## Contents

I Modules ..... 2
1 Basics ..... 2
2 Cyclic modules over PIDs ..... 2
II Field extensions ..... 4
1 Characteristic and field homomorphisms ..... 4
2 Field extensions ..... 4
3 Simple extensions ..... 5
4 Splitting extensions ..... 7
5 Algebraic closures ..... 7
6 Separable extensions ..... 8
III Galois theory ..... 10
1 The set Aut ${ }_{\phi}$ ..... 10
2 Galois groups ..... 11
3 Galois extensions ..... 11
A Some ring theory ..... i
1 Having zero and identity ..... i
2 Euclidean domains ..... ii
3 GCD and LCM domains ..... iii
4 Atomic domains ..... iv
5 Unique factorization domains ..... v
6 Bézout domains ..... v
$7 \quad$ Studying polynomial rings ..... vii

## Chapter I

## Modules

## 1 Basics

March 24, 2023
Theorem 1.1. Any two bases of a free modules over an integral domain are in bijection.

## 2 Cyclic modules over PIDs

March 23, 2023
Convention. All the modules from now on (except in appendices) will be over PIDs unless stated otherwise. $R$ will denote a generic PID, and $M$ an $R$-module.

Definition 2.1 (Cyclic submodule). A module that can be generated by a single element is called cyclic.

Proposition 2.2. Any submodule of a cyclic module is cyclic.
Definition 2.3 (Order). Annihilator of an $m \in M$ is any $a \in A$ such that ${ }^{1}$

$$
\operatorname{Ann}(m)=(a)
$$

[^0]Notation. Perversely, we denote a generic order (which will be unique up to associates!) of $m$, by $|m|$.

Whenever we use them in the statements a result, we will mean that $|m|$ is an arbitrary order of $m$.

Proposition 2.4. Let $m \in M$ and $a \in A \backslash 0$. Then ${ }^{2}$

$$
|a m| \sim \frac{|m|}{\operatorname{gcd}(a,|m|)}
$$

where $\sim$ is the "being associates" relation.

[^1]
## Chapter II

## Field extensions

## 1 Characteristic and field homomorphisms

April 7, 2023
Convention. Throughout this chapter, $F, K, L$ will be reserved for fields.
Definition 1.1 (Field characteristic). Let $\phi$ be the unique nice ring homomorphism on $\mathbb{Z} \rightarrow F$. Then we define char $F$ to be the unique nonnegative integer $p$ such that ker $\phi=(p)$.

Corollary 1.2. Characteristic of a field is either 0 or a prime integer.
Definition 1.3 (Field homomorphisms and isomorphisms). A field homomorphism (respectively isomorphism) is a nice ring homomorphism (respectively isomorphism) between fields.

Corollary 1.4. Field homomorphisms are injective.

## 2 Field extensions

April 7, 2023
Definition 2.1 ( $F$-extensions). A field homomorphism $f: F \rightarrow K$ is called an $F$-extension.

Remark. When the context is clear, we'll let $K$ stand in place of $f$.

Definition 2.2 ( $F$-extension homomorphisms). Let $\phi: F \rightarrow K$ and $\psi: F \rightarrow$ $L$ be field extensions and $\xi: K \rightarrow L$ a field homomorphism (respectively isomorphism). Then $(\phi, \xi, \psi)$ is called an $F$-extension homomorphism (respectively isomorphism) iff the following diagram commutes:


Remark. When the context is clear, we'll let $\xi$ stand for $(\phi, \xi, \psi)$.

Definition 2.3 (Degree of field extensions). Let $\phi: F \rightarrow K$ be an extension. Then $\phi$ is an algebra, and the dimension of $K$ as the vector space over $F$ is called $\phi$ 's degree, and is denoted $[K: F]_{\phi}$.

Depending on the degree, we call the extension finite or infinite.
Proposition 2.4. Degree of isomorphic F-extensions coincide.
Proposition 2.5 (Degree is multiplicative). For extensions $F \xrightarrow{\phi} K \xrightarrow{\psi} L$, we have that

$$
[L: F]_{\psi \circ \phi}=[L: K]_{\psi}[K: F]_{\phi} .
$$

## 3 Simple extensions

April 7, 2023
Definition 3.1 (Simple extensions). An extension $\phi: F \rightarrow K$ is called simple iff

$$
K=\phi(F)(\alpha)
$$

for some $\alpha \in K$.

