Contents

Ι	Modules 2		
	1	Basics	2
	2	Cyclic modules over PIDs	2
II	Field extensions 4		
	1	Characteristic and field homomorphisms	4
	2	Field extensions	4
	3	Simple extensions	5
	4	Splitting extensions	7
	5	Algebraic closures	$\overline{7}$
	6	Separable extensions	8
III Galois theory			10
	1	The set Aut_{ϕ}	10
	2	Galois groups	11
	3	Galois extensions	11
\mathbf{A}	Some ring theory i		
	1	Having zero and identity	i
	2	Euclidean domains	ii
	3	GCD and LCM domains	iii
	4	Atomic domains	iv
	5	Unique factorization domains	v
	6	Bézout domains	v
	7	Studying polynomial rings	vii

Chapter I

Modules

1 Basics

March 24, 2023

Theorem 1.1. Any two bases of a free modules over an integral domain are in bijection.

2 Cyclic modules over PIDs

March 23, 2023

Convention. All the modules from now on (except in appendices) will be over PIDs unless stated otherwise.

R will denote a generic PID, and M an R-module.

Definition 2.1 (Cyclic submodule). A module that can be generated by a single element is called cyclic.

Proposition 2.2. Any submodule of a cyclic module is cyclic.

Definition 2.3 (Order). Annihilator of an $m \in M$ is any $a \in A$ such that¹

$$\operatorname{Ann}(m) = (a).$$

¹We define annihilators of a subset (not just submodules!) of M in the obvious manner.

CHAPTER I. MODULES

Notation. Perversely, we denote a generic order (which will be unique up to associates!) of m, by |m|.

Whenever we use them in the statements a result, we will mean that |m| is an arbitrary order of m.

Proposition 2.4. Let $m \in M$ and $a \in A \setminus 0$. Then²

$$|am| \sim \frac{|m|}{\gcd(a,|m|)}$$

where \sim is the "being associates" relation.

²Note that the "a/b" notation makes sense only in integral domains.

Chapter II

Field extensions

1 Characteristic and field homomorphisms

April 7, 2023

Convention. Throughout this chapter, F, K, L will be reserved for fields.

Definition 1.1 (Field characteristic). Let ϕ be the unique nice ring homomorphism on $\mathbb{Z} \to F$. Then we define char F to be the unique nonnegative integer p such that ker $\phi = (p)$.

Corollary 1.2. Characteristic of a field is either 0 or a prime integer.

Definition 1.3 (Field homomorphisms and isomorphisms). A field homomorphism (respectively isomorphism) is a nice ring homomorphism (respectively isomorphism) between fields.

Corollary 1.4. Field homomorphisms are injective.

2 Field extensions

April 7, 2023

Definition 2.1 (*F*-extensions). A field homomorphism $f: F \to K$ is called an *F*-extension.

Remark. When the context is clear, we'll let K stand in place of f.

Definition 2.2 (*F*-extension homomorphisms). Let $\phi: F \to K$ and $\psi: F \to L$ be field extensions and $\xi: K \to L$ a field homomorphism (respectively isomorphism). Then (ϕ, ξ, ψ) is called an *F*-extension homomorphism (respectively isomorphism) iff the following diagram commutes:

Remark. When the context is clear, we'll let ξ stand for (ϕ, ξ, ψ) .

Definition 2.3 (Degree of field extensions). Let $\phi: F \to K$ be an extension. Then ϕ is an algebra, and the dimension of K as the vector space over F is called ϕ 's *degree*, and is denoted $[K:F]_{\phi}$.

Depending on the degree, we call the extension *finite* or *infinite*.

Proposition 2.4. Degree of isomorphic F-extensions coincide.

Proposition 2.5 (Degree is multiplicative). For extensions $F \xrightarrow{\phi} K \xrightarrow{\psi} L$, we have that

$$[L:F]_{\psi \circ \phi} = [L:K]_{\psi} [K:F]_{\phi}.$$

3 Simple extensions

April 7, 2023

Definition 3.1 (Simple extensions). An extension $\phi: F \to K$ is called simple iff

$$K = \phi(F)(\alpha)$$

for some $\alpha \in K$.

