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Chapter I

Constructing C

1 For a general ordered field

February 10, 2023

Proposition 1.1 (Adjoining
√
−1 to ordered fields). Let F be an ordered field. Then

the operations

(a1, b1) + (a2, b2) := (a1 + a2, b1 + b2), and

(a1, b1)(a2, b2) := (a1a2 − b1b2, a1b2 + b1a2)

make F × F into a field with

zero = (0, 0)

−(a, b) = (−a,−b)
one = (1, 0)

(a, b)−1 =
( a

a2 + b2
,

b

a2 + b2

)
for nonzero (a, b).

Further, the following hold:

(i) F × F can’t be ordered compatibly.

(ii) a 7→ (a, 0) is an embedding of F into F × F .1

(iii) F × F forms a two-dimensional vector space over F with a basis {1, i}.2

1This allows an abusive notational identification.
2We’ll denote (1, 0) by 1 (overloading notation) and (0, 1) by i.

1



CHAPTER I. CONSTRUCTING C 2

Notation. We’ll abuse notation, letting a+ ib stand for a1+ bi = (a, b) for a, b ∈ F .
The functions ℜ, ℑ are just the projections onto the first and second coordinates.
When F = R, we denote F × F (or any isomorphic field) by C.

2 Specializing to C
Convention. For the rest of the document, we will spacialize to C.

Definition 2.1 (Conjugate, norm, argument, inner-product). For a, b, θ ∈ R, we
define

a+ ib := a− ib, and

|a+ ib| :=
√
a2 + b2.

For z, w ∈ C, we also define

⟨z, w⟩ := z w.

Remark. Note that we will follow the usual convention, defining

0α :=

{
1, α = 0

0, α > 0
for α ∈ R.

Proposition 2.2 (Immediate properties).

(i) We can express z ∈ C as
z = ℜ(z) + iℑ(z).

(ii) ⟨·, ·⟩ makes C into an inner-product space3 with |·| being the corresponding norm
since

z z = |z|2.
(a, b) 7→ a + ib defines a norm-preserving4 R-linear isomorphism (and hence
also a homeomorphism) R2 → C.

(iii) |·| makes C into a normed algebra with

|z w| = |z| |w|.
3This allows to define (the standard) topology on C.
4Note that the inner-product is not preserved.
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(iv) z 7→ z defines a norm-preserving5 field automorphism on C with its inverse
being itself, since

z + w = z + w

z w = z w

|z| = |z|, and
z = z.

Further,

z = z ⇐⇒ z is real; and,

z = −z ⇐⇒ z is imaginary.

5Again, inner-product is not preserved in general.



Chapter II

Differentiability

1 Basic definitions

February 10, 2023

Convention. We’ll take Ω, Υ to be open subsets of C.

Definition 1.1 (The derivative). Let f : Ω → C and c ∈ Ω. Then if existent, we
define

f ′(c) := lim
z→c

f(z)− f(c)

z − c
.

Definition 1.2 (Entire functions). A function f : C → C is called entire iff it is
differentiable throughout.

Corollary 1.3. Constant and identity functions are differentiable throughout with
derivatives being 0 and 1 respectively.

Proposition 1.4. Differentiability =⇒ continuity.

Example 1.5. z 7→ z is continuous everywhere but differentiable nowhere!

Proposition 1.6. Let f, g : Ω → C be differentiable at c ∈ Ω. Then the following
hold:

(i) (f + g)′(c) = f ′(c) + g′(c).

(ii) (αf)′(c) = αf ′(c) for α ∈ C.
(iii) (fg)′(c) = f ′(c) g(c) + f(c) g′(c).

4



CHAPTER II. DIFFERENTIABILITY 5

(iv) (f/g)′(c) =
(
f ′(c) g(c)− f(c) g′(c)

)
/g(c)2 if g(c) ̸= 0.

Corollary 1.7 (Differentiating monomials). For n ≥ 1, the function z 7→ zn is
differentiable throughout with derivative at z ∈ C given by nzn−1.

Proposition 1.8 (Chain rule). Let f : Ω → Υ and g : Υ → C be differentiable at
c ∈ Ω and f(c) ∈ Υ respectively. Then g ◦ f : Ω→ C is differentiable at c with

(g ◦ f)′(c) = g′(f(c)) f ′(c).

Convention. Any bijection f : X → X ′ induces a one-to-one correspondence be-
tween functions X → Y and X ′ → Y , and between functions Y → X and Y → X ′

for a given set Y .
We’ll take the bijection (x, y)↔ x+ iy while considering R2 and C.

Proposition 1.9 (Making R-linear, C-linear). The C→ C map corresponding to
the R-linear map R2 → R2, given by

x 7→ Ax, where A ∈ R2×2,

is C-linear ⇐⇒ A is skew-symmetric.