Notation. Given a ring homomorphism $\phi: A \rightarrow B$, we'll denote by $f \mapsto f_{\phi}$ the induced homomorphism $A[x] \rightarrow B[x]$.

Theorem 3.2 (Extensions via irreducible polynomials). Let $p \in F[x]$ be irreducible. ${ }^{1}$ Let $\phi$ be the composite of the canonical maps:


Then $\phi$ is an extension of degree $n:=\operatorname{deg} p$ with $^{2}\left(\bar{x}^{0}, \ldots, \bar{x}^{n-1}\right)$ being a basis. We also have that

$$
F[x] /(p)=\phi(F)[\bar{x}]=\phi(F)(\bar{x})
$$

with " $p$ having a root in $F[x] /(p)$ ", namely $\bar{x}$ :

$$
p_{\phi}(\bar{x})=0
$$

Definition 3.3 (Algebraics and transcendentals). Let $\phi: F \rightarrow K$ be an extension and $\alpha \in K$. Let $\psi: F[x] \rightarrow \phi(F)[\alpha]$ be the evaluation at $\alpha$ via $\phi$. Then we call $\alpha \phi$-algebraic iff $\operatorname{ker} \psi \neq 0$, and $\phi$-transcendental otherwise.

We call $\phi$ an algebraic extension iff each element of $K$ is $\phi$-algebraic.

Remark. Again, if clear from the context, we'll drop " $\phi$-".

Definition 3.4 (Minimal polynomials). Continuing Definition 3.3, and assuming that $\alpha$ is $\phi$-algebraic, we call the unique monic polynomial $p$ that generates ker $\psi$, the $\phi$-minimal polynomial of $\alpha$.

Proposition 3.5. Continuing Definition 3.3, we have the following:
(i) If $\alpha$ is algebraic, then its minimal polynomial $p$ is irreducible and $\phi(F)(\alpha)=\phi(F)[\alpha] \cong F[x] /(p)$.
(ii) If $\alpha$ is transcendental, then $\phi(F)(\alpha) \cong F(x)$.

Proposition 3.6 (On non-simple algebraic extensions). Let $\phi: F \rightarrow K$ be an extension and $\alpha_{1}, \ldots, \alpha_{n} \in K$ for $n \geq 0$. Let $L:=\phi(F)\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Then the following are equivalent:
(i) $\phi$ as $F \rightarrow L$ is algebraic.
(ii) Each $\alpha_{i}$ is $\phi$-algebraic.

[^2](iii) $[L: F]_{\phi}<\infty .^{3}$

If the above equivalent conditions hold, then we have that

$$
\phi(F)\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\phi(F)\left[\alpha_{1}, \ldots, \alpha_{n}\right] .
$$

## 4 Splitting extensions

April 26, 2023
Definition 4.1 (Splitting extension). An extension $\phi: F \rightarrow K$ is called splitting for a polynomial $f \in F[x] \backslash\{0\}$ iff
(i) $f_{\phi}=c\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ for $n \geq 0$ in $K[x]$; and
(ii) $K=\phi(F)\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Theorem 4.2 (Existence). Each nonzero polynomial has a splitting extension.

Theorem 4.3 (Isomorphism extension). Let $\mu: F_{1} \rightarrow F_{2}$ be an isomorphism. Let $\phi_{1}: F_{1} \rightarrow K_{1}$ be a splitting extension for $f \in F[x] \backslash\{0\}$ and $\phi_{2}: F_{2} \rightarrow K_{2}$ be one for $f_{\mu}$. Then there exists an isomorphism $\nu: K_{1} \rightarrow K_{2}$ making the following commute:


Corollary 4.4. Any two splitting field extensions of an $f \in F[x] \backslash\{0\}$ are $F$-extension isomorphic.

## 5 Algebraic closures

Do this!