Notation. Given a ring homomorphism $\phi: A \to B$, we'll denote by $f \mapsto f_{\phi}$ the induced homomorphism $A[x] \to B[x]$.

Theorem 3.2 (Extensions via irreducible polynomials). Let $p \in F[x]$ be irreducible.¹ Let ϕ be the composite of the canonical maps:

Then ϕ is an extension of degree $n := \deg p$ with $(\overline{x}^0, \ldots, \overline{x}^{n-1})$ being a basis. We also have that

$$F[x]/(p) = \phi(F)[\overline{x}] = \phi(F)(\overline{x})$$

with "p having a root in F[x]/(p)", namely \overline{x} :

$$p_{\phi}(\overline{x}) = 0$$

Definition 3.3 (Algebraics and transcendentals). Let $\phi: F \to K$ be an extension and $\alpha \in K$. Let $\psi \colon F[x] \to \phi(F)[\alpha]$ be the evaluation at α via ϕ . Then we call $\alpha \phi$ -algebraic iff ker $\psi \neq 0$, and ϕ -transcendental otherwise.

We call ϕ an *algebraic extension* iff each element of K is ϕ -algebraic.

Remark. Again, if clear from the context, we'll drop " ϕ -".

Definition 3.4 (Minimal polynomials). Continuing Definition 3.3, and assuming that α is ϕ -algebraic, we call the unique monic polynomial p that generates ker ψ , the ϕ -minimal polynomial of α .

Proposition 3.5. Continuing Definition 3.3, we have the following:

- (i) If α is algebraic, then its minimal polynomial p is irreducible and $\phi(F)(\alpha) = \phi(F)[\alpha] \cong F[x]/(p).$
- (ii) If α is transcendental, then $\phi(F)(\alpha) \cong F(x)$.

Proposition 3.6 (On non-simple algebraic extensions). Let $\phi: F \to K$ be an extension and $\alpha_1, \ldots, \alpha_n \in K$ for $n \geq 0$. Let $L := \phi(F)(\alpha_1, \ldots, \alpha_n)$. Then the following are equivalent:

- (i) ϕ as $F \to L$ is algebraic.
- (ii) Each α_i is ϕ -algebraic.

¹Since F is a field, this means that p is nonconstant.

²Since 1_F present, we can use the " x^{i} " notation.

(*iii*) $[L:F]_{\phi} < \infty.^{3}$

If the above equivalent conditions hold, then we have that

$$\phi(F)(\alpha_1,\ldots,\alpha_n)=\phi(F)[\alpha_1,\ldots,\alpha_n].$$

4 Splitting extensions

April 26, 2023

Definition 4.1 (Splitting extension). An extension $\phi: F \to K$ is called splitting for a polynomial $f \in F[x] \setminus \{0\}$ iff

- (i) $f_{\phi} = c(x \alpha_1) \cdots (x \alpha_n)$ for $n \ge 0$ in K[x]; and
- (ii) $K = \phi(F)(\alpha_1, \dots, \alpha_n).$

Theorem 4.2 (Existence). Each nonzero polynomial has a splitting extension.

Theorem 4.3 (Isomorphism extension). Let $\mu: F_1 \to F_2$ be an isomorphism. Let $\phi_1: F_1 \to K_1$ be a splitting extension for $f \in F[x] \setminus \{0\}$ and $\phi_2: F_2 \to K_2$ be one for f_{μ} . Then there exists an isomorphism $\nu: K_1 \to K_2$ making the following commute:

$$F_1 \xrightarrow{\mu} F_2$$

$$\phi_1 \downarrow \qquad \qquad \qquad \downarrow \phi_2$$

$$K_1 \xrightarrow{\nu} K_2$$

Corollary 4.4. Any two splitting field extensions of an $f \in F[x] \setminus \{0\}$ are *F*-extension isomorphic.

5 Algebraic closures

Do this!

³The ϕ is actually a restriction.

6 Separable extensions

April 26, 2023

Definition 6.1 (Separable polynomials and extensions). An *irreducible polynomial* $f \in F[x]$ is called separable iff it⁴ has no repeated roots in any of (equivalently, one of) its splitting extensions.⁵

A polynomial $f \in F[x] \setminus \{0\}$ is called separable iff all of its irreducible factors are separable.

