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Chapter 1

Main definitions

February 1, 2022

Definition 1.0.1 (Rings). (R,+, ·) is a ring iff the following hold:

(a) (R,+) is an abelian group.
(b) · : R × R → R such that there exists a 1 ∈ R such that for all a, b, c ∈ R, we

have

(i) a · b = b · a,
(ii) (a · b) · c = a · (b · c), and

(iii) a · 1 = a.

(c) a · (b+ c) = a · b+ a · c for all a, b, c ∈ R.

Remark 1.0.2. We’ll denote the additive and multiplicative identities of a ring by
0 and 1.

Definition 1.0.3 (Subrings). Let R be a ring. Then S is a subring of S iff S ⊆ R,
and addition and multiplication of R can be inherited to S as operations on S (that
is, S is closed under these) such that these inherited operations make S a ring, and
the multiplicative identities of S and R are equal.

Remark 1.0.4. To show the necessity of demanding the equality of multiplicative
identities, consider 4 ∈ {0, 2, 4} ⊆ Z/Z6.

Proposition 1.0.5 (An equivalent condition for being a subring). Let R be a ring
and S ⊆ R. Then S is a subring of R ⇐⇒ the following hold:

(a) S is closed under addition and multiplication.
(b) −1, 1 ∈ S.
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CHAPTER 1. MAIN DEFINITIONS 5

Corollary 1.0.6.

(a) A subring of a subring is a subring of the parent ring.
(b) Intersection of subrings is a subring.

Proposition 1.0.7 (Non-examples of rings).

(a) The set of n × n matrices with (entries in a field) follows everything except
commutativity of multiplication.

(b) The nontrivial subgroups of the additive group of Z obey everything except they
don’t have 1.

(c) Z with usual addition but with multiplication taken be the usual addition, obeys
everything except distributivity.

(d)
{
a+ b

2
∈ Q : a, b ∈ Z

}
is not a ring under the usual operations.

Proposition 1.0.8 (Examples of rings).

(a) The zero ring with obvious addition and multiplication.
(b) Z, Q, R, Z[i], C with usual operations.
(c) Z/Zn with usual operations.
(d) The set of continuous functions from R to R with pointwise addition and mul-

tiplication. We can also take the set of all functions, and not just continuous.

Proposition 1.0.9 (Product rings). Let R, R′ be rings. Then the operations (a, a′)+
(b, b′) := (a+ b, a′ + b′) and (a, a′)(b, b′) := (ab, a′b′) make R×R′ into a ring.

Remark 1.0.10. Unless stated otherwise, take R×R′ to be the product ring.

Lemma 1.0.11 (Reducing fractions to lowest forms). Let r ∈ Q. Then there exist
integers a, b ∈ Z, with b 6= 0, unique up to signs, such that r = a/b and gcd(a, b) = 1.

Lemma 1.0.12 (Factors of prime powers). Let p be a positive prime and n ≥ 0. Let
a ≥ 0 such that a divides pn. Then there exists 0 ≤ m ≤ n such that a = pm.

Proposition 1.0.13 (Some subrings of Q). Let p be a positive integer and let

R :=
{a
b
∈ Q : a, b ∈ Z, b 6= 0, gcd(a, b) = 1 and p does not divide b

}
,

R′ :=

{
a

pn
∈ Q : a ∈ Z and n ∈ N

}
.

Then R, R′ are rings (under usual operations) ⇐⇒ p is prime.

Remark 1.0.14. Prove that Z/Zn is not a subring of C for n ≥ 2.



CHAPTER 1. MAIN DEFINITIONS 6

Proposition 1.0.15 (Characterizing zero ring). Let R be a ring. Then the following
are equivalent:

(a) R is a singleton.
(b) R = {0}.
(c) 1 = 0.
(d) 0 is invertible under multiplication.

Definition 1.0.16 (Units). The elements of a ring R that have multiplicative in-
verses are called units.

Proposition 1.0.17 (Examples of units).

(a) ±1 are always units in any ring.
(b) In a nonzero ring, 0 is not invertible.
(c) {units of Z} = {±1}.
(d) {units of Q} = Q \ {0}.
(e) {units of Z[i]} = {±1,±i}.

Proposition 1.0.18 (Units form a multiplicative group). The units of a ring form
a multiplicative group.

Proposition 1.0.19 (When do rings become fields?). Let R be a ring. Then R is
a field (under the same addition and multiplication) ⇐⇒ R is a nonzero ring with
each nonzero element being a unit.



Chapter 2

Polynomial rings

February 2, 2022

Definition 2.0.1 (Polynomial rings). Let R be a ring. Then we set

R[x] :=

{
n∑
i=0

aix
i : n ∈ N and a1, . . . , an ∈ R

}
,

where the sums are just formal expressions which should be identified with the or-
dered tuples.

We define an equivalence relation on this R[x] by declaring two polynomials∑m
i=0 aix

i and
∑n

i=0 bix
i equal if their ai = bi whenever ai or bi is nonzero. (Hence,

there is only one zero ”polynomial”, etc.) Abusing notation, we denote the set of
equivalence classes by R[x] and the equivalence classes by representative elements.

The usual operations on R[x] are defined as follows. The addition is like vector
addition of tuples. The multiplication is defined as follows. For monomials axm and
bxn, we define (axm)(bxn) := (ab)xm+n for any a, b ∈ R and for any m,n ≥ 0. For
general polynomials, demanding distributivity (that is, p(q+r) = pq+pr) determines
their product.

Proposition 2.0.2 (R[x] is a ring). The above operations make R[x] a ring for any
ring R. Also, R can be embedded inside R[x].

Remark 2.0.3. Unless stated otherwise, take R[x] to be a ring under the above
usual operations.

Lemma 2.0.4. Let R be a ring. Then R is nonzero ⇐⇒ R[x] is nonzero.
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CHAPTER 2. POLYNOMIAL RINGS 8

Definition 2.0.5 (Degree and leading coefficients of nonzero polynomials). The
degree of a nonzero polynomial p =

∑n
i=0 aix

i ∈ R[x] is the greatest i ∈ N such that
ai 6= 0. The corresponding coefficient is called the leading coefficient of p.

Remark 2.0.6. We leave the degree of the zero polynomial undefined.

Proposition 2.0.7 (Division in R[x]). Let R be a ring. Let f, g ∈ R[x] such that
g 6= 0 and the leading coefficient of g is a unit in R. Then there exist unique
q, r ∈ R[x] such that f = qg + r and r = 0 or else, degree of r is less than that of g.

Remark 2.0.8. If p ∈ R[x], then we’ll denote by p(x) the obvious quantity, no
longer viewing the previous “sums” as formal objects, but as actual sums (in R).

Proposition 2.0.9 (Sums and products of polynomials are pointwise). Let R be a
ring, a ∈ R and f, g ∈ R[x]. Then (f + g)(a) = f(a) + g(a) and (fg)(a) = f(a)g(a).

Corollary 2.0.10 (Factor theorem). Let R be a ring, p ∈ R[x] and α ∈ R. Then
x− α divides p (that is, the remainder is zero) ⇐⇒ p(α) = 0.

Proposition 2.0.11 (A generalized factor theorem for integral domains). Let R be
a ring. Then the following are equivalent:

(a) The product of nonzero elements is nonzero.
(b) For any p ∈ R[x], any n ≥ 0, and distinct a1, . . . , an ∈ R, if each (x − ai)

divides p, then
∏n

i=1(x− αi) divides p.

Remark 2.0.12. The ring of polynomials in several variables can also be defines
along the same lines. The important thing to identify is that for any n ≥ 1, we have

R[x1, . . . , xn+1] = R[x1, . . . , xn][xn+1].