[^3]
## 6 Separable extensions

April 26, 2023
Definition 6.1 (Separable polynomials and extensions). An irreducible polynomial $f \in F[x]$ is called separable iff it ${ }^{4}$ has no repeated roots in any of (equivalently, one of) its splitting extensions. ${ }^{5}$

A polynomial $f \in F[x] \backslash\{0\}$ is called separable iff all of its irreducible factors are separable.

An algebraic extension $\phi: F \rightarrow K$ is called separable iff the minimal polynomial of each $\alpha \in K$ is separable.

Proposition 6.2 (The formal derivative). Define $D_{F}: F[x] \rightarrow F[x]$ by

$$
\sum_{i=0}^{n} a_{i} x^{i} \mapsto \sum_{i=1}^{n} n a_{i} x^{i-1}
$$

Then the following hold:
(i) $D$ is linear.
(ii) For $f, g \in F[x]$, we have

$$
D_{F}(f g)=D_{F}(f) g+f D_{F}(g)
$$

(iii) If $\phi: F \rightarrow K$ is a homomorphism, then

$$
D_{K} \circ \phi=\phi \circ D_{F} .
$$

Notation. We'll often use the more convenient notation of $f^{\prime}$.

Lemma 6.3 (Extensions preserve gcd's of polynomials). Let $\phi: F \rightarrow K$ be an extension and $S \subseteq F[x]$ with $d \in F[x]$ being a gcd. Then $d_{\phi}$ is a gcd of $\phi(S)$.

Proposition 6.4 (Characterizing separability). Let $f \in F[x] \backslash\{0\}$. Then the following are equivalent:
(i) $f$ is separable.

[^4](ii) $f$, $f^{\prime}$ have no common zero in any extension. ${ }^{6}$
(iii) $f$, $f^{\prime}$ have a unit as their gcd in some (equivalently, in all) extensions.

Corollary 6.5. The (nonzero) polynomials of a field with characteristic 0 are always separable.

Example 6.6 (A class of non-separable polynomials). If char $F=p>0$, then any nonconstant polynomial in

$$
F\left[x^{p}\right]:=\left\{\text { polynomials of the form } \sum_{i=0}^{n} a_{i} x^{p i}\right\}
$$

is non-separable.

[^5]
## Chapter III

## Galois theory

## 1 The set Aut ${ }_{\phi}$

April 26, 2023
Corollary 1.1 (Group of field-fixing automorphisms). Given an extension $\phi: F \rightarrow K$, the set

$$
\text { Aut }_{\phi}:=\{F \text {-extension isomorphisms } K \rightarrow K\}
$$

forms a group under function composition.
Remark. If one wants to be more explicit than necessary for the benefit of clarity, they might write $\operatorname{Aut}_{\phi(F)}(K)$.

Corollary 1.2. Given the extensions $F \xrightarrow{\phi} K \xrightarrow{\psi} L$, we have that

$$
\mathrm{Aut}_{\psi} \leq \mathrm{Aut}_{\psi \circ \phi}
$$

Proposition 1.3 (The fixed subfield). Given an extension $\phi: F \rightarrow K$ and a subset $H \subseteq \mathrm{Aut}_{\phi}$, the set
$\operatorname{Fix}_{\phi}(H):=\{$ elements of $K$ that remain fixed by all $\sigma \in H\}$
forms a subfield of $K$ containing $\phi(F)$.
Also, if $H_{1} \subseteq H_{2}$, then $\operatorname{Fix}_{\phi}\left(H_{1}\right) \supseteq \operatorname{Fix}_{\phi}\left(H_{2}\right)$.
Lemma 1.4. Let $\phi: F \rightarrow K$ and $\psi: F \rightarrow L$ be isomorphic $F$-extensions. Then as groups,

$$
\mathrm{Aut}_{\phi} \cong \mathrm{Aut}_{\psi} .
$$

## 2 Galois groups

April 26, 2023
Definition 2.1 (Galois groups). The group $\mathrm{Aut}_{\phi}$ is called a Galois group of $f \in F[x]$ iff $\phi$ is a splitting extension of $f$.