Definition 1.10 (Cauchy-Riemann equations). A function f̃ : Ω̃ → R2 (Ω̃ open in
R2) is said to satisfy Cauchy-Riemann equations at c̃ ∈ Ω̃ iff in the standard basis,
the Jacobian exists and is skew-symmetric, at c, i.e.,

∂xf̃x(c̃) = ∂yf̃y(c̃), and

∂xf̃y(c̃) = −∂yf̃x(c̃).

Theorem 1.11 (Characterizing differentiability). Let f : Ω → C, and f̃ : Ω̃ → R2

be the corresponding function. Let c := a+ ib ∈ Ω (a, b ∈ R). Then the following are
equivalent:

(i) f is C-differentiable at c with

f ′(c) = α + iβ, where α, β ∈ R.

(ii) f̃ is Fréchet differentiable with

[
Df̃(a, b)

]
std

=

[
α −β
β α

]
.
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Convention. We’ll reserve D to denote a domain in C.

Example 1.12. A differentiable function f : D→ C is constant throughout D if one of
the following holds:

(i) ℜ(f(z)) or ℑ(f(z)) is constant.
(ii) |f(z)| is constant.

Definition 1.13 (Higher derivatives). Let f : Ω → C. Then we inductively define
the functions f (n)’s as:

(i) f (0) := f .

(ii) Having defined f (n), define f (n+1) : Υ→ C where Υ is the interior of the set of
all the points in the domain of f (n) where it is differentiable, and

f (n+1)(z) :=
(
f (n)

)′
(z).

We say that f is n times differentiable iff dom f (n) = Ω.

2 Differentiating power series

February 11, 2023

Remark. The results in this section hold for R also.

Theorem 2.1 (Differentiating a power series). Let the complex power series
∑∞

n=0 cn(z−
z0)

n converge to f : BR(z0)→ C where R ∈ (0,∞)∪{∞} is the radius of convergence.
Then f is differentiable with1

f ′(z) =
∞∑
n=1

ncn(z − z0)
n−1.

Corollary 2.2 (Power series are infinitely differentiable). Let R ∈ (0,∞) ∪ {∞} be
the radius of convergence of the complex power series

∑∞
n=0 cn(z − z0)

n. Then the
following hold:

(i) f is k times differentiable for each k ≥ 0, with

f (k)(z) =
∞∑
n=k

n!

(n− k)!
cn(z − z0)

n−k.

1It is implicitly implied that the radius of convergence of the right-hand-side is R as well.
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(ii) cn’s are given by

cn =
f (n)(z0)

n!
.

Proposition 2.3 (Power series determined by its values on a sequence). Let R ∈
(0,∞)∪{∞} be the radius of convergence of a complex power series

∑∞
n=0 cn(z−z0)n,

and let the series vanish2 on a sequence (wn) ∈ BR(z0) one of whose limit points is
z0. Then each cn = 0.

3 The exponential function

February 26, 2023

Definition 3.1 (The exponential function). We define E: C→ C via3

z 7→
∞∑
n=0

zn

n!
.

Proposition 3.2 (Properties of E).

(i) E(1) = 1.

(ii) E is a group homomorphism on C→ C \ {0} as well as on R→ (0,∞).

(iii) On R, we have E(x)→∞ as as x→∞ and E(x)→ 0 as x→ −∞.

(iv) E is differentiable with E′ = E.

(v) E(z) = E(z).

Proposition 3.3. For x ∈ R, we have

E(x) = ex.

4 The trigonometric functions

February 26, 2023

Definition 4.1 (Cosine and sine). We define cos, sin : C→ C as

cos(z) :=
E(iz) + E(−iz)

2
, and

sin(z) :=
E(iz)− E(−iz)

2
.

2That is, it’s zero.
3Well-defined since the radius of convergence is ∞.
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Proposition 4.2 (Properties of the trigonometric functions).

(i) cos 0 = 1 and sin 0 = 0.

(ii) cos2 z + sin2 z = 1.

(iii) E(iz) = cos z + i sin z.

(iv) cos and sin map R in [−1, 1].
(v) cos and sin are differentiable with cos′ = − sin and sin′ = cos.

Theorem 4.3. There exists a smallest positive real zero of cos.

Definition 4.4 (π). We define π to be the real number so that π/2 is the smallest
positive zero of cos.

Proposition 4.5. cos(π/2) = 0 and sin(π/2) = 1.

Proposition 4.6. On [0, π/2], we have that cos is strictly decreasing and that sin is
strictly increasing.