Chapter 3

Ring homomorphisms

February 3, 2022

Definition 3.0.1 (Ring homomorphisms and isomorphisms). Let R, R′ be rings and
φ : R→ R′. Then φ is a ring homomorphism iff for every a, b ∈ R, we have

(a) φ(a+ b) = φ(a) + φ(b),
(b) φ(ab) = φ(a)φ(b), and
(c) φ(1) = 1.

A bijective ring homomorphism is called a ring isomorphism.

Remark 3.0.2. To show the necessity of (c), consider φ on a ring R given by x 7→ xe
where e is idempotent and not equal to 1. (32 ≡ 3 mod 6.) Also, the trivial group
homomorphism from Z to Z that maps everything to 0 is also ruled out by (c).

Corollary 3.0.3. The inverse of a ring isomorphism is a ring homomorphism.

Corollary 3.0.4. Compositions of ring homomorphisms are ring homomorphisms.

Proposition 3.0.5 (Restrictions of ring homomorphisms). Let φ : r → R′ be a ring
homomorphism and S be a subring of R. Then φ[S] is a subring of R′ and φ’s
restriction to S is again a ring homomorphism.

Remark 3.0.6. Unless stated otherwise, take the sets in Proposition 1.0.8 to be
rings under the usual operations.

Proposition 3.0.7 (Ring homomorphisms from Z to R). For any ring R, there
exists a unique ring homomorphism from Z to R. It is given by

n 7→

{∑n
i=1 1, n ≥ 0

−
∑−1

i=1 1, n < 0
.

9



CHAPTER 3. RING HOMOMORPHISMS 10

Corollary 3.0.8 (The only ring homomorphism on Z). The identity function is the
only ring homomorphism on Z.

Proposition 3.0.9 (Ring homomorphism from Z to Z/Zn). Let n ∈ Z. Then n 7→ n
is a ring homomorphism from Z to Z/Zn.

Proposition 3.0.10 (Substitution homomorphism). Let R be a ring and a ∈ R.
Define φa : R[x]→ R as

φa(f) := f(a).

Then φa is a ring homomorphism.

Proposition 3.0.11 (Homomorphisms on product rings).

(a) The projection functions on product rings are ring homomorphisms.
(b) Let R, S, S ′ be rings and ψ : R→ S, φ : S ′. Define ξ : R→ S × S ′ as

ξ(r) := (φ(r), ψ(r)).

Then ξ is a ring homomorphism ⇐⇒ φ, ψ are ring homomorphims.

Definition 3.0.12 (Kernel of a ring homomorphism). Let R, R′ be rings and φ : R→
R′ be a ring homomorphism. Then we define kerφ := {a ∈ R : φ(a) = 0}.

Remark 3.0.13. Hence, a kerφ is the kernel if φ is viewed as the group homomor-
phism from R to R′ taken as additive groups.

Corollary 3.0.14 (Kernel of the substitution homomorphism). Let R be a ring and
a ∈ R. Then kerφa = {(x− a)f : f ∈ R[x]}.

Corollary 3.0.15. The kernel of a ring homomorphism contains 1 ⇐⇒ the
codomain ring is the zero ring.

Proposition 3.0.16. The images of units under ring homomorphisms are units.

Remark 3.0.17. The converse needn’t be true: Take the inclusion map from Z into
Q.



Chapter 4

Ideals

February 4, 2022

Definition 4.0.1 (Ideals). Let R be a ring and I ⊆ R. Then I is an ideal of R iff

(a) I is a subgroup of R taken as the additive group, and
(b) for any a ∈ I, we have that ar ∈ I for all r ∈ R.

Corollary 4.0.2 (Immediate consequences).

(a) Let I be an ideal of a ring R. Then the following are equivalent:

(i) I = R.
(ii) I is a subring of R.

(iii) 1 ∈ I.

(b) The only ideals of Z are Zn for n ∈ Z.
(c) Kernels of ring homomorphisms are ideals.
(d) Let R be a ring and p ∈ R[x]. Then the set of all polynomials in R[x] divisible

by p forms an ideal.

Proposition 4.0.3 (Characterizing fields with their ideals). Let R be a nonzero ring.
Then R is a field ⇐⇒ its only ideals are {0} and R.

Remark 4.0.4. Ideals of a subring might not be the ideals of a the parent ring:
consider Z2, an ideal of Z which is not an ideal of R.

Proposition 4.0.5 (Ideals of K[x]). Let K be a field and I be a nonzero ideal of
K[x]. Let α be the least degree of polynomials in I \ {0} and f ∈ I be of degree α.
Then I = (f).

Corollary 4.0.6. A ring homomorphism whose domain ring is a field and the
codomain ring is nonzero, is injective.

11



CHAPTER 4. IDEALS 12

Definition 4.0.7 (Ideals generated by sets). Let R be a ring and S ⊆ R. Then we
denote by (S), the smallest ideal of R containing S.

Remark 4.0.8. We’ll use the usual notation that Artin uses for denoting the product
and sum of sets, and product and sum of a set with an element.

Corollary 4.0.9 (Characterizing ideals generated by a set). Let R be a ring S ⊆ R.
Then

(S) = {x1s1 + · · ·xnsn : n ≥ 0, xi ∈ R, si ∈ S}.

Definition 4.0.10 (Product of ideals). Let I, J be ideals of a ring R. Then we
denote by I · J , the set of all the finite sums of elements of IJ .

Proposition 4.0.11 (Constructing ideals). Let I, J be ideals of a ring R. Then
I ∩ J , I + J , I · J are ideals. Further, I + J = (I ∪ J) and I · J = (IJ) ⊆ I ∩ J .

Remark 4.0.12. The containment can be proper. For instance, (2) · (4) = (8) (
(4) = (2) ∩ (4) in the usual ring Z.

Proposition 4.0.13 (Product set of ideals need not be an ideal). Consider Z[x].
Then (2, x)(3, x) is not an ideal since 2x, 3x ∈ (2, x)(3, x) but x = 3x − 2x /∈
(2, x)(3, x). Further, (2, x) · (3, x) = (6, x).

Proposition 4.0.14 (Principal ideals). Let R be a ring and a, b ∈ R. Then

(a) (a) = aR,
(b) (a) · (b) = (ab) = (a)(b), and
(c) (a, b) = (a) + (b).

Proposition 4.0.15 (A non-principal ideal). (2, x) is non-principal in Z[x].

Proposition 4.0.16 (Ideals under ring homomorphisms). Let φ : R→ R′ be a ring
homomorphism. Let I, I ′ be ideals of R, R′ respectively and S ⊆ R. Then

(a) if φ is surjective, then

(i) φ[I] is an ideal of R′,
(ii) φ[(S)] = (φ[S]); and,

(b) φ−1[I ′] is an ideal of R.

Remark 4.0.17. If surjectivity not obeyed, then φ[I] need not be an ideal. Consider
the inclusion map from Z into Q.

Definition 4.0.18 (Idempotents). Let R be a ring and a ∈ R. Then a is idempotent
iff a2 = a.
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Definition 4.0.19 (Nilpotent elements). Let R be a ring and a ∈ R. Then a is
nilpotent iff there exists an n ≥ 1 such that an = 0. The set of all the nilpotents in
R is called the nilradical of R.

Remark 4.0.20. This definition is equivalent to the one with n ≥ 1 replaced with
n ≥ 0.

Corollary 4.0.21.

(a) 0 is always nilpotent.
(b) 1 is nilpotent ⇐⇒ the ring is the zero ring.
(c) The images of nipotents under ring homomorphisms are nilpotents.
(d) Nilradical of Z = {0}.
(e) Nilradical of Z/Z4 = {0̄, 2̄}.