Remark. The Galois groups of $f$ are unique up to isomorphisms.

Lemma 2.2 ("Roots get mapped to roots"). Consider the following Fextension homomorphism:


Then for any $f \in F[x]$, we have

$$
f_{\phi}(\alpha)=0 \text { in } K \Longrightarrow f_{\psi}(\xi(\alpha))=0 \text { in } L .
$$

Theorem 2.3. Let $\phi: F \rightarrow K$ be splitting for $f \in F[x] \backslash\{0\}$. Then

$$
\left|\mathrm{Aut}_{\phi}\right| \leq[K: F]_{\phi}
$$

with equality holding for separable $f$ 's.

## 3 Galois extensions

April 26, 2023
Definition 3.1 (Galois extensions). An extension $\phi: F \rightarrow K$ is called Galois iff

$$
\left|\mathrm{Aut}_{\phi}\right|=[K: F]_{\phi}<\infty .
$$

Example $3.2(\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $\mathbb{Q}(\sqrt[3]{2}, \omega))$. Do this!

Notation. By $F^{*}$, we'll mean the multiplicative group of $F$.

Definition 3.3 (Characters of groups). A character of a group $G$ is a group homomorphism $G \rightarrow F^{*}$.

Example 3.4. A field extension $F \rightarrow K$ induces a character $F^{*} \rightarrow K^{*}$.

Proposition 3.5 ("Linear independence" of characters of a group). Let $\chi_{1}, \ldots, \chi_{n}: G \rightarrow F^{*}$ be characters of a group $G$ for $n \geq 0$ and $\alpha_{1}, \ldots, \alpha_{n} \in F$. Then

$$
\alpha_{1} \chi_{1}+\cdots+\alpha_{n} \chi_{n}=0 \Longrightarrow \quad \text { each } \alpha_{i}=0
$$

## Appendix A

## Some ring theory

## 1 Having zero and identity

April 4, 2023
Definition 1.1 (Notions in commutative rings). On a commutative ring, we can define the following:
(i) " $a \mid b$ " and " $a \sim b$ " relations.
(ii) gcd, lcm of subsets.
(iii) prime elements.

If the ring also has an identity, then we can also define irreducibles.
If the ring is further an integral domain, then we also have " $a / b$ " whenever $b \mid a$ and $a \neq 0$.

Remark. We may also call irreducibles as atoms occasionally.

Proposition 1.2 (Facts for commutative rings). In a commutative ring, the following hold:
(i) $a \sim b$ and $c \sim d \Longrightarrow a c \sim b d$.
(ii) Let $d$ be $a \operatorname{gcd}$ of $S$. Then $d^{\prime}$ is also $a \operatorname{gcd}$ of $S \Longleftrightarrow d \sim d^{\prime}$. Similarly for lcm.
(iii) $p$ is prime $\Longleftrightarrow(p)$ is nonzero prime.
(iv) $\sim$ preserves primality.

Proposition 1.3 (When we also have an identity). In a commutative ring with identity, the following hold:
(i) $\sim$ becomes an equivalence relation.
(ii) $\sim$ preserves irreducibility.
(iii) $(p)$ is maximal and nonzero $\Longrightarrow p$ is irreducible. ${ }^{1}$
(iv) Maximal ideals are prime.
(v) " $a \mid b$ " becomes a "partial order" with "= replaced with $\sim$ ".
(vi) (a) $\sum_{s \in S}(s)=(d) \Longrightarrow d$ is $a \operatorname{gcd}$ of $S$.
(b) $\bigcap_{s \in S}(s)=(m) \Longrightarrow m$ is an lcm of $S$.

Remark. We'll occasionally call integral domains simply as domains.