Definition 4.7 (Periods of functions). Let G be an additive abelian group and
f : G → G. Then a p ∈ G is called a period of a function f : G → G iff for each
x ∈ G, we have

f(x+ p) = f(x).

Lemma 4.8. For each t ∈ (0, 2π), we have that E(it) ̸= 0.

Corollary 4.9. For t ∈ R, we have that E(it) = 1 ⇐⇒ t ∈ 2πZ.

Proposition 4.10. For z ∈ Z, we have that4

E(z) = 1 ⇐⇒ z ∈ 2πiZ.

Corollary 4.11 (2π is the smallest possible period of E, cos, sin). For p ∈ Z, the
following are equivalent:

(i) ip is a period of E.

(ii) p is a period of sin.

(iii) p is a period of cos.

(iv) p ∈ 2πZ.
4Use the unboundedness of E on R.
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Theorem 4.12 (S1 ↔ [0, 2π)). There exists a one-to-one correspondence:

[0, 2π)

θ

←→ {z ∈ C : |z| = 1}
E(iθ)

Notation. We use S1 := {z ∈ C : |z| = 1}.

Corollary 4.13. Let x, y ∈ R not both be zero. Then there exists a unique θ ∈ [0, 2π)
such that

cos θ =
x√

x2 + y2
and sin θ =

y

x2 + y2
.

Corollary 4.14 (Polar form). Let z ∈ C\{0}. Then there exists a unique θ ∈ (−π, π]
such that

z = |z| E(iθ).

Notation. We denote the above θ by Arg z.

Corollary 4.15. θ 7→ E(iθ) is a continuous surjective group homomorphism on
R→ S1.

Corollary 4.16 (n-th roots of unity). Let n ≥ 1. Then E
(
i(2πk/n)

)
, for 0 ≤ k < n

are n distinct (and hence all the) n-th roots of unity.

Proposition 4.17 (Subgroups formed by n-th roots of unity). Define

Λ :=
⋃
n≥1

{n-th roots of unity}.

Then the following hold:

(i) Λ ⪇ S1 ⪇ C \ {0}.
(ii) Λ is dense in S1.

(iii) Let G be a compact multiplicative subgroup of C and f : G → C \ {0} be a
continuous group homomorphism. Then f(G) ⊆ S1.
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5 Harmonic functions

February 11, 2023
DO THIS AFTER DOING CLAIRAIUT!

Definition 5.1 (Harmonic functions). A function u : Ω̃→ R (Ω̃ open in R2) is called
harmonic iff it is C2 (with respect to standard bases) and5

∂x,xu+ ∂y,yu = 0.

Corollary 5.2. First prove that differentiability implies analyticity!
The real and imaginary parts of a differentiable function on an open set are

harmonic.

Definition 5.3 (Harmonic conjugate). Let u : Ω̃→ R (Ω open in R2) be harmonic.
Then a harmonic conjugate of u is a harmonic function v : Ω̃→ R such that the

5We’re using a looser notation, not using ∂x,xu(1), etc.



Chapter III

Line integrals

1 General things in normed linear spaces

February 27, 2023

Convention. V will stand for a generic normed linear space over R.1 B will stand
for a generic basis for V .

Convention. Whenever we’ll write [a, b], it will be understood that a < b.

1.1 The derivative of a curve

February 27, 2023

Definition 1.1 (The derivative of a curve). Let γ : [a, b] → V be differentiable at
c ∈ (a, b).2 Then we define3

γ′(c) := Dγ(c)(1)

= D1γ(c).

Remark. This extends the notation for the case when V = R.
1Since a curve is a function [a, b] → V , we better have V over R in order to take Fréchet (or

directional) derivatives.
2Since Fréchet differentiability is defined only for open domains.
3Since the domain is a subset of R, the directional differentiability is equivalent to Fréchet

differentiability.

11
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Corollary 1.2 (Chain rule for curves). Let ϕ : [a, b] → [c, d] be (continuously)
differentiable at x0 ∈ (a, b) and γ : [c, d] → V be (continuously) differentiable at
ϕ(x0) ∈ (c, d). Then γ ◦ ϕ : [a, b]→ V is (continuously) differentiable at x0 with4

(γ ◦ ϕ)′(x0) = ϕ′(x0) γ
′(ϕ(x0)).

Corollary 1.3. Let V be finite-dimensional. Then γ : [a, b]→ V is differentiable at
c ∈ (a, b) ⇐⇒ each γi : [a, b]→ R is differentiable at c, in which case,

[
γ′(c)

]
B =

γ
′
1(c)
...

γ′
n(c)

 .

Corollary 1.4 (C1-ness for curves). Let V be finite-dimensional. Then for γ : [a, b]→
V , the following are equivalent:5

(i) γ′ : (a, b)→ V is continuous.