An algebraic extension $\phi \colon F \to K$ is called separable iff the minimal polynomial of each $\alpha \in K$ is separable.

Proposition 6.2 (The formal derivative). Define $D_F \colon F[x] \to F[x]$ by

$$\sum_{i=0}^{n} a_i x^i \mapsto \sum_{i=1}^{n} na_i x^{i-1}.$$

Then the following hold:

- (i) D is linear.
- (ii) For $f, g \in F[x]$, we have

$$D_F(fg) = D_F(f) g + f D_F(g).$$

(iii) If $\phi: F \to K$ is a homomorphism, then

$$D_K \circ \phi = \phi \circ D_F.$$

Notation. We'll often use the more convenient notation of f'.

Lemma 6.3 (Extensions preserve gcd's of polynomials). Let $\phi: F \to K$ be an extension and $S \subseteq F[x]$ with $d \in F[x]$ being a gcd. Then d_{ϕ} is a gcd of $\phi(S)$.

Proposition 6.4 (Characterizing separability). Let $f \in F[x] \setminus \{0\}$. Then the following are equivalent:

(i) f is separable.

⁴By "it", we obviously mean f_{ϕ} .

⁵Equivalently, f has no repeated roots in any of (not *some* of) its extensions.

CHAPTER II. FIELD EXTENSIONS

- (ii) f, f' have no common zero in any extension.⁶
- (iii) f, f' have a unit as their gcd in some (equivalently, in all) extensions.

Corollary 6.5. The (nonzero) polynomials of a field with characteristic 0 are always separable.

Example 6.6 (A class of non-separable polynomials). If char F = p > 0, then any nonconstant polynomial in

$$F[x^p] := \left\{ \text{polynomials of the form } \sum_{i=0}^n a_i \, x^{pi} \right\}$$

is non-separable.

⁶Of course, we mean the *images* of f and f'.

Chapter III

Galois theory

1 The set Aut_{ϕ}

April 26, 2023

Corollary 1.1 (Group of field-fixing automorphisms). Given an extension $\phi: F \to K$, the set

 $Aut_{\phi} := \{F \text{-}extension \text{ isomorphisms } K \to K\}$

forms a group under function composition.

Remark. If one wants to be more explicit than necessary for the benefit of clarity, they might write $\operatorname{Aut}_{\phi(F)}(K)$.

Corollary 1.2. Given the extensions $F \xrightarrow{\phi} K \xrightarrow{\psi} L$, we have that

 $\operatorname{Aut}_{\psi} \leq \operatorname{Aut}_{\psi \circ \phi}$.

Proposition 1.3 (The fixed subfield). Given an extension $\phi: F \to K$ and a subset $H \subseteq Aut_{\phi}$, the set

 $\operatorname{Fix}_{\phi}(H) := \{ elements \text{ of } K \text{ that remain fixed by all } \sigma \in H \}$

forms a subfield of K containing $\phi(F)$. Also, if $H_1 \subseteq H_2$, then $\operatorname{Fix}_{\phi}(H_1) \supseteq \operatorname{Fix}_{\phi}(H_2)$.

Lemma 1.4. Let $\phi: F \to K$ and $\psi: F \to L$ be isomorphic F-extensions. Then as groups,

 $\operatorname{Aut}_{\phi} \cong \operatorname{Aut}_{\psi}$.

2 Galois groups

April 26, 2023

Definition 2.1 (Galois groups). The group $\operatorname{Aut}_{\phi}$ is called a Galois group of $f \in F[x]$ iff ϕ is a splitting extension of f.

Remark. The Galois groups of f are unique up to isomorphisms.

Lemma 2.2 ("Roots get mapped to roots"). Consider the following *F*-extension homomorphism:

Then for any $f \in F[x]$, we have

 $f_{\phi}(\alpha) = 0$ in $K \implies f_{\psi}(\xi(\alpha)) = 0$ in L.

Theorem 2.3. Let $\phi: F \to K$ be splitting for $f \in F[x] \setminus \{0\}$. Then

 $|\operatorname{Aut}_{\phi}| \le [K:F]_{\phi}$

with equality holding for separable f's.