Remark 4.0.22. The converse of (c) need not be true: Consider n 7→ n̄ from Z to
Z/Z4.

Proposition 4.0.23. The nilradical of a ring is an ideal.



Chapter 5

Quotient rings

February 8, 2022

Proposition 5.0.1 (Quotient rings). Let I be an ideal of a ring R and let R/I to
be the quotient group. In addition to the addition of cosets in R/I, we can define a
product ∗ on R/I so that

(a+ I) ∗ (b+ I) = ab+ I

for all a, b ∈ R. These operations make R/I into a ring.
Further, we have a natural surjective ring homomorphism from R to R/I given

by r 7→ a+ I with kernel I.

Remark 5.0.2. The above product need not be equal to the product set. Consider
(0 + Z2) ∗ (0 + Z2) in Z/Z2.

Remark 5.0.3. Unless states otherwise, we’ll assume R/I to be the quotient ring
with the above operations. Also, we might denote a+ I ∈ R/I as ā.

Proposition 5.0.4 (R[x]/(x2+1) isomorphic to C). The function R[x]/(x2+1)→ C
given by f + (x2 + 1) 7→ f(i) is well-defined and is a ring isomorphism.

Remark 5.0.5. Note that i is not in the domain of f . This is remedied by declaring
that f(i) stands for the value at i of f ’s embedding inside C[x].

Proposition 5.0.6. Let R be a ring. Then R ∼= R/{0}.

14



Chapter 6

Correspondence and isomorphism
theorems

February 12, 2022

Theorem 6.0.1 (Correspondence theorem). Let φ : R → R′ be a surjective ring
homomorphism. Then there is a one-to-one correspondence

{ideals of R containing kerφ} ↔ {ideals of R′}

given as follows: I ↔ I ′ iff I ′ = φ[I], or equivalently, iff I = φ−1[I ′].

Theorem 6.0.2 (First isomorphism theorem). Let φ : R → R′ be a surjective ring
homomorphism. Then there exists a unique function ψ : R/ kerφ→ R′ such that

ψ(r + I) = φ(r).

Further, this ψ is an isomorphism with kerψ = kerφ.

R imφ

R/ ker[φ]

φ

r 7→φ(r)
r 7→
r

r 7→
φ(
r)

ψ

Corollary 6.0.3 (Ideals of R/I). Let I be an ideal of a ring R. Then the ideals of
R/I correspond to the ideals of R containing I.

Proposition 6.0.4. Let R be a ring and α ∈ R. Then R[x]/(x− α) ∼= R.

15



CHAPTER 6. CORRESPONDENCE AND ISOMORPHISM THEOREMS 16

Proposition 6.0.5 (R[x] isomorphic to C and maximality of (x2 + 1)). The homo-
morphism φi : R[x]→ C is surjective with kerφi = (x2 + 1). Further, if I is an ideal
in R[x] containing (x2 + 1), then I = (x2 + 1) or I = R[x].

Proposition 6.0.6 (Ideals of C[t]/(t2+1)). The natural map φ : C[t]→ C[t]/(t2+1)
given by φ(f) = f + (t2 + 1) is a surjective homomorphism with kerφ = (t2 + 1). We
have that C[t]/(t2 +1) has four ideals given by {0}, (t± i)+(t2 +1) and C[t]/(t2 +1).

Proposition 6.0.7 (Extending homomorphisms over rings to over polynomial rings).
Let φ : R→ R′ be a ring homomorphism. Then ψ : R[x]→ R′[x] defined as

a0 + . . .+ anx
n 7→ φ(a0) + · · ·+ φ(an)xn

is a ring homomorphism with

kerψ = (kerφ), and

imψ = (imφ)[x],

where (kerφ) is the ideal generated by (the copy of) kerφ in R[x].



Chapter 7

Prime and maximal ideals, and
integral domains

February 13, 2022

Definition 7.0.1 (Integral domains). Let ring R be a ring. Then R is called an
integral domain iff R is not the zero ring, and for any a, b ∈ R, if ab = 0, then a = 0
or b = 0.

Definition 7.0.2 (Prime and maximal ideals). Let I be a proper ideal of a ring R.
Then I is called

(a) prime iff ab ∈ I =⇒ a ∈ I or b ∈ I, and
(b) maximal iff for any ideal J , if I ( J , then J = R.

Corollary 7.0.3. Any nonzero subring of an integral domain is an integral domain
(with the inherited operations).

Remark 7.0.4. The converse needn’t be true. See Proposition 7.0.7.

Remark 7.0.5. For rings that are not integral domains, but contain integral do-
mains, consider Z[x]/(x2) and Z× Z.

Proposition 7.0.6 (Characterizing prime and maximal ideals). Let I be an ideal of
a ring R. Then

(a) I is prime ⇐⇒ R/I is an integral domain, and
(b) I is maximal ⇐⇒ R/I is a field.

Thus, we also have that

(a) R is an integral domain ⇐⇒ {0} is prime, and

17



CHAPTER 7. PRIME AND MAXIMAL IDEALS, AND INTEGRAL DOMAINS18

(b) R is a field ⇐⇒ {0} is maximal.

Proposition 7.0.7 (A non-integral domain containing an integral domain). Z[x]/(x2)
is a non-integral domain containing a copy of Z.

Proposition 7.0.8. Maximal ideals are prime.

Remark 7.0.9. Prime ideals need not be maximal. Consider the zero ideal in Z.
Even nonzero prime ideals need not be maximal. Consider any (x − α) in R[x] for
an integral domain R that is not a field.

Proposition 7.0.10 (Some prime ideals).

(a) The prime ideals of Z are exactly the zero ideal Zp for prime p’s.
(b) If R is an integral domain, then the zero ideal and (x − α) for α’s in R are

prime.

Remark 7.0.11. Not all zero ideals are prime. Consider Z/Z4.

Definition 7.0.12 (Unfactorizable polynomials). Let R be a ring. Then f ∈ R[x]
is called factorizable iff there exist nonconstant polynomials p, q ∈ R[x] such that
f = pq. Otherwise, f is called unfactorizable.

Corollary 7.0.13 (Some maximal ideals).

(a) The maximal ideals of Z are exactly Zp for primes p’s.
(b) For a field K, the maximal ideals of K[x] are exactly of the form (f) for un-

factorizable f ’s.
(c) The only maximal ideal of R/(x2) is (x).
(d) The only maximal ideal of R/(x2 + 1) is the zero ideal.
(e) The maximal ideals of C/(x2 + 1) are exactly (x± i).

Proposition 7.0.14 (Maximal ideals of R[x, y] from R[x]). Let R be a ring and I
be a maximal ideal of R[x]. Then J + (y) is a maximal ideal of R[x, y] where J is
the ideal of R[x, y] generated by I.

Remark 7.0.15. This generalized to any coordinate in R[x1, . . . , xn] and even for
infinite variables.

Proposition 7.0.16. Let p ∈ Z be prime. Then (p, x) maximal in Z.
Also, it is the only proper ideal properly containing (p, x2).

Proposition 7.0.17 (Existence of maximal ideals). Let I be a proper ideal of a ring
R. Then there exists a maximal ideal in R containing I.



CHAPTER 7. PRIME AND MAXIMAL IDEALS, AND INTEGRAL DOMAINS19

Proposition 7.0.18. Let R be a ring. Then R is an integral domain ⇐⇒ R[x] is
an integral domain.

Proposition 7.0.19 (Prime and maximal ideals under ring homomorphisms). Let
φ : R → R′ be a ring homomorphism and I, I ′ be ideals of R, R′ respectively. Then
the following hold:

(a) if I, I ′ are prime, then

(i) φ−1[I ′] is prime, and
(ii) φ is surjective and kerφ ⊆ I =⇒ φ[I] is prime;

(b) if I, I ′ are maximal and φ is surjective, then φ[I] and φ−1[I ′] are maximal.