(ii) γ is continuously differentiable on (a, b).

(iii) Each γ′
i : (a, b)→ R is continuous.

1.2 Operations on curves

February 27, 2023

Definition 1.5 (Negation and join of curves). Let γ : [a, b] → X and δ : [c, d] → X
for a set X. Then we define the following:

(i) −γ : [a, b]→ X given by
t 7→ a+ b− t.

(ii) γ ∗ δ : [a, b+ d− c]→ X given by

t 7→

{
γ(t), t ∈ [a, b]

δ(t− b+ c), t ∈ (b, b+ d− c]
.

Corollary 1.6.

(i) Double negation gives back the original curve.

(ii) Join is associative.

4Note that ϕ′ is a scalar and γ′ ◦ ϕ a vector.
5Implicitly is being said in (i) and (iii), that γ and γ′

i’s are differentiable in (a, b).
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Corollary 1.7. Continuing Definition 1.5, the following hold:

(i) If X is a topological space, then the following hold:6

(a) −γ preserves the continuity of γ.
(b) γ ∗ δ preserves the continuity of γ and δ on [a, b) and (c, d] respectively.

It is continuous at b ⇐⇒ γ(b) = δ(c), and γ and δ are continuous at b
and c respectively.

(ii) If X = V , then we further have the following:

(a) −γ preserves the (continuous) differentiability of γ.
(b) γ ∗ δ preserves the (continuous) differentiability of γ and δ.7

1.3 Integration of curves

February 27, 2023

Proposition 1.8 (Integrating a curve). Let V be finite-dimensional and γ : [a, b]→
V be such that each γe : [a, b] → R is Riemann-integrable. Then for any other basis
C, we also have that each γẽ is Riemann-integrable with∑

e∈B

(ˆ b

a

γe

)
e =

∑
ẽ∈C

(ˆ b

a

γẽ

)
ẽ.

Notation. This allows to denote the above integral by
´ b
a
γ and also define Riemann-

integrability for curves as in Definition 1.9.

Definition 1.9 (Riemann-integrability for curves). Let γ : [a, b] → V with V being
finite-dimensional. Then γ is called Riemann-integrable iff there exists a basis of V
in which each induced component function [a, b]→ R is Riemann-integrable.

Remark. Note that we define
´ b
a
γ only for finite-dimensional V ’s.

Proposition 1.10 (Properties of integrating a curve). Let V be finite-dimensional
and γ, γ1, γ2 : [a, b]→ V , and δ : [c, d]→ V be Riemann-integrable. Then the follow-
ing hold:8

ˆ b

a

(γ1 + γ2) =

ˆ b

a

γ1 +

ˆ b

a

γ2

6In the following, the preservation is both ways.
7Cf. Corollary 1.2.
8Implicitly is being said that the integrand curves on the left-hand-side are Riemann-integrable.
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ˆ b

a

(αγ) = α

ˆ b

a

γ for any α ∈ R
ˆ b

a

(−γ) =
ˆ b

a

γ if γ is continuous

ˆ b+d−c

a

(γ ∗ δ) =
ˆ b

a

γ +

ˆ d

c

δ if γ, δ are continuous

Further, if V = C, then we can also allow α ∈ C.

Proposition 1.11. Let V be a finite-dimensional inner-product space (over R) and
γ : [a, b]→ V be Riemann-integrable. Then ∥γ∥ is Riemann-integrable with∥∥∥∥ˆ b

a

γ

∥∥∥∥ ≤ ˆ b

a

∥γ∥.

Remark. Next thing would’ve been an ML formula for inner-product spaces. But
we are not defining the line integrals for normed linear spaces. . .

Corollary 1.12. Let V be a finite-dimensional inner-product space (over R). Let
γ, γn : [a, b]→ V be Riemann-integrable with γn → γ uniformly.9 Then we have10

ˆ b

a

γn →
ˆ b

a

γ.

Proposition 1.13. For dimV < ∞, a uniform limit of Riemann-integrable func-
tions is Riemann-integrable.

Proposition 1.14 (“Integral of derivative”). Let dimV < ∞. Let Γ: [a, b] → V
be continuous on [a, b] and (Fréchet) differentiable on (a, b). Let γ : [a, b] → V be
Riemann-integrable with γ = Γ′ on (a, b). Then11

ˆ b

a

γ = Γ(b)− Γ(a).

9Due to Proposition 1.13, the Riemann-integrability of γ is implied by that of γn’s.
10Corollary 2.8 is the analogue of this result for the line integrals in C.
11Proposition 2.6 is the analogue of this result for the line integrals in C.
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1.4 Reparametrizations of curves

February 27, 2023

Definition 1.15 (C1 parameter transformations). A bijection ϕ : [a, b] → [c, d] is
called a c.p.t. iff ϕ and ϕ−1 are C1.

