n}+1} \mathrm{~d} z
$$

Proposition 2.5 (Characterizing isolated singularities via Laurent series). Let z_{0} be an isolated singularity of $f: \Omega \rightarrow \mathbb{C}$. Then f admits a Laurent series representation

$$
f(z)=\sum_{n=\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

in a deleted neighborhood of z_{0}, and we have that z_{0} is
(i) a removable singularity $\Longleftrightarrow c_{n}=0$ for all $n<0$;
(ii) a pole of order $k \geq \Longleftrightarrow c_{-1}=\cdots=c_{-(k-1)}=0$ but $c_{-k} \neq 0$; and,
(iii) an essential singularity $\Longleftrightarrow c_{n} \neq 0$ for infinitely many $n<0$.

3 Residues

April 29, 2023
Definition 3.1 (Residue around an isolated singularity). Let $f: \Omega \rightarrow \mathbb{C}$ have an isolated singularity at z_{0}, and consequently have a Laurent expansion

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

in a deleted neighborhood of z_{0}. Then we define

$$
\operatorname{Res}\left(f ; z_{0}\right):=a_{-1} .
$$

Proposition 3.2 (Residue at poles). Let z_{0} be a pole of order $k \geq 1$ for $f: \Omega \rightarrow \mathbb{C}$. Then we have

$$
\operatorname{Res}\left(f ; z_{0}\right)=\left.\frac{1}{(k-1)!} \frac{\mathrm{d}^{k-1}}{\mathrm{~d} z^{k-1}}\right|_{z=z_{0}}\left(\left(z-z_{0}\right)^{k} f(z)\right)
$$

[^0]: ${ }^{1}$ bipul.saurabh@iitgn.ac.in
 ${ }^{2}$ vijaysarthak@iitgn.ac.in

[^1]: ${ }^{1}$ This allows an abusive notational identification.
 ${ }^{2}$ We'll denote $(1,0)$ by 1 (overloading notation) and $(0,1)$ by i.

[^2]: ${ }^{3}$ This allows to define (the standard) topology on \mathbb{C}.
 ${ }^{4}$ Note that the inner-product is not preserved.

[^3]: ${ }^{5}$ Again, inner-product is not preserved in general.

[^4]: ${ }^{1}$ It is implicitly implied that the radius of convergence of the right-hand-side is R as well.

[^5]: ${ }^{2}$ That is, it's zero.
 ${ }^{3}$ Well-defined since the radius of convergence is ∞.

[^6]: ${ }^{4}$ Use the unboundedness of E on \mathbb{R}.

[^7]: ${ }^{5}$ We're using a looser notation, not using $\partial_{x, x} u_{(1)}$, etc.

[^8]: ${ }^{1}$ Since a curve is a function $[a, b] \rightarrow V$, we better have V over \mathbb{R} in order to take Fréchet (or directional) derivatives.
 ${ }^{2}$ Since Fréchet differentiability is defined only for open domains.
 ${ }^{3}$ Since the domain is a subset of \mathbb{R}, the directional differentiability is equivalent to Fréchet differentiability.

[^9]: ${ }^{4}$ Note that ϕ^{\prime} is a scalar and $\gamma^{\prime} \circ \phi$ a vector.
 ${ }^{5}$ Implicitly is being said in (i) and (iii), that γ and γ_{i}^{\prime} 's are differentiable in (a, b).

[^10]: ${ }^{6}$ In the following, the preservation is both ways.
 ${ }^{7}$ Cf. Corollary 1.2.
 ${ }^{8}$ Implicitly is being said that the integrand curves on the left-hand-side are Riemann-integrable.

[^11]: ${ }^{9}$ Due to Proposition 1.13, the Riemann-integrability of γ is implied by that of γ_{n} 's.
 ${ }^{10}$ Corollary 2.8 is the analogue of this result for the line integrals in \mathbb{C}.
 ${ }^{11}$ Proposition 2.6 is the analogue of this result for the line integrals in \mathbb{C}.

[^12]: ${ }^{12}$ The sign of ϕ^{\prime} at one point determines its sign for the entire interval.
 ${ }^{13}$ The boundedness of γ^{\prime} ensure the Riemann-integrability of $\left\|\gamma^{\prime}\right\|(f \circ \gamma)$ in each of the $\left[x_{i}, x_{i+1}\right]$'s.

[^13]: ${ }^{14}$ Note that the multiplication of $f \circ \gamma$ and γ^{\prime} is possible since \mathbb{C} is an algebra. For a general normed linear space, only $\left\|\gamma^{\prime}\right\|(f \circ \gamma)$ would've made sense.

 Also note that γ^{\prime} is the Fréchet derivative and not the complex derivative (which doesn't even make sense here).
 ${ }^{15}$ Note that even though the integrand is not defined at x_{i} 's, we know that the (lower, upper, Riemann) integral are preserved if we change function values at finitely many points.

[^14]: ${ }^{16}$ Note that $(x, y) \rightarrow x+i y$ is a homeomorphism.
 ${ }^{17}$ The "corner points" are not interesting.

[^15]: ${ }^{18}$ Note that g is continuous throughout, so that we can integrate.
 ${ }^{19}$ Defined similarly as in Definition 3.1.
 ${ }^{20}$ For instance, open balls and \mathbb{C} are such sets.

[^16]: ${ }^{21}$ Prove theis! Generalize this!

[^17]: ${ }^{22}$ That is, in a neighborhood of z_{0}.

[^18]: ${ }^{23}$ In fact, the such a function in any of the "primitive strips" has to be unbounded!
 ${ }^{24}$ The usual definition.
 ${ }^{25}$ We used CC.

[^19]: ${ }^{1}$ Since $h_{j} \neq 0$, we can always take a small enough subset of Ω wherein h_{j} vanishes precisely at z_{0}.
 ${ }^{2}$ Of course, the following are defined when the series on the right-hand-side converge.