Remark 7.0.20. For (ii), consider the natural map Z → Z/Z4, and I as the zero
ideal. For (b), consider

(a) the embedding Z→ Q and the inverse image of the zero ideal, and
(b) the embedding Z→ Z[i] wherein (2) is maximal in Z, but it’s not in Z[i] since

(2i) ) (2).

Also, integral domain-ness need not be preserved even for surjective ring homo-
morphisms. Consider the naturam map Z→ Z/Z4.

Definition 7.0.21 (Adjoining elements to a ring). Let S be a subring of R and
α ∈ R. Then we denote the smallest subring of R containing S and α by S[α].

Explicitly,
S[α] = {p(α) : p ∈ S[x]}.

Proposition 7.0.22 (Characterizing R[α]). Let S be a subring of R and α ∈ R.
Then

(a) R[α] ∼= R[x]/ kerφα, and
(b) kerφα = (x − α) ∩ R[x] which contains all the “polynomial relations” in S[x]

satisfied by α.

Proposition 7.0.23 (Existence of ring extensions). Let R be a ring and p ∈ R[x] be
nonzero with degree n ≥ 1. Then

(a) R can be embedded consistently inside R[x]/(p) via α 7→ α,
(b) p(x) = 0 (where p ∈ (R[x]/(p))[x] is the polynomial with the coefficients re-

places with the images of the mentioned embedding),
(c) if p is monic (or the leading coefficient is a unit), then R[x]/(p) ∼= {a0 + · · ·+

an−1n−1 : ai ∈ R}.

Proposition 7.0.24. Any prime ideal contains all the nilpotents in the ring.
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Proposition 7.0.25. A nonzero ring that has all its proper ideals as prime, is a
field.

Proposition 7.0.26. Finite integral domains are fields.

Proposition 7.0.27 (Chinese remainder theorem). Let I, J be ideals of a ring R
such that I + J = R. Then

(a) I ∩ J = I · J ,
(b) for any a, b ∈ R, there exists an x ∈ R such that x − a ∈ I and x − b ∈ J ;

or equivalently, the ring homomorphism φ : R → R/I × R/J defined by a 7→
(aI , aJ) is surjective, and

(c) R/I · J ∼= R/I ×R/J .

Remark 7.0.28. Do this! This can be extended to more than two pairwise “co-
prime” ideals.

7.1 Field of fractions

February 22, 2022

Proposition 7.1.1 (Field of fractions of an integral domain). Let R be an integral
domain. Define the set of formal fractions

Frac(R) := {a/b : a, b ∈ R, b 6= 0}.

Then a/b ≡ c/d iff ad = cb is an equivalence relation on Frac(R). Abusing notation,
denote the set of equivalence classes by Frac(R) again, and the equivalence classes
by any of their representative elements.

We can define addition and multiplication on Frac(K) as

(a/b) + (c/d) := (ad+ cb)/(bd),

(a/b)(c/d) := (ac)/(bd).

These operations turn Frac(R) into a field.
Further, a 7→ a/1 embeds R into Frac(R).
Also, if R is an integral domain, then R[x] is also an integral domain and we

denote Frac
(
R[x]

)
by R(x).

Proposition 7.1.2. For any integral domain R, we have that Frac(R) is the smallest
field containing a copy of R, i.e., any other such field contains a copy of Frac(R).
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Proposition 7.1.3. A ring that is not an integral domain cannot be embedded inside
a field.

Definition 7.1.4 (Field extensions). Let S be a subring of a field K so that S is an
integral domain. Let α ∈ K. Then we denote the smallest subfield of K containing
S and α by S(α).

Explicitly,

S(α) =
{
p(α)/q(α) : p, q ∈ S(x) with q(α) 6= 0

}
.

Proposition 7.1.5 (Some fields of fractions).

(a) Frac(Z) ∼= Q,
(b) For any field K, we have Frac(K) ∼= K,
(c) For an integral domain R, we have that

Frac(R)[x] ∼= R(x).

(d) Let R be a subring of a field K and α ∈ K. Then

Frac(R)[α] ∼= R(α).

7.2 Noetherian rings

February 22, 2022

Definition 7.2.1 (Finitely generated ideals). An ideal I of a ring R is called finitely
generated iff there exists a finite S such that I = (S).

Definition 7.2.2 (Noetherian rings). A ring R is called Noetherian iff all of its ideals
are finitely generated.

Remark 7.2.3. Noetherian rings needn’t be integral domains: Consider Z/Z6.

Definition 7.2.4 (Stabilization of ascending chain of ideals). Let I1 ⊆ I2 ⊆ · · · be
an ascending chain of ideals of a ring R. Then it is said to stabilize iff there exists
an N ≥ 1 such that for all n ≥ N , we have that In = IN .

Proposition 7.2.5 (Characterization of Noetherian rings). Let R be a ring. Then
R is Noetherian ⇐⇒ every ascending chain of ideals in R stabilizes.

Remark 7.2.6. There can be non-stabilizing descending chains in Noetherian rings:
Consider in Z, the chain (2) ) (4) ) (8) ) · · · .
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Proposition 7.2.7 (Some Noetherian and non-Noetherian rings).

(a) K and K[x] are Noetherian for any field K.
(b) Z is Noetherian.
(c) R[x1, x2, . . .] is non-Noetherian since (x1, x2, . . .) is not finitely generated.
(d) The set of all continuous functions R→ R is non-Noetherian since the ascend-

ing sequence of ideals I1 ⊆ I2 ⊆ · · · where In contains all the functions which
vanish for x ≥ n, does not stabilize.

Remark 7.2.8. Unlike integral domains, the subrings of Noetherian rings can be
non-Noetherian: For an integral domain R, let S := R[x1, x2, . . .], which will be an
integral domain and a non-Noetherian ring. But Frac(S) ⊇ S is Noetherian.

Proposition 7.2.9. Quotient rings formed from Noetherian rings are Noetherian.

Proposition 7.2.10. Let R be a Noetherian ring and S ⊆ R. Then there exists a
finite T ⊆ S such that (S) = (T ).

Theorem 7.2.11 (Hilbert’s basis theorem). Let R be a ring. Then R is Noetherian
⇐⇒ R[x] is Noetherian.

Corollary 7.2.12. Let R be a Noetherian ring and n ≥ 1. Then R[x1, . . . , xn] is
Noetherian too.

Proposition 7.2.13. Image of a Noetherian ring under a ring homomorphism is
Noetherian.

Proposition 7.2.14 (When can R[α] be Noetherian?). Let R be a Noetherian sub-
ring of a ring S and α ∈ S. Then R[α] is Noetherian.

Corollary 7.2.15. Z[
√
−5] is Noetherian.
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PID’s and UFD’s

March 4, 2022

Definition 8.0.1 (Divisors, associates, irreducibles, primes, gcd). Let R be a ring
and a, b ∈ R. Then we say that

(a) a is a divisor b or b is a multiple of a, written a | b iff b = ax for some x ∈ R,
(b) a is a proper divisor of b iff a is not a unit and there exists a non-unit element

y such that b = ay,
(c) a and b are called associates iff b = au for some unit u,
(d) a is called irreducible iff a is not a unit and a has no proper divisors,
(e) a is called prime iff a 6= 0, and a is not a unit such that for any c, d ∈ R, if

a | cd, then a | c or a | d, and
(f) an element d ∈ R is a gcd for a, b iff g is a common divisor, and if every

common divisor of a, b divides g.

Proposition 8.0.2 (Examples).

(a) Let K be a field and a, b ∈ K. If one of these is nonzero, then the permissible
gcd’s are precisely K \ {0}. If both are zero, then entire K is permissible.