Remark. Equivalently, we could have demanded that ϕ be C1 with its derivative
never vanishing.

Corollary 1.16. The derivative of a c.p.t. never vanishes.

Definition 1.17 (Orientation-preserving and -reversing C1 parameter transforma-
tions). A c.p.t. ϕ : [a, b]→ [c, d] is called an o.p.c.p.t. iff ϕ′ > 0.12

We similarly define o.r.c.p.t.’s.

Proposition 1.18. The compositions and inverses of c.p.t.’s (respectively o.p.c.p.t.’s)
are c.p.t.’s (respectively o.p.c.p.t.’s).

Definition 1.19 (C1 reparametrizations). We say that δ : [c, d] → V is a c.r. of
γ : [a, b]→ V iff δ = γ ◦ ϕ for some c.r. ϕ : [c, d]→ [a, b].

Definition 1.20 (Orientation-preserving and -reversing C1 reparametrizations). We
say that δ : [c, d] → V is an o.p.c.r of γ : [a, b] → V iff δ = γ ◦ ϕ for some o.p.c.p.t.
ϕ : [c, d]→ [a, b].

We similarly define o.r.c.r.’s.

Corollary 1.21. “Being c.r.” (respectively “being o.p.c.r”) is an equivalence rela-
tion.

1.5 Nice paths for line integrals

February 28, 2023

Definition 1.22 (Nice paths and induced partitions). A continuous function γ : [a, b]→
V will be called a nice path (or a nice curve) iff there are only finitely many points
in (a, b) on which γ is not differentiable or is not continuously differentiable, and iff
∥γ′∥ is bounded (wherever γ′ exists on (a, b)).

This induces a unique smallest partition a = x0 < · · · < xn = b with n ≥ 1 such
that γ is continuously differentiable in each (xi, xi+1).

13 We will call this the partition
of [a, b] induced by γ.

12The sign of ϕ′ at one point determines its sign for the entire interval.
13The boundedness of γ′ ensure the Riemann-integrability of ∥γ′∥(f ◦γ) in each of the [xi, xi+1]’s.
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Remark. We won’t develop the theory of line integrals in normed linear spaces
here.

Proposition 1.23 (O.p.c.r.’s preserve nice-ness). Let γ : [a, b]→ V be nice, inducing
the partition a = x0 < · · · < xn = b. Let ϕ : [c, d] → [a, b] be a c.p.t.. Then
γ ◦ ϕ : [c, d]→ V is also nice, with the induced partition being

(i) c = ϕ−1(x0) < · · · < ϕ−1(xn) = d if ϕ is orientation-preserving; and,

(ii) c = ϕ−1(xn) < · · · < ϕ−1(x0) = d if ϕ is orientation-reversing.

Corollary 1.24 (Negation and joins preserve nice-ness).

(i) Negation preserves the nice-ness of curves.

(ii) Joining nice curves, that match at the joining point, yields a nice curve with
the induced partition being “same” except possibly at the joining point.

2 Line integrals in C
February 27, 2023

Remark. Note that C is 2-dimensional over R with ∥·∥ = |·|.

Definition 2.1 (Line integrals). Let γ : [a, b] → S with S ⊆ C be nice and let
a = x0 < · · · < xn = b be the induced partition. Let f : S → C be continuous
on γ([a, b]) → C. Then14 (f ◦ γ)γ′ is Riemann-integrable in each15 [xi, xi+1] and we
define ˆ

γ

f :=
n−1∑
i=0

ˆ xi+1

xi

(f ◦ γ)γ′.

Remark. Note that we are defining line integrals only for continuous f ’s and nice
γ’s.

Remark. In the following, we’ll write γ : [a, b]→ C and f : γ([a, b])→ C.
14Note that the multiplication of f ◦ γ and γ’ is possible since C is an algebra. For a general

normed linear space, only ∥γ′∥(f ◦ γ) would’ve made sense.
Also note that γ′ is the Fréchet derivative and not the complex derivative (which doesn’t even

make sense here).
15Note that even though the integrand is not defined at xi’s, we know that the (lower, upper,

Riemann) integral are preserved if we change function values at finitely many points.



CHAPTER III. LINE INTEGRALS 17

Example 2.2. Define γ : [0, 2π] → C by t 7→ E(it). Take f : C \ {0} → C given by
z 7→ zn for n ∈ Z. Then we haveˆ

γ

f =

{
0, n ̸= −1
2πi, n = −1

.

Proposition 2.3 (O.p.c.r.’s preserve line integrals). Let γ : [a, b] → C be nice and
f : γ([a, b])→ C be continuous. Let ϕ : [c, d]→ [a, b] be an o.p.c.p.t.. Then we haveˆ

γ

f =

ˆ
γ◦ϕ

f .