Proposition 1.4 (When we have no zero divisors). In an integral domain, the following hold:
(i) $a \sim b \Longleftrightarrow a=u b$ for some unit $u$.
(ii) nd is a gcd of $n S$ and $n \neq 0 \Longrightarrow d$ is $a \operatorname{gcd}$ of $S$. The converse holds if $n S$ has a gcd. Similarly for lcm .
(iii) Let $a, b \neq 0$. Then the following hold:
(a) $d$ is $a \operatorname{gcd}$ of $a, b$ and $a x, b x$ have gcd's for each $x \Longrightarrow a b / d$ is an lcm of $a, b$.
(b) $m$ is an lcm of $a, b \Longrightarrow a b / m$ is $a \operatorname{gcd} o f a, b$.
(iv) Primes are irreducible.
(v) "Uniqueness" of prime factorizations. ${ }^{2}$
(vi) Form of divisors of prime products. ${ }^{3}$
(vii) Any two prime products have a gcd.

## 2 Euclidean domains

April 4, 2023

[^6]Definition 2.1 (Euclidean domains). Let $D$ be a domain. Then a primitive Euclidean valuation on $D$ is a function $\nu: D \backslash\{0\} \rightarrow \mathbb{N}$ such that for every $a, b \in D$ with $b \neq 0$, there exist $q, r \in D$ such that the following hold:
(i) $a=b q+r$.
(ii) $r \neq 0 \Longrightarrow \nu(r)<\nu(b)$.
$\nu$ is called a Euclidean valuation iff it also satisfies

$$
\nu(a b) \leq \nu(a) \nu(b)
$$

A domain with a Euclidean valuation is called a Euclidean domain.
Proposition 2.2 (Euclidean valuations from primitive). Let $D$ be a domain with a primitive Euclidean valuation $\nu$. Then $D$ becomes a Euclidean domain with the following valuation:

$$
a \mapsto \min _{x \neq 0} \nu(a x) \quad(a \neq 0)
$$

Corollary 2.3. Let $D$ be a Euclidean domain with valuation $\nu$. Then the following hold:
(i) The minimum value of $\nu$ is $\nu\left(1_{D}\right)$.
(ii) $a \mid b \Longrightarrow \nu(a) \leq \nu(b)$ for $a, b \neq 0$.
(iii) $a \sim b \Longrightarrow \nu(a)=\nu(b)$ for $a, b \neq 0$.
(iv) $u$ is a unit $\Longleftrightarrow \nu(u)=\nu\left(1_{D}\right)$.

Proposition 2.4. A Euclidean domain is a PID.

## 3 GCD and LCM domains

April 5, 2023
Definition 3.1 (GCD and LCM domains). A domain in which finite sets have gcd's (respectively lcm's) are called GCD (respectively LCM) domains.

Corollary 3.2. PID's are GCD domains.
Corollary 3.3. A sufficient condition for a domain to be a GCD (respectively $L C M)$ domain is that any two elements have $a \operatorname{gcd}$ (respectively an lcm).

Corollary 3.4. A GCD domain is an LCM domain, and conversely.

Result 3.5. Let $D$ be a domain and $p$ be a nonprime atom. Therefore, take $a, b$ such that $p \mid a b$ but $p \nmid a, b$. Then $a b$ and $p b$ don't have any gcd. Consequently, the ideal $(a b, p b)$ is not principal either.

Example 3.6 (A Noetherian domain that is not GCD). 2 is a nonprime atom in the Noetherian $\mathbb{Z}[\sqrt{-3}]$, dividing

$$
4=(1+\sqrt{-3})(1-\sqrt{-3})
$$

but neither of the factors. ${ }^{4}$
Corollary 3.7. In a GCD domain, irreducibles and primes coincide.

## 4 Atomic domains

April 4, 2023
Definition 4.1 (Atomic domains). A domain in which every nonzero nonunit admits an irreducible factorization.
Corollary 4.2. Any nonzero element of an atomic domain admits a factorization of the form

$$
u p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}
$$

for $n \geq 0$, where $u$ is a unit, $p_{i}$ 's are non-associate irreducibles and each $e_{i} \geq 1$.

Definition 4.3 (Ascending chain condition on principal ideals, ACCP). An arbitrary ring is said to satisfy ACCP iff every ascending chain of its principal ideals stabilizes.
Definition 4.4 (Well-founded relations). A relation $R$ on a set $X$ is called well-founded iff every nonempty subset of $X$ has a minimal element.
Corollary 4.5. In a domain, ACCP is equivalent to having that the "proper" divisibility is well-founded. ${ }^{5}$

Theorem 4.6. An domain satisfying ACCP is atomic.
Corollary 4.7. Noetherian domains are atomic. ${ }^{6}$

[^7]
## 5 Unique factorization domains

April 5, 2023
Definition 5.1 (UFD's). An atomic domain in which each irreducible factorization is "unique".