3 Galois extensions

April 26, 2023

Definition 3.1 (Galois extensions). An extension $\phi \colon F \to K$ is called Galois iff

$$|\operatorname{Aut}_{\phi}| = [K:F]_{\phi} < \infty.$$

Example 3.2 ($\mathbb{Q}(\sqrt{2},\sqrt{3})$ and $\mathbb{Q}(\sqrt[3]{2},\omega)$). Do this!

Notation. By F^* , we'll mean the multiplicative group of F.

Definition 3.3 (Characters of groups). A character of a group G is a group homomorphism $G \to F^*$.

Example 3.4. A field extension $F \to K$ induces a character $F^* \to K^*$.

Proposition 3.5 ("Linear independence" of characters of a group). Let $\chi_1, \ldots, \chi_n \colon G \to F^*$ be characters of a group G for $n \ge 0$ and $\alpha_1, \ldots, \alpha_n \in F$. Then

 $\alpha_1 \chi_1 + \dots + \alpha_n \chi_n = 0 \implies each \alpha_i = 0.$

Appendix A

Some ring theory

1 Having zero and identity

April 4, 2023

Definition 1.1 (Notions in commutative rings). On a *commutative ring*, we can define the following:

- (i) " $a \mid b$ " and " $a \sim b$ " relations.
- (ii) gcd, lcm of subsets.
- (iii) prime elements.

If the ring also has an *identity*, then we can also define irreducibles.

If the ring is further an integral domain, then we also have "a/b" whenever $b \mid a$ and $a \neq 0$.

Remark. We may also call irreducibles as atoms occasionally.

Proposition 1.2 (Facts for commutative rings). In a commutative ring, the following hold:

- (i) $a \sim b$ and $c \sim d \implies ac \sim bd$.
- (ii) Let d be a gcd of S. Then d' is also a gcd of $S \iff d \sim d'$. Similarly for lcm.
- (iii) p is prime \iff (p) is nonzero prime.
- $(iv) \sim preserves \ primality.$

Proposition 1.3 (When we also have an identity). In a commutative ring with identity, the following hold:

- $(i) \sim becomes an equivalence relation.$
- (ii) \sim preserves irreducibility.
- (iii) (p) is maximal and nonzero $\implies p$ is irreducible.¹
- (iv) Maximal ideals are prime.
- (v) "a | b" becomes a "partial order" with "= replaced with \sim ".
- (vi) (a) $\sum_{s \in S} (s) = (d) \implies d \text{ is a gcd of } S.$ (b) $\bigcap_{s \in S} (s) = (m) \implies m \text{ is an lcm of } S.$

Remark. We'll occasionally call integral domains simply as domains.

Proposition 1.4 (When we have no zero divisors). In an integral domain, the following hold:

- (i) $a \sim b \iff a = ub$ for some unit u.
- (ii) nd is a gcd of nS and $n \neq 0 \implies d$ is a gcd of S. The converse holds if nS has a gcd. Similarly for lcm.
- (iii) Let $a, b \neq 0$. Then the following hold:
 - (a) d is a gcd of a, b and ax, bx have gcd's for each $x \implies ab/d$ is an lcm of a, b.
 - (b) m is an lcm of a, $b \implies ab/m$ is a gcd of a, b.
- (iv) Primes are irreducible.
- (v) "Uniqueness" of prime factorizations.²
- (vi) Form of divisors of prime products.³
- (vii) Any two prime products have a gcd.

2 Euclidean domains

April 4, 2023

¹Converse holds in Bézout domains. See Corollary 6.4.

²This comes in two versions: (i) " $p_1 \cdots p_m = q_1 \cdots q_n$ " form; and (ii) " $up_1^{e_1} \cdots p_m^{e_m} = vq_1^{f_1} \cdots q_n^{f_n}$ " form. In the latter, p_i 's (respectively q_i 's) need to be nonassociates.

³This also comes in two versions. However, we don't need p_i 's to be nonassociates here in either version.

Definition 2.1 (Euclidean domains). Let D be a domain. Then a *primitive* Euclidean valuation on D is a function $\nu: D \setminus \{0\} \to \mathbb{N}$ such that for every $a, b \in D$ with $b \neq 0$, there exist $q, r \in D$ such that the following hold:

- (i) a = bq + r.
- (ii) $r \neq 0 \implies \nu(r) < \nu(b)$.