Proposition 2.4 (Properties of line integrals). Let the curves γ : [a, b] → C and
δ : [c, d] → C be nice, and match at endpoints. Let f, g : γ([a, b]) → C and h : (γ ∗
δ)([a, b+ d− c])→ C be continuous. Then the following hold:ˆ

γ

(f + g) =

ˆ
γ

f +

ˆ
γ

g

ˆ
γ

(αf) = α

ˆ
γ

f for any α ∈ C
ˆ
−γ

f = −
ˆ
γ

f

ˆ
γ∗δ

h =

ˆ
γ

h+

ˆ
δ

h

Proposition 2.5 (A version of “change of variables”). Let γ : [a, b]→ C be nice and
f : γ([a, b]) → C be continuous. Let a, b ∈ C with a ̸= 0, and ϕ : C → C be given by
z 7→ az + b. Then γ ◦ ϕ is nice and f ◦ ϕ−1 continuous as well, and we have

a

ˆ
γ

f =

ˆ
ϕ◦γ

f ◦ ϕ−1.

Proposition 2.6. Let γ : [a, b] → C be Riemann-integrable. Then |γ| is Riemann-
integrable as well with ∣∣∣∣ ˆ b

a

γ

∣∣∣∣ ≤ ˆ b

b

|γ|.

Theorem 2.7 (ML formula). Let γ : [a, b] → C be nice and f : γ([a, b]) → C be
continuous. Then ∣∣∣∣ ˆ

γ

f

∣∣∣∣ ≤ (
sup
a≤t≤b

|f(γ(t))|
) ∑

i

ˆ xi+1

xi

|γ′|︸ ︷︷ ︸
length of γ

.
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Corollary 2.8. Let γ : [a, b]→ C be nice and f, fn : γ([a, b])→ C be continuous such
that fn → f uniformly on γ([a, b]). Thenˆ

γ

fn →
ˆ
γ

f .

Theorem 2.9 (Integral of derivative). Let γ : [a, b] → C be nice and F : Ω → C be
differentiable on γ([a, b]) ⊆ Ω. Let f : γ([a, b]) → C be continuous with f = F ′ on
γ([a, b]). Then ˆ

γ

f = F (γ(b))− F (γ(a)).

Corollary 2.10. The function z 7→ 1/z doesn’t have any “antiderivative” on C \
{0} → C.

3 Rectangles, Morera, Cauchy

April 8, 2023

Definition 3.1 (Open rectangles and integrals along them). The (complex sets cor-
responding to16 the) basic open sets of R2 will be called open rectangles.

Let R be a nonempty open rectangle and f : S → C with S ⊇ ∂R. Let f be
continuous on ∂R→ C. Then we define‰

∂R

f :=

ˆ
γ

f

where γ is the nice closed curve given by

γ := γ1 ∗ γ2 ∗ γ3 ∗ γ4

where γi’s are defined like so:
γi’s have domains [0, 1], and are linear, beginning and ending at vertices.

Lemma 3.2. Let R be a nonempty open rectangle. Let z0 ∈ R be a “non-corner”
point.17 Let S1, . . . , Sn be the subrectangles formed as shown, depending whether
z0 ∈ ∂R or z0 ∈ int(R), respectively:
Let f : R→ C be continuous. Then we have

‰
∂R

f =
n∑

i=1

‰
∂R

f .

16Note that (x, y)→ x+ iy is a homeomorphism.
17The “corner points” are not interesting.
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γ1

γ2

γ3

γ4

S1S2

S1S2

S3 S4

z0

z0

Theorem 3.3 (Rectangle theorem). Let f : Ω→ C be differentiable throughout and
R be an open rectangle such that R ⊆ Ω. Then‰

∂R

f = 0.

Further, for a fixed z0 ∈ Ω, if we define g : Ω→ C by

g(z) :=

{
f(z)−f(z0)

z−z0
, z ̸= z0

f ′(z0), z = z0
,

then also we have18 ‰
∂R

g = 0.

Theorem 3.4 (Morera). Let Ω be convex and contain a point z0 such that for every
z ∈ Ω, the shown nice path19 γz lies in Ω.20

Let f : Ω → C be continuous and such that for every nonempty open rectangle R so
that R ⊆ Ω, we have ‰

∂R

f = 0.

The F : Ω→ C defined by

F (z) :=

ˆ
γz

f .

18Note that g is continuous throughout, so that we can integrate.
19Defined similarly as in Definition 3.1.
20For instance, open balls and C are such sets.
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z0

z

γz

Ω

is differentiable throughout with
F ′ = f .