Example 5.2 (A Noetherian domain that is not a UFD). In $\mathbb{Z}[\sqrt{-5}]$,

$$
2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})
$$

are irreducible factorizations with $2 \nsim 1 \pm \sqrt{-5}$.

Example 5.3 (A UFD that is not Noetherian). $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right] .^{7}$
Theorem 5.4. For a domain $D$, the following are equivalent: ${ }^{8}$
(i) D satisfies ACCP and its irreducibles are prime.
(ii) $D$ is a UFD.
(iii) $D$ is atomic as well as a GCD domain.

Corollary 5.5. PID's are UFD's.

Example 5.6 (A UFD that is not a PID). In the UFD $\mathbb{Z}[x, y]$, the ideal $(2, x)$ is not principal. ${ }^{9}$

## 6 Bézout domains

April 5, 2023
Definition 6.1 (Bézout domains). A domain in which each finitely generated ideal is principal.

Corollary 6.2 (Relation with gcd's). Let $A$ be a commutative ring with identity and $a_{1}, \ldots, a_{n} \in A$. Then the following are equivalent:

[^8](i) $a_{i}$ 's have $a \operatorname{gcd}$ of the form $a_{1} x_{1}+\cdots+a_{n} x_{n}$.
(ii) $\left(a_{1}, \ldots, a_{n}\right)$ is principal.

Proposition 6.3 (Relation with Bézout lemma). For a domain D, the following are equivalent:
(i) $D$ is Bézout.
(ii) $D$ is GCD; and, whenever $d$ is $a \operatorname{gcd}$ of $a, b$, we have

$$
(d)=(a)+(b) .
$$

Corollary 6.4. In a Bézout domain, irreducibles form maximal ideals.
Corollary 6.5. PID $\Longrightarrow$ Bézout $\Longrightarrow G C D$.
Theorem 6.6. Bézout $+A C C P \Longrightarrow P I D$.
Proposition 6.7 (Nice summary). We have the following Venn diagram: ${ }^{10}$


In particular, we have the following implications:


[^9]Not yet proven the above for algebraic integers and $\mathbb{Z}[(1+\sqrt{-19}) / 2]$ !

## $7 \quad$ Studying polynomial rings

April 5, 2023
Convention. In this section $A$ will denote a commutative ring with identity, unless otherwise stated.

Definition 7.1 (Primitives and very primitives). A polynomial $f$ in $A\left[x_{1}, \ldots, x_{n}\right]$ is called very primitive ${ }^{11}$ iff the $A$-ideal generated by its coefficients is the entire $A$.
$f$ is called primitive iff $1_{A}$ is a gcd of the coefficients of $f$.

Convention. We'll identity the common elements of $A, A[x], A[x, y]$, etc.

Theorem 7.2. Let $f, g \in A\left[x_{1}, \ldots, x_{n}\right]$. Write $f=\sum_{|\alpha| \leq m} a_{\alpha} x^{\alpha} \in A\left[x_{1}, \ldots, x_{n}\right]$ for $m, n \geq 0$. Then the following hold:
(i) $f$ is a unit $\Longleftrightarrow a_{0}$ is a unit and all the rest are nilpotents.
(ii) $f$ is a nilpotent $\Longleftrightarrow$ each $a_{\alpha}$ is a nilpotent.
(iii) An ideal of $A\left[x_{1}, \ldots, x_{n}\right]$ which is annihilated by some nonzero polynomial is also annihilated by some nonzero constant. ${ }^{12}$
(iv) $f g$ is very primitive $\Longleftrightarrow f, g$ are very primitive.
(v) $f g$ is primitive $\Longrightarrow f, g$ are primitive. ${ }^{13}$

Theorem 7.3 (Eisenstein). Let $\mathfrak{p}$ be a prime ideal of $A$. Let $f:=\sum_{i=0}^{n} a_{i} x^{i} \in$ $A[x]$ such that the following hold:
(i) $a_{0}, \ldots, a_{n-1} \in \mathfrak{p}$ but $a_{n} \notin \mathfrak{p}$.
(ii) $a_{0} \notin \mathfrak{p}^{2}$.