 ν is called a *Euclidean valuation* iff it also satisfies

$$\nu(ab) \le \nu(a)\,\nu(b).$$

A domain with a Euclidean valuation is called a Euclidean domain.

Proposition 2.2 (Euclidean valuations from primitive). Let D be a domain with a primitive Euclidean valuation ν . Then D becomes a Euclidean domain with the following valuation:

$$a \mapsto \min_{x \neq 0} \nu(ax) \qquad (a \neq 0)$$

Corollary 2.3. Let D be a Euclidean domain with valuation ν . Then the following hold:

(i) The minimum value of ν is $\nu(1_D)$. (ii) $a \mid b \implies \nu(a) \le \nu(b)$ for $a, b \ne 0$. (iii) $a \sim b \implies \nu(a) = \nu(b)$ for $a, b \ne 0$. (iv) u is a unit $\iff \nu(u) = \nu(1_D)$.

Proposition 2.4. A Euclidean domain is a PID.

3 GCD and LCM domains

April 5, 2023

Definition 3.1 (GCD and LCM domains). A domain in which finite sets have gcd's (respectively lcm's) are called GCD (respectively LCM) domains.

Corollary 3.2. PID's are GCD domains.

Corollary 3.3. A sufficient condition for a domain to be a GCD (respectively LCM) domain is that any two elements have a gcd (respectively an lcm).

Corollary 3.4. A GCD domain is an LCM domain, and conversely.

Result 3.5. Let D be a domain and p be a nonprime atom. Therefore, take a, b such that $p \mid ab$ but $p \nmid a, b$. Then ab and pb don't have any gcd. Consequently, the ideal (ab, pb) is not principal either.

Example 3.6 (A Noetherian domain that is not GCD). 2 is a nonprime atom in the Noetherian $\mathbb{Z}[\sqrt{-3}]$, dividing

$$4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$$

but neither of the factors.⁴

Corollary 3.7. In a GCD domain, irreducibles and primes coincide.

4 Atomic domains

April 4, 2023

Definition 4.1 (Atomic domains). A domain in which every nonzero nonunit admits an irreducible factorization.

Corollary 4.2. Any nonzero element of an atomic domain admits a factorization of the form

$$u p_1^{e_1} \cdots p_n^{e_n}$$

for $n \geq 0$, where u is a unit, p_i 's are non-associate irreducibles and each $e_i \geq 1$.

Definition 4.3 (Ascending chain condition on principal ideals, ACCP). An arbitrary ring is said to satisfy ACCP iff every ascending chain of its principal ideals stabilizes.

Definition 4.4 (Well-founded relations). A relation R on a set X is called well-founded iff every nonempty subset of X has a minimal element.

Corollary 4.5. In a domain, ACCP is equivalent to having that the "proper" divisibility is well-founded.⁵

Theorem 4.6. An domain satisfying ACCP is atomic.

Corollary 4.7. Noetherian domains are atomic.⁶

⁴Note that $\mathbb{Z}[\sqrt{-3}]$ is Noetherian (and hence atomic; see Theorem 4.6), being the image of the ring homomorphism $\mathbb{Z}[x] \to \mathbb{Z}[\sqrt{-3}]$.

⁵Requires DC.

 $^{^{6}}$ Converse not true; see Example 5.3.

5 Unique factorization domains

April 5, 2023

Definition 5.1 (UFD's). An atomic domain in which each irreducible factorization is "unique".

Example 5.2 (A Noetherian domain that is not a UFD). In $\mathbb{Z}[\sqrt{-5}]$,

 $2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$

are irreducible factorizations with $2 \approx 1 \pm \sqrt{-5}$.

Example 5.3 (A UFD that is not Noetherian). $\mathbb{Z}[x_1, x_2, \ldots]$.⁷

Theorem 5.4. For a domain D, the following are equivalent:⁸

- (i) D satisfies ACCP and its irreducibles are prime.
- (ii) D is a UFD.
- (iii) D is atomic as well as a GCD domain.

Corollary 5.5. PID's are UFD's.

Example 5.6 (A UFD that is not a PID). In the UFD $\mathbb{Z}[x, y]$, the ideal (2, x) is not principal.⁹

6 Bézout domains

April 5, 2023

Definition 6.1 (Bézout domains). A domain in which each finitely generated ideal is principal.