(b) 2, 3, 1±
√
−5 are irreducible in Z[

√
−5].

(c) Let R be an integral domain and α ∈ R. Then (x− α) is irreducible in R[x].
(d) In Z/Z4, the only prime is 2. In Z/Z6, the primes are exactly 2, 3 and 4.

Proposition 8.0.3 (Some properties in a general ring). Let R be a ring. Then

(a) being an associate is an equivalence relation,
(b) associates preserve divisibility,
(c) all units are each other’s associates,
(d) units have no proper divisors,

23
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(e) if p is nonzero and non-unit, then p ∈ R is prime ⇐⇒ (p) is a prime ideal,
(f) if a is irreducible, then

(i) (a) is a maximal principal ideal,
(ii) a’s divisors are precisely its associates and units;

(g) generalized idempotents that are not units are reducible,
(h) 0 is reducible, and
(i) for a, b, d ∈ R, if (a) + (b) = (d), then d is a gcd of a and b.

Proposition 8.0.4 (Some properties in an integral domain). Let R be an integral
domain. Then

(a) no associate of a nonzero element divides any of its associates properly,
(b) two elements are associates ⇐⇒ they divide each other,
(c) for a non-unit a ∈ R, the following are equivalent:

(i) a is irreducible,
(ii) (a) is a maximal principal ideal,

(iii) a’s divisors are precisely its associates and units;

(d) primes are irreducible.

Remark 8.0.5. To show the necessity of integral domain-ness:

(a) For (a), consider 3 ∈ Z/Z6 which properly divides itself since 3 = 3 · 3.
(b) For (b), consider Proposition 8.0.7.
(c) For (c), consider Z/Z6 again.
(d) For (d) consider Z/Z6 in which 3 is prime and yet not irreducible.

The converse needn’t be true even in an integral domain: Consider Z[
√
−5] in

which 2 is irreducible and yet not prime (2 doesn’t divide 1±
√
−5, but divides

their product 6).

Proposition 8.0.6. In Z, irreducibles and primes are the same, viz. the usual
primes.

Proposition 8.0.7 (Non-associates that divide each other). Consider the ring R :=
C[0, 3] and f, g ∈ R given by

f(x) :=


1− x, x ∈ [0, 1]

0, x ∈ (1, 2]

x− 2, x ∈ (2, 3]

and g(x) :=

{
f(x), x ∈ [0, 2]

2− x, x ∈ (2, 3]
.

Then f and g are not associates, for any associates of R have no zeroes. However,
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f = gh and g = fh for

h(x) :=


1, x ∈ [0, 1]

3− 2x, x ∈ (1, 2)

−1, x ∈ [2, 3]

.

Proposition 8.0.8 (When can a gcd fail to exist?). Let R be an integral domain,
a, b, x be irreducibles in R such that b is not an associate of a or x. Let y ∈ R such
that ax = by, say α. Then α and ab have no gcd.

Corollary 8.0.9. 6 and 2 + 2
√
−5 have no gcd in Z[

√
−5].

8.1 Principal ideal domains

March 5, 2022

Definition 8.1.1 (PID’s). An integral domain in which every ideal is principal is a
called a principal ideal domain.

Remark 8.1.2. Rings with only prime ideals needn’t be integral-domains: Consider
Z/Z4.

Proposition 8.1.3 (Examples and non-examples of PID’s). Some PID’s:

(a) Z.
(b) K and K[x] for any field K.

Some non-PID’s:

(a) R[x, y] for any nonzero ring R.
(b) Z[x].

Corollary 8.1.4. PID’s are Noetherian.

Proposition 8.1.5 (Division algorithms in Z[i] and Z[
√
−2]). Let α, β ∈ Z[i] such

that |β|2 ≥ |α|2 > 0. Then there exist η, ξ ∈ Z[i] such that β = αη+ ξ and 0 ≤ |ξ|2 ≤
|α|2/2.

The same holds for Z[i] replaced with Z[
√
−2] and wit |α|2/2 replaced with 3|α|2/4.

Proposition 8.1.6. Z[i] and Z[
√
−2] are PID’s.

Proposition 8.1.7 (gcd’s in PID’s). Let R be a PID and a, b, d ∈ R. Then d is a
gcd of a and b ⇐⇒ (a) + (b) = (d).
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Proposition 8.1.8. In a PID, irreducibles are primes so that primality ⇐⇒ irre-
ducibility.

Proposition 8.1.9. In a PID, nonzero prime ideals are maximal.

Corollary 8.1.10. For an integral domain R that is not a field, R[x] is not a PID.
(See Remark 7.0.9.)

Remark 8.1.11. Subrings or super-rings of PID’s needn’t be PID’s: ConsiderR[x] ⊆
R(x) for any integral domain R that is not a field, or Z ⊆ Z[x].

These also show that the images of PID’s under ring homomorphisms needn’t be
PID’s. (Take the inclusion homomorphism.)

Corollary 8.1.12. Let R be a PID that’s not a field and a ∈ R. Then (a) is maximal
=⇒ a is irreducible.

Corollary 8.1.13 (Quotients of PID’s). Let I be an ideal of a PID R. Then the
ideals of R/I are principal.

However, the R/I is an integral domain ⇐⇒ I is prime.

8.2 Unique factorization domains

March 5, 2022

Definition 8.2.1 (Non-terminating factorization). Let R be a ring and a ∈ R. Then
a is said to have a non-terminating factorization iff there exist b1, b2, . . . ∈ R such
that each b1 properly divides a, and each bi+1 properly divides bi for i ≥ 1.

Definition 8.2.2 (Irreducible factorization). A factorization of a ring element into
irreducibles is called an irreducible factorization of it.

Corollary 8.2.3 (Examples of non-terminating factorizations).

(a) Nilpotents and idempotents have non-terminating factorizations in any ring.
(b) 2 = (

√
2)2 = ( 4

√
2)4 = ( 8

√
2)8 = · · · has a non-teminating factorization in the

integral domain Z[
√

2, 4
√

2, 8
√

2, . . .].

Proposition 8.2.4. Let R be a ring and a ∈ R. If a has no non-terminating
factorization, then a admits an irreducible factorization.

Remark 8.2.5. The converse needn’t be true. See Proposition 8.2.6.
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Proposition 8.2.6 (Irreducible factorization 6=⇒ each factorization terminates).
Let S ⊆ Q[x] be the set of polynomials whose constant and linear coefficients are
integers. Then S is a ring with units ±1. (Q[x] has more units.) Also, x is irreducible
in S (and not in Q[x]). Thus x2 ∈ S has an irreducible factorization in S given by

x2 = x · x

despite also admitting a non-terminating factorization

x2 = 2 · x
2

2
= 22 · x

2

22
= · · · .

Proposition 8.2.7. Let R be a ring and x, y ∈ R. Then (x) ( (y) 6= R =⇒ y is a
proper divisor of x.

Further, if R is an integral domain and x 6= 0, then the converse holds as well.

Remark 8.2.8. For the necessity of integral domian-ness in the converse, consider
3 ∈ Z/Z6 which is its own proper divisor.

Proposition 8.2.9 (When does an element have no non-terminating factorization?).
Let R be an integral domain and a ∈ R be nonzero. Then the following are equivalent:

(a) a has no non-terminating factorization.
(b) For any b1, b2, . . . ∈ R, the ascending chain of ideals (a) ⊆ (b1) ⊆ (b2) ⊆ · · ·

stabilizes.

Remark 8.2.10. Again Z/Z6 demonstrates the necessity of integral domain-ness.
The necessity of nonzero-ness of a is demonstrated by the fact that in a finite

integral domain, 0 still has a non-terminating factorization.