Then we can't write $f$ as a product of two polynomials each having strictly smaller degree. ${ }^{14}$

[^10]Theorem 7.4 (Gauss' lemma). Let $D$ be a $G C D$ domain wherein each nonunit has an irreducible (or equivalently, prime) factor. Then the following hold:
(i) $f, g$ in $D[x]$ are primitive $\Longrightarrow f g$ is primitive.
(ii) Irreducibles of $D[x]$ are also irreducible in $\operatorname{Frac}(D)[x]$.

Lemma 7.5 (Irreducibles and primitives).
(i) Nonconstant irreducibles polynomials over a GCD domain are primitive.
(ii) A nonconstant primitive polynomial over a domain that doesn't factor into two polynomials of strictly smaller degrees, is primitive.

Lemma 7.6. Primitive polynomials over a domain admit irreducible factorizations.

Theorem 7.7. $D$ is a $U F D \Longrightarrow D\left[x_{1}, \ldots, x_{n}\right]$ is a $U F D$.
Corollary 7.8. $D$ is a $U F D \Longrightarrow D\left[x_{1}, x_{2}, \ldots\right]$ is a $U F D$.


[^0]:    ${ }^{1}$ We define annihilators of a subset (not just submodules!) of $M$ in the obvious manner.

[^1]:    ${ }^{2}$ Note that the " $a / b$ " notation makes sense only in integral domains.

[^2]:    ${ }^{1}$ Since $F$ is a field, this means that $p$ is nonconstant.
    ${ }^{2}$ Since $1_{F}$ present, we can use the " $x$ " notation.

[^3]:    ${ }^{3}$ The $\phi$ is actually a restriction.

[^4]:    ${ }^{4}$ By "it", we obviously mean $f_{\phi}$.
    ${ }^{5}$ Equivalently, $f$ has no repeated roots in any of (not some of) its extensions.

[^5]:    ${ }^{6}$ Of course, we mean the images of $f$ and $f^{\prime}$.

[^6]:    ${ }^{1}$ Converse holds in Bézout domains. See Corollary 6.4.
    ${ }^{2}$ This comes in two versions: (i) " $p_{1} \cdots p_{m}=q_{1} \cdots q_{n}$ " form; and (ii) " $u p_{1}^{e_{1}} \cdots p_{m}^{e_{m}}=$ $v q_{1}^{f_{1}} \cdots q_{n}^{f_{n}}$ " form. In the latter, $p_{i}$ 's (respectively $q_{j}$ 's) need to be nonassociates.
    ${ }^{3}$ This also comes in two versions. However, we don't need $p_{i}$ 's to be nonassociates here in either version.

[^7]:    ${ }^{4}$ Note that $\mathbb{Z}[\sqrt{-3}]$ is Noetherian (and hence atomic; see Theorem 4.6), being the image of the ring homomorphism $\mathbb{Z}[x] \rightarrow \mathbb{Z}[\sqrt{-3}]$.
    ${ }^{5}$ Requires DC.
    ${ }^{6}$ Converse not true; see Example 5.3.

[^8]:    ${ }^{7}$ That it's a UFD will follow from This will follow from Theorem 7.7.
    ${ }^{8}$ Do (i) $\Leftrightarrow$ (ii) $\Leftrightarrow$ (iii).
    ${ }^{9}$ That this is a UFD follows from Theorem 7.7.

[^9]:    ${ }^{10}$ Each portion is nonempty.

[^10]:    ${ }^{11}$ Following Paolo's terminology.
    ${ }^{12}$ This is due to Conrad.
    ${ }^{13}$ See Theorem 7.4 for a converse.
    ${ }^{14}$ The hypotheses automatically imply that $f \neq 0$, so that we can talk of its degree.