Remark. Once Theorem 3.4 holds, we can apply closed curve theorem to f for nice
paths lying inside Ω.

Lemma 3.5. Let DR(z0) ⊆ Ω. Then BR+ε(z0) ⊆ Ω for some ε > 0.21

Remark. We’ll use
´
γ
f(z) dz notation when the “rule f(z)” can be made into a

continuous function on (the image of) γ.

Theorem 3.6 (Cauchy’s integral formula). Let f : Ω→ C be differentiable through-
out. Let a ∈ BR(z0) with DR(z0) ⊆ Ω. Let γ : [0, 2π] → C be given by t 7→
z0 +RE(it). Then we have

f(a) =
1

2πi

ˆ
γ

f(z)

z − a
dz.

Corollary 3.7 (Mean value). Continuing Theorem 3.6, we also have

f(a) =
1

2π

ˆ 2π

0

f ◦ γ.

Theorem 3.8 (Differentiability =⇒ analyticity). Let f : Ω → C be differentiable
throughout and BR(z0) ⊆ Ω. Then the following hold:

21Prove theis! Generalize this!
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(i) f is infinitely differentiable at z0 with

f (n)(z0) =
n!

2πi

ˆ
γ

f(z)

(z − z0)n+1
dz

where γ : [0, 2π]→ C is any curve given by t 7→ z0+rE(it), for some 0 < r < R.

(ii) For all z ∈ BR(z0), we have a power series representation for f :

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)

n.

Corollary 3.9 (Cauchy’s inequality). Let f : Ω → C be differentiable at z0 ∈ Ω.
Then for every R such that BR(z0) ⊆ Ω, there exists an M > 0 such that for each
n ≥ 0, we have

|f (n)(z0)| ≤
n!M

Rn
.

4 Riemann, Liouville, uniqueness

April 9, 2023

Theorem 4.1 (Riemann’s removable singularity). Let z0 ∈ Ω and f : Ω \ {z0} → C
be differentiable throughout. Then the following are equivalent:

(i) f is differentiably extensible to Ω.

(ii) f is continuously extensible to Ω.

(iii) f is bounded around z0.
22

(iv) limz→z0(z − z0)f(z) = 0.

Corollary 4.2 (Quotient function of differentiable is differentiable). Let f : Ω→ C
be differentiable at z0 ∈ Ω. Then the function g : Ω→ C given by

g(z) :=

{
f(z)−f(z0)

z−z0
, z ̸= z0

f ′(z0), z = z0

is differentiable at z0 as well, with the derivative being f ′′(z0)/2.

22That is, in a neighborhood of z0.
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Corollary 4.3. Let f : Ω→ C be differentiable throughout and c1, . . . , cn be distinct
zeroes of f . Then for the function

g : z 7→ f(z)

(z − c1) · · · (z − cn)

defined on Ω \ {c1, . . . , cn}, each of the limits limz→ci g(z) exists and the continuous
extension of g on Ω is differentiable.

Theorem 4.4 (Liouville). Let f be entire with

|f(z)| ≤ A+B|z|α

for some A,B ≥ 0, B ̸= 0, α ∈ R. Then f is a polynomial of degree at most
max(0, ⌊α⌋).

Corollary 4.5. A nonconstant entire function can’t have two R-independent peri-
ods.23

Theorem 4.6. An entire function f such that |f(z)| → ∞ as |z| → ∞ must have
zeroes.

Lemma 4.7. For any polynomial p, we have that |p(z)| → ∞ as |z| → ∞.24

Corollary 4.8 (The fundamental theorem of algebra). Any nonconstant complex
polynomial must have a root.

Theorem 4.9 (Uniqueness theorem). Let f : D → C be differentiable throughout.
Let f vanish uniformly on S ⊆ D, which has a limit point in D. Then f vanishes
everywhere.25

5 Max and min modulus, and open mapping

April 9, 2023

Definition 5.1 (Relative maxima and minima). A point z0 ∈ S ⊆ C is called a
relative maximum (respectively minimum) of f : S → C iff there exists an ε > 0 such
that for each z∈Bε(z0) ∩ S, we have

|f(z0)| ≥ |f(z)| (respectively |f(z0)| ≤ |f(z)|).
23In fact, the such a function in any of the “primitive strips” has to be unbounded!
24The usual definition.
25We used CC.
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Theorem 5.2 (Maximum modulus). A nonconstant differentiable function on a
domain can’t have a relative maximum.

Corollary 5.3 (Minimum modulus). The relative minima of a nonconstant differ-
entiable function on a domain are precisely its zeroes.

Remark. This furnishes another proof of Theorem 4.6.

Theorem 5.4 (Open mapping theorem). A differentiable map on an open set is
open.