Corollary 8.2.11. In a Noetherian integral domain, no element has a non-terminating
factorization.

Definition 8.2.12 (Unique factorization). Let R be a ring and a ∈ R. Then a is
said to have a unique factorization iff

(a) a has an irreducible factorization, and
(b) if p1, . . . , pi, q1, . . . , qj ∈ R are irreducibles such that a = p1 · · · · ·pi = q1 · · · · ·qj,

then i = j and, after possibly a rearrangement, pk and qk are associates for
each k.

Definition 8.2.13 (UFD’s). An integral domain is called a unique factorization
domain iff each non-zero and non-unit element admits a unique factorization.
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Remark 8.2.14. A Noetherian integral domain might not be a UFD: Consider
Z[
√
−5] in which 2 · 3 = (1 +

√
5)(1−

√
−5), failing uniqueness.

Prove this rigorously! The ring of algebraic numbers1 has no irreducibles (due
to existence of n-th roots) and has 2 as a non-unit. Hence, 2 has no irreducible
factorization here.

Proposition 8.2.15 (Characterizing UFD’s). Let R be ring. Then R is a UFD
=⇒ irreducibles are prime.

The converse holds if R is an integral domain in which each nonzero non-unit
has an irreducible factorization.

Corollary 8.2.16. A PID is a UFD.

Remark 8.2.17. Converse needn’t be true: Z[x] is a UFD (shown in Subsection
8.2.1) that is not a PID.

Corollary 8.2.18 (Examples of UFD’s).

(a) K and K[x] for any field K.
(b) Z, Z[i] and Z[

√
−2].

(c) R[x] for any UFD R. (See Subsection 8.2.1.)

8.2.1 When is R[x] a UFD?

March 7, 2022

Remark 8.2.19. We’ll consider only nonzero rings for this subsection.

Definition 8.2.20 (Prime products). Let R be a ring. Then a ∈ R is called a prime
product iff there exists a natural n ≥ 0, primes p1, . . . , pn and a unit u such that
a = up1 . . . pn.

Proposition 8.2.21 (Special prime factorization of pairs of prime products in inte-
gral domains). Let R be an integral domain and a, b be prime products. Then there
exist m,n ≥ 0, primes p1, . . . , pm, q1, . . . , qn, naturals α1, . . . , αm, β1, . . . , βn ≥ 1, a
natural 0 ≤ r ≤ m,n, and units u, v such that

(a) a = upα1
1 · · · pαmm and b = vqβ11 · · · qβnn ,

(b) i 6= j =⇒ neither of the pairs pi, pj and qi qj are associates,
(c) i ≤ r =⇒ pi, qi are associates, and
(d) i, j > r =⇒ pi, qj are not associates.

1This is the ring containing all the complex numbers satisfying monic polynomials in Z[x].
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Proposition 8.2.22 (Divisors of prime products in integral domains). Let R be an
integral domain, n ≥ 0 be natural, p1, . . . , pn be primes, α1, . . . , αn ≥ 0 be naturals
and u be a unit. Then the divisors of upα1

1 · · · pαnn are precisely{
vpβ11 · · · pβnn : v is a unit and 0 ≤ βi ≤ αi

}
.

Proposition 8.2.23 (gcd’s of prime products in integral domains). Let R be an inte-
gral domain, m,n ≥ 0 be natural, p1, . . . , pm, q1, . . . , qm be primes, α1, . . . , αm, β1, . . . , βn ≥
0 be naturals, u, v be units and 0 ≤ r ≤ m,n be a natural such that

(a) i 6= j =⇒ neither of the pairs pi, pj and qi, qj are associates,
(b) i ≤ r =⇒ pi, qi are associates, and
(c) i, j > r =⇒ pi, qj are not associates.

Let δi := min{αi, βi} for i ≤ r. Then

pδ11 · · · pδrr

is a gcd of upα1
1 · · · pαmm and vqβ11 · · · qβnn .

Definition 8.2.24 (gcd’s of finite nonempty sets). Let R be a ring and S be a finite
nonempty set, say S = {a1, . . . , an} for n ≥ 1. Then d is called a gcd of S iff

(a) d divides each ai, and
(b) e divides each ai =⇒ e | d.

Corollary 8.2.25. Let S be a nonempty set of prime products and d ∈ R. Then d
is a gcd of S ∪ {0} ⇐⇒ d is a gcd of S.

Corollary 8.2.26. A subset S of a ring has 0 as a gcd ⇐⇒ S = {0}.

Proposition 8.2.27. Any nonempty set of prime products in an integral domain
has a gcd that is itself a prime product.

Lemma 8.2.28. Irreducibles in a integral domain R are irreducible in R[x] as well.

Corollary 8.2.29. In a UFD, any nonempty finite set has a gcd.

Lemma 8.2.30 (Quotients in integral domains). Let R be an integral domain and
a, b ∈ R with b nonzero such that b | a. Then there exists a unique x ∈ R, denoted
by a/b, such that a = bx.

Lemma 8.2.31. Let R be an integral domain d be a gcd of a finite nonempty subset
S. Then 1 is a gcd of {a/d : a ∈ S}.
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Lemma 8.2.32. Let R be a ring, f ∈ R[x] \ {0} and α ∈ R. Then α | f in R[x]
⇐⇒ α divides all the coefficients of f in R.

Definition 8.2.33 (Primitive polynomials). Let R be a ring and p ∈ R[x]. Then p
is called primitive iff

(a) p 6= 0 and deg p > 0, and
(b) 1 is a gcd of p’s coefficients.

Lemma 8.2.34. For any ring, the proper divisors of a primitive polynomial are
primitive polynomials.

Lemma 8.2.35. Let R be an integral domain and f ∈ R[x] be primitive. Then f has
no non-terminating factorization in R[x] and hence has an irreducible factorization
in R[x].

Definition 8.2.36 (Factorization domains). An integral domain R is called a fac-
torization domain iff every nonzero non-unit admits an irreducible factorization.

Proposition 8.2.37. Let R be an FD and f ∈ R[x] be a nonzero non-unit polyno-
mial. Then there exists an irreducible factorization of f in R[x].

Proposition 8.2.38. Let R be a UFD and f ∈ R[x] be irreducible. Then f 6= 0 and

(a) deg f = 0 =⇒ the corresponding constant c ∈ R is prime, and
(b) deg f > 0 =⇒ f is primitive.

Lemma 8.2.39. Let R be an integral domain, S be a nonempty finite subset and
b ∈ R. Let d be a gcd of S and D be a gcd of {ab : a ∈ S}. Then D, bd are associates
in R.

Lemma 8.2.40. Let R be a UFD, f, g ∈ R[x] be primitive and c, d ∈ R such that
cf(x) = dg(x). Then c, d are associates in R.

Lemma 8.2.41. Let R be a ring and p ∈ R be prime. Then
(
R/(p)

)
[x] is an integral

domain.
Define φp : R[x]→

(
R/(p)

)
[x] as

a0 + · · ·+ anx
n 7→ a0 + · · ·+ anx

n

where a 7→ a is the natural map from R to R/(p). Then φp is a ring homomorphism.

Lemma 8.2.42 (Gauss’ lemma). For an integral domain, the product of primitive
polynomials is a primitive polynomial.
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Proposition 8.2.43. For a UFD R, primes in R are prime in R[x] as well.

Lemma 8.2.44. Let R be a UFD and f ∈ Frac(R)[x] \ {0} such that deg f > 0.
Then

(a) there exist c ∈ K \ {0} and a primitive f0 ∈ R[x] such that f(x) = cf0(x),
(b) these c’s and f0’s are unique up to association in R, and
(c) f ∈ R[x] ⇐⇒ one (and hence all) of such c’s are in R.