Corollary 6.2 (Relation with gcd's). Let A be a commutative ring with identity and $a_1, \ldots, a_n \in A$. Then the following are equivalent:

⁷That it's a UFD will follow from This will follow from Theorem 7.7.

⁸Do (i) \Leftrightarrow (ii) \Leftrightarrow (iii).

⁹That this is a UFD follows from Theorem 7.7.

- (i) a_i 's have a gcd of the form $a_1x_1 + \cdots + a_nx_n$.
- (ii) (a_1, \ldots, a_n) is principal.

Proposition 6.3 (Relation with Bézout lemma). For a domain D, the following are equivalent:

(i) D is Bézout.

(ii) D is GCD; and, whenever d is a gcd of a, b, we have

$$(d) = (a) + (b).$$

Corollary 6.4. In a Bézout domain, irreducibles form maximal ideals.

Corollary 6.5. $PID \implies Bézout \implies GCD$.

Theorem 6.6. $Bézout + ACCP \implies PID.$

Proposition 6.7 (Nice summary). We have the following Venn diagram:¹⁰

In particular, we have the following implications:

¹⁰Each portion is nonempty.

Not yet proven the above for algebraic integers and $\mathbb{Z}[(1+\sqrt{-19})/2]!$

7 Studying polynomial rings

April 5, 2023

Convention. In this section A will denote a commutative ring with identity, unless otherwise stated.

Definition 7.1 (Primitives and very primitives). A polynomial f in $A[x_1, \ldots, x_n]$ is called *very primitive*¹¹ iff the A-ideal generated by its coefficients is the entire A.

f is called *primitive* iff 1_A is a gcd of the coefficients of f.

Convention. We'll identity the common elements of A, A[x], A[x, y], etc.

Theorem 7.2. Let $f, g \in A[x_1, \ldots, x_n]$. Write $f = \sum_{|\alpha| \le m} a_{\alpha} x^{\alpha} \in A[x_1, \ldots, x_n]$ for $m, n \ge 0$. Then the following hold:

(i) f is a unit \iff a_0 is a unit and all the rest are nilpotents.

(ii) f is a nilpotent \iff each a_{α} is a nilpotent.

- (iii) An ideal of $A[x_1, \ldots, x_n]$ which is annihilated by some nonzero polynomial is also annihilated by some nonzero constant.¹²
- (iv) fg is very primitive $\iff f, g$ are very primitive.
- (v) fg is primitive $\implies f, g$ are primitive.¹³

Theorem 7.3 (Eisenstein). Let \mathfrak{p} be a prime ideal of A. Let $f := \sum_{i=0}^{n} a_i x^i \in A[x]$ such that the following hold:

- (i) $a_0, \ldots, a_{n-1} \in \mathfrak{p}$ but $a_n \notin \mathfrak{p}$.
- (*ii*) $a_0 \notin \mathfrak{p}^2$.

Then we can't write f as a product of two polynomials each having strictly smaller degree.¹⁴

¹¹Following Paolo's terminology.

 $^{^{12}}$ This is due to Conrad.

 $^{^{13}\}mathrm{See}$ Theorem 7.4 for a converse.

¹⁴The hypotheses automatically imply that $f \neq 0$, so that we can talk of its degree.

Theorem 7.4 (Gauss' lemma). Let D be a GCD domain wherein each nonunit has an irreducible (or equivalently, prime) factor. Then the following hold:

- (i) f, g in D[x] are primitive $\implies fg$ is primitive.
- (ii) Irreducibles of D[x] are also irreducible in Frac(D)[x].

Lemma 7.5 (Irreducibles and primitives).

- (i) Nonconstant irreducibles polynomials over a GCD domain are primitive.
- (ii) A nonconstant primitive polynomial over a domain that doesn't factor into two polynomials of strictly smaller degrees, is primitive.

Lemma 7.6. Primitive polynomials over a domain admit irreducible factorizations.

Theorem 7.7. D is a UFD \implies $D[x_1, \ldots, x_n]$ is a UFD.

Corollary 7.8. D is a UFD \implies $D[x_1, x_2, \ldots]$ is a UFD.