6 Analytic branches of ln(z)

Do this after doing simply connected regions!



Chapter IV

Laurent series

1 Isolated singularities

April 29, 2023

Definition 1.1. z0 is called an isolated singularity of a function f : Ω → C iff f is
defined, and is differentiable in a deleted neighborhood of z0.

Example 1.2 (An example of a non-isolated singularity). z = 0 for 1/ sin(1/z).

Definition 1.3 (Zero of order k). z0 ∈ C is called a zero of order k ≥ 1 of a function
f iff f is differentiable in some BR(z0) and if

f(z) =
∞∑
n=0

cn(z − z0)
n

is the power series representation of f around z0, then

(i) c0 = · · · = ck−1 = 0; and,

(ii) ck ̸= 0.

Lemma 1.4 (Order of a pole well-defined). For j = 1, 2, let gj, hj : Ω → C be
differentiable with

(i) gj(z0) ̸= 0;

(ii) z0 ∈ Ω being a zero of hj order kj ≥ 1;

24
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(iii) hj’s vanish only at z0;
1 and,

(iv) gj(z)/hj(z)’s coincide on Ω \ {z0}.
Then k1 = k2.

Definition 1.5 (Types of isolated singularities). An isolated singularity z0 of f : Ω→
C is called

(i) removable iff there exists an differentiable function in a neighborhood of z0
which coincides with f in a deleted neighborhood of z0;

(ii) pole of order k ≥ 1 iff there exist differentiable functions g, h in a neighborhood
of z0 such that the following hold:

(a) g(z0) ̸= 0;
(b) z0 is a zero of h of order k;
(c) f and g/h coincide in a deleted neighborhood of z0;

(iii) essential iff neither of the above.

Proposition 1.6 (Characterizing poles). Let z0 be an isolated singularity of f : Ω→
C and k ≥ 1. Then the following are equivalent:

(i) z0 is a pole of f of order k.

(ii) (z − z0)
k f(z) ̸→ 0 as z → z0 but limz→z0(z − z0)

k+1 = 0.

2 The Laurent expansion

Definition 2.1 (Doubly infinite series). Let N ∈ Z and an ∈ Z for each integer
n ≤ N . Then we define2

N∑
n=−∞

an :=
∞∑

n=−N

a−n.

If an ∈ C for n ∈ Z, then we define

∞∑
n=−∞

an :=
−1∑

n=−∞

an +
∞∑
n=0

an.

Definition 2.2 (Annulus). For r, R > 0 and z0 ∈ Z, we define

AR
r (z0) := BR(z0) \Dr(z0).

1Since hj ̸= 0, we can always take a small enough subset of Ω wherein hj vanishes precisely at
z0.

2Of course, the following are defined when the series on the right-hand-side converge.
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Corollary 2.3 (Annulus of convergence). Let the doubly infinite complex series∑∞
n=−∞ cn (z − z0)

n converge to the function f in AR
r (z0). Then f is differentiable

with

f ′(z) =
∞∑

n=−∞

ncn (z − z0)
n−1.

Remark. Complex series of the form
∑∞

n=∞ cn (z − zn) are called Laurent series.

Theorem 2.4 (Finding the Laurent series). Let f : AR
r (z0) → Z be differentiable.

Then f admits a Laurent series

f(z) =
∞∑

n=−∞

an(z − z0)
n

where the coefficients are given by

an =
1

2πi

ˆ
γ

f(z)

(z − z0)n + 1
dz.

Proposition 2.5 (Characterizing isolated singularities via Laurent series). Let z0 be
an isolated singularity of f : Ω→ C. Then f admits a Laurent series representation

f(z) =
∞∑

n=∞

cn (z − z0)
n

in a deleted neighborhood of z0, and we have that z0 is

(i) a removable singularity ⇐⇒ cn = 0 for all n < 0;

(ii) a pole of order k ≥ ⇐⇒ c−1 = · · · = c−(k−1) = 0 but c−k ̸= 0; and,

(iii) an essential singularity ⇐⇒ cn ̸= 0 for infinitely many n < 0.

3 Residues

April 29, 2023

Definition 3.1 (Residue around an isolated singularity). Let f : Ω → C have an
isolated singularity at z0, and consequently have a Laurent expansion

f(z) =
∞∑

n=−∞

cn (z − z0)
n
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in a deleted neighborhood of z0. Then we define

Res(f ; z0) := a−1.

Proposition 3.2 (Residue at poles). Let z0 be a pole of order k ≥ 1 for f : Ω→ C.
Then we have

Res(f ; z0) =
1

(k − 1)!

dk−1

dzk−1

∣∣∣∣
z=z0

(
(z − z0)

k f(z)
)
.
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