Lemma 8.2.45. For any ring, nonconstant irreducible polynomials are primitive.

Proposition 8.2.46. Let R be an integral domain and f ∈ R[x] be nonconstant and
irreducible. Then f is irreducible in Frac(R)[x].

Proposition 8.2.47. Let R be a UFD and f, g ∈ R[x] such that f is primitive and
f | g in Frac(R)[x]. Then f | g in R[x].

Theorem 8.2.48. If R is a UFD, then R[x] is a UFD.

Corollary 8.2.49. Let R be a UFD and n ≥ 1. Then R[x1, . . . , xn] is a UFD.

Proposition 8.2.50. Let R be a UFD. Then R[x1, x2, . . .] is also a UFD.

8.3 Eisenstein’s criterion

March 10, 2022

Lemma 8.3.1 (Factors of monomials in integral domains). Let R be an integral
domain, α ∈ R \ {0} and k ≥ 0. Then any divisor of αxk in R[x] is of the form bxi

for b ∈ R \ {0} 0 ≤ i ≤ k.

Proposition 8.3.2 (Eisenstein’s criterion).

(a) Let R be an integral domain, f ∈ R[x] be nonzero and p ∈ R be a prime such
that

(i) p does not divide the leading coefficient,
(ii) p divides all the remaining coefficients, and

(iii) p2 doesn’does not divide the constant term.

Then f is irreducible in Frac(R)[x].
(b) Let R be a UFD and f ∈ R[x] be primitive, and irreducible in Frac(R)[x]. Then

f is irreducible in R[x] as well.
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Proposition 8.3.3 (Irreducibility of f(g(x))). Let R be an integral domain and
f, g ∈ R[x] with f irreducible and g having an inverse in R[x], as functions from R
to R. Let h ∈ R[x] be such that as functions from R to R, we have

h(x) = (f ◦ g)(x).

Then h too is irreducible in R[x].

Lemma 8.3.4. Let R be an integral domain and a, p, α ∈ R with p prime such that
p 6 | a and a | αp. Then a | α.

Proposition 8.3.5 (Applications of Eisenstein’s criterion). For Z, the following are
irreducible in both in Z[x], as well as in Q[x]:

(a) f(x) := x3 + 3x2 + 2.
(b) g(x) := xp−1 + xp−2 + · · ·+ 1 for any positive prime in Z.



Chapter 9

Miscellaneous topics in ring theory

9.1 Characteristics of ring

March 11, 2022

Definition 9.1.1 (Characteristic). Let R be a ring and φ be the unique ring homo-
morphism from Z to R. Then the non-negative integer n for which kerφ = Zn, is
called the characteristic of R, denoted by char(R).

Proposition 9.1.2. Let n ≥ 0. Then char(Z/Zn) = n.

Proposition 9.1.3. Let R and S be rings such that there exists an injective ring
homomorphism φ : R→ S. Then char(R) = char(S).

Corollary 9.1.4. The characteristic of a subring is the same as that of the parent
ring.

Lemma 9.1.5. Let I be an ideal of a ring R and φR and φR/I be the respective ring
homomorphisms from Z to R and R/I. Then

kerφR/I = φ−1R [I].

Proposition 9.1.6. Characteristic of an integral domain is either 0 or a positive
prime integer.

Remark 9.1.7. Converse needn’t be true:

(a) For R := Z[x, y] and I := (xy), we have that R/I is not an integral domain
and yet char(R/I) = 0.

33
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(b) For R := (Z/Zp)[x] and I := (x2) for a prime integer p, we have that R/I is
not an integral domain and still char(R/I) = p.

Proposition 9.1.8 (Characterizing characteristics). Let R be a ring with char(R) >
0. Then char(R) is the minimum number of times that 1R must be added to get 0R.

Proposition 9.1.9. Let R be a ring and φ be the ring homomorphism from Z to R
such that φ(n) is a unit for each n 6= 0. Then R contains a copy of rationals.

9.2 Endomorphisms on Z/Zn
March 11, 2022

Definition 9.2.1 (Endomorphisms). Let G be a group. Then an endomorphism on
G is a group homomorphism from G to itself.

Proposition 9.2.2 (Characterizing endomorphisms on Z/Zn). Let n ∈ Z and R be
the set of all the endomorphisms on the additive group Z/Zn. Then we can define
addition and multiplication on R as

(φ+ ψ)(x) := φ(x) + ψ(x),

φψ := φ ◦ ψ.

These make R into a ring which is isomorphic to the ring Z/Zn with an isomorphism
Φ: Z/Zn→ R given by

Φa(x) := ax

where α→ α is the natural map from Z to Z/Zn and the product on the LHS is the
product in Z/Zn.

9.3 Localization

March 11, 2022

Definition 9.3.1 (Multiplicative sets). Let R be a ring. Then S ⊆ R is called
multiplicative iff 1 ∈ S and it is closed under multiplication.

Corollary 9.3.2 (Characterizing integral domains). Let R be a ring. Then R is an
integral domain ⇐⇒ R \ {0} is multiplicative.
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Proposition 9.3.3 (Characterizing primes). Let R be a ring and p ∈ R. Then p is
prime =⇒ {a ∈ R : p 6 | a} is multiplicative.

Further, the converse holds if p 6= 0.

Proposition 9.3.4 (Localization). Let R be a an integral domain and S ⊆ R be
multiplicative such that 0 /∈ S. Define

S−1R := {a/s : a ∈ R, s ∈ S}.

Then a/s ≡ b/t iff at = bs is an equivalence relation on S−1R. We can define
addition and multiplication on S−1R as

(a/s) + (b/t) := (at+ bs)/(st),

(a/s)(b/t) := (ab)/(st).

These make S−1R into a ring.
The map a 7→ a/1 embeds R into S−1R, and for and s ∈ S, we have that s/1 is

a unit in S−1R.

Corollary 9.3.5. Localization of an integral domain by a multiplicative set not con-
taining 0 is an integral domain.

Definition 9.3.6 (Local rings). A ring R is called local iff it has only one maximal
ideal.

Lemma 9.3.7. Let I be a proper ideal of a ring R such that if a /∈ I, then a is a
unit. Then I is the only maximal ideal of R.

Proposition 9.3.8 (Local rings from prime elements). Let R be an integral domain
with p ∈ R being prime and let

S := {a ∈ R : p 6 | a}.

Then S−1R is local with (p/1) being the only maximal ideal. Also,

(p/1) ) (p2/1) ) · · ·

is a decreasing chain of ideals.
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Main definitions

March 17, 2022

Definition 10.0.1 (Fields). (F,+, ·) is a field iff the following hold:

(a) (F,+) is an abelian group.
(b) · : F ×F → F is such that (F \0, ·) is an abelain group, where 0 is the additive

identity.
(c) a · (b+ c) = a · b+ a · c for any a, b, c ∈ F .

Corollary 10.0.2. Let (F,+, ·) be a field. Then it is also a ring with the same
additive and multiplicative identities.

Definition 10.0.3 (Subfields). Let K be a field and F ⊆ K. Then K is called a
subfield of K iff the field operations of K can be inherited to F such that F is itself
a field under those inherited operations.

We also call K a field extension of F , and this is denoted by K/F or

K

F

.

Proposition 10.0.4 (A characterization of subfields). Let K be a field and F ⊆ K.
Then F is a subfield of K ⇐⇒ F is an additive subgroup of K and F \ {0} is a
multiplicative subgroup of K \ {0}.

Corollary 10.0.5.

(a) A subfield of a subfield is a subfield of the parent ring.
(b) Intersection of subrings is a subring.
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Corollary 10.0.6 (Some examples).

(a) Z/Zp is a finite field for any prime p ∈ Z.
(b) C/R/Q are field extensions.

Definition 10.0.7 (Adjoining elements to a field). Let K/F be a field extension
and α ∈ K. Then the smallest subfield of K containing F and α is denoted by F (α).
We can extend this definition to any subset S ⊆ K in place of α.

Proposition 10.0.8 (Description of F (α)). Let K/F be a field extension and α ∈ K.
Then

F (α) =
{
f(α)/q(α) : f, g ∈ F [x] with g(α) 6= 0

}
.

Corollary 10.0.9. Let K/F be a field extension and α ∈ K. Then

(a) α ∈ F =⇒ F (α) = F , and
(b) α /∈ F =⇒ F (α) ) F .

Remark 10.0.10. We can extend Definition 10.0.7 to any subset S ⊆ K in place of
α, and then an analogue of Proposition 10.0.8 holds.

Proposition 10.0.11. Let K/F be a field extension and α, β ∈ K. Then F (α, β) =
F (α)(β).
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Algebraics and transcendentals

March 17, 2022

Definition 11.0.1 (Algebraics and transcendentals). Let K/F be a field extension
and α ∈ K. Then α is called

(a) algebraic over F iff there exists an f ∈ F [x] \ 0 such that f(α) = 0, and
(b) transcendental over F iff it is not algebraic over F .

Remark 11.0.2. We might also call “α ∈ K/F is algebraic”, or similar variants.

Corollary 11.0.3 (Some examples).

(a) i ∈ C/R,
√

2 ∈ R/Q are algebraic.
(b) π, e ∈ R/Q are transcendental. Prove sometime...
(c)
√

2 +
√

3 ∈ R/Q is algebraic. Further, it is irrational.

Theorem 11.0.4 (When is F [α] a field?). Let K/F be a field extension and α ∈ K.
Consider the ring homomorphism

φα : F [x]→ K

f 7→ f(α)
.

Then exactly one of the following holds:

(a) α is algebraic over F , kerφ 6= {0}, and F [α] = F (α), and
(b) α is transcendental over F , kerφ = {0}, and F [α] ∼= F [x].

Corollary 11.0.5. We have the proper field extensions: Q ( Q(
√

2) ( R.

Corollary 11.0.6. Let K/F be a field extension and α, β ∈ K/F be transcendental.
Then F [α] ∼= F [β].
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Proposition 11.0.7 (kerφα when α is algebraic). Let α ∈ K/F be algebraic and
f ∈ F [x]. Then the following are equivalent:

(a) kerφα = (f).
(b) f(α) = 0 and f is irreducible in F [x].

Proposition 11.0.8 (Irreducible polynomial of an algebraic). Let α ∈ K/F be
algebraic. Then there exists a unique monic irreducible polynomial f ∈ F [x] such
that f(α) = 0.

Definition 11.0.9 (Degree of an algebraic). Let α ∈ K/F be algebraic. Then its
degree, denoted degK/F α is defined to be the degree of its irreducible polynomial.

Lemma 11.0.10. Let α ∈ K/F be algebraic. Then degK/F α ≥ 1 with equality
holding if and only if α ∈ F .
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Degree of field extensions

March 18, 2022

Definition 12.0.1 (Degree of a field extension). Let K/F be a field extension. Then
K is a vector space over F with the operations inherited from K. Then the dimension
of this vector space is called the degree of K/F , and is denoted by [K : F ].

Theorem 12.0.2 (Degree of F (α)/F ). Let α ∈ K/F . Then we have the following
disjoint cases:

(a) α is algebraic and degF (α)/F α = [F (α) : F ], and {1, . . . , αn−1} is a basis for
F (α) where n := degF (α)/F α.

(b) α is transcendental and [F (α) : F ] =∞ and {1, α, α2, . . .} is an infinite inde-
pendent set in F (α).

Corollary 12.0.3. Let α ∈ K/F . Then the following are equivalent:

(a) α is algebraic.
(b) [F (α) : F ] <∞.
(c) F [α] as a vector space over F has finite dimension.

Remark 12.0.4. We’ll adopt the intuitive treatment of ∞.

Theorem 12.0.5 (Degree of fields is multiplicative). Let K/L/F be field extensions.
Then

[K : F ] = [K : L][L : F ].

Also, we have the following disjoint cases:

(a) One of [K : L] or [L : F ] is ∞ and [K : F ] =∞.
(b) [K : L] = m and [L : F ] = n with m,n < ∞ and for any bases (α1, . . . , αm)

and (β1, . . . , βn) of K over L and L over F respectively, the set {αiβj}i,j is a
basis for K over F .
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12.1 Degree of Q(
√

2 +
√

3)
/
Q

March 19, 2022

Proposition 12.1.1 (
√

2 +
√

3 ∈ R/Q is algebraic).
√

2 +
√

3 is a root of the
polynomial f ∈ Q[x] given by

x 7→ x4 − 10x2 + 1.

Lemma 12.1.2. Let K/F be a field extension such that [K : F ] = 1. Then K = F .

Proposition 12.1.3.

R

Q(
√

2 +
√

3)

Q(
√

2) Q(
√

3)

Q

2

4

2

2 2

Corollary 12.1.4. x 7→ x4 − 10x2 + 1 is irreducible in Q[x] and Z[x]

12.2 Field of algebraics

March 19, 2022

Definition 12.2.1 (Algebraic and finite extensions). Let K/F be a field extension.
Then K/F is called

(a) algebraic iff every α ∈ K/F is algebraic, and
(b) finite iff [K : f ] <∞.

Proposition 12.2.2. Finite field extensions are algebraic.

Remark 12.2.3. The converse need not be true. Produce a counterexample.
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Theorem 12.2.4 (Algebraics of a field extension form a field). Let K/L be a field
extension and α, β ∈ K/F be algebraic. Then K/F (α, β)/F are finite extensions.

In particular, if L is the set of all algebraics in K/F , then

K

L

F

.
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Field homomorphisms

March 21, 2022

Definition 13.0.1 (Field homomorphisms and isomorphisms). Let K and L be
fields. Then a ring homomorphism (respectively isomorphism) between them is called
a field homomorphism (respectively isomorphism).

Remark 13.0.2. The condition that 1 7→ 1 ensure that the zero map can’t be a
field homomorphism.

Corollary 13.0.3. Field homomorphisms are injective.

Definition 13.0.4 (F -homomorphisms and F -isomorphisms). Let K/F and L/F
be field extensions. Then a field homomorphism (respectively isomorphism) from K
to L whose restriction to F is identity, is called an F -homomorphism (respectively
F -isomorphism).

Corollary 13.0.5. Let K/Q and L/Q be field extensions. Then any field homomor-
phism from K to L is also a Q-homomorphism.

Proposition 13.0.6. Let K/F and L/F be field extensions and α ∈ K/F be alge-
braic. Let φ : K → L be an F -homomorphism. Then φ(α) ∈ L/F is algebraic and
has the same irreducible polynomial as α.

Proposition 13.0.7. Let K/F and L/F be field extensions and α ∈ K/F and
β ∈ L/F be algebraic with the same irreducible polynomial. Then there exists an
F -isomorphism between F (α) and F (β).
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Proposition 13.0.8. Let α ∈ L/F be algebraic and f ∈ F [x] be the irreducible
polynomial of α. Let K be a field and φ : F → K be a field homomorphism. Let
g ∈ K[x] be obtained by replacing the coefficients in F by their images under φ. Let
β ∈ K be a root of g. Then we can extend φ to a homomorphism F (α) → K such
that α 7→ β.

F [x] K

F (α) = F [α] F [x]/(f)

φα

∼

Proposition 13.0.9. There are exactly 6 Q-self-homomorphisms on Q( 3
√

2, ω).
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