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Chapter I

Modules

1 Basics

March 24, 2023

Theorem 1.1. Any two bases of a free modules over an integral domain are
in bijection.

2 Cyclic modules over PIDs

March 23, 2023

Convention. All the modules from now on (except in appendices) will be
over PIDs unless stated otherwise.

R will denote a generic PID, and M an R-module.

Definition 2.1 (Cyclic submodule). A module that can be generated by a
single element is called cyclic.

Proposition 2.2. Any submodule of a cyclic module is cyclic.

Definition 2.3 (Order). Annihilator of an m ∈M is any a ∈ A such that1

Ann(m) = (a).

1We define annihilators of a subset (not just submodules!) of M in the obvious manner.
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CHAPTER I. MODULES 3

Notation. Perversely, we denote a generic order (which will be unique up
to associates!) of m, by |m|.

Whenever we use them in the statements a result, we will mean that |m|
is an arbitrary order of m.

Proposition 2.4. Let m ∈M and a ∈ A \ 0. Then2

|am| ∼ |m|
gcd(a, |m|)

where ∼ is the “being associates” relation.

2Note that the “a/b” notation makes sense only in integral domains.



Chapter II

Field extensions

1 Characteristic and field homomorphisms

April 7, 2023

Convention. Throughout this chapter, F , K, L will be reserved for fields.

Definition 1.1 (Field characteristic). Let ϕ be the unique nice ring homo-
morphism on Z → F . Then we define charF to be the unique nonnegative
integer p such that kerϕ = (p).

Corollary 1.2. Characteristic of a field is either 0 or a prime integer.

Definition 1.3 (Field homomorphisms and isomorphisms). A field homo-
morphism (respectively isomorphism) is a nice ring homomorphism (respec-
tively isomorphism) between fields.

Corollary 1.4. Field homomorphisms are injective.

2 Field extensions

April 7, 2023

Definition 2.1 (F -extensions). A field homomorphism f : F → K is called
an F -extension.

Remark. When the context is clear, we’ll let K stand in place of f .
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CHAPTER II. FIELD EXTENSIONS 5

Definition 2.2 (F -extension homomorphisms). Let ϕ : F → K and ψ : F →
L be field extensions and ξ : K → L a field homomorphism (respectively iso-
morphism). Then (ϕ, ξ, ψ) is called an F -extension homomorphism (respec-
tively isomorphism) iff the following diagram commutes:

K L

F

ξ

ϕ ψ

Remark. When the context is clear, we’ll let ξ stand for (ϕ, ξ, ψ).

Definition 2.3 (Degree of field extensions). Let ϕ : F → K be an extension.
Then ϕ is an algebra, and the dimension of K as the vector space over F is
called ϕ’s degree, and is denoted [K : F ]ϕ.

Depending on the degree, we call the extension finite or infinite.

Proposition 2.4. Degree of isomorphic F -extensions coincide.

Proposition 2.5 (Degree is multiplicative). For extensions F
ϕ−→ K

ψ−→ L,
we have that

[L : F ]ψ◦ϕ = [L : K]ψ [K : F ]ϕ.

3 Simple extensions

April 7, 2023

Definition 3.1 (Simple extensions). An extension ϕ : F → K is called simple
iff

K = ϕ(F )(α)

for some α ∈ K.

Notation. Given a ring homomorphism ϕ : A→ B, we’ll denote by f 7→ fϕ
the induced homomorphism A[x] → B[x].
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Theorem 3.2 (Extensions via irreducible polynomials). Let p ∈ F [x] be
irreducible.1 Let ϕ be the composite of the canonical maps:

F F [x] F [x]/(p)

ϕ

Then ϕ is an extension of degree n := deg p with2 (x0, . . . , xn−1) being a basis.
We also have that

F [x]/(p) = ϕ(F )[x] = ϕ(F )(x)

with “p having a root in F [x]/(p)”, namely x:

pϕ(x) = 0

Definition 3.3 (Algebraics and transcendentals). Let ϕ : F → K be an
extension and α ∈ K. Let ψ : F [x] → ϕ(F )[α] be the evaluation at α via ϕ.
Then we call α ϕ-algebraic iff kerψ ̸= 0, and ϕ-transcendental otherwise.

We call ϕ an algebraic extension iff each element of K is ϕ-algebraic.

Remark. Again, if clear from the context, we’ll drop “ϕ-”.

Definition 3.4 (Minimal polynomials). Continuing Definition 3.3, and as-
suming that α is ϕ-algebraic, we call the unique monic polynomial p that
generates kerψ, the ϕ-minimal polynomial of α.

Proposition 3.5. Continuing Definition 3.3, we have the following:

(i) If α is algebraic, then its minimal polynomial p is irreducible and
ϕ(F )(α) = ϕ(F )[α] ∼= F [x]/(p).

(ii) If α is transcendental, then ϕ(F )(α) ∼= F (x).

Proposition 3.6 (On non-simple algebraic extensions). Let ϕ : F → K be
an extension and α1, . . . , αn ∈ K for n ≥ 0. Let L := ϕ(F )(α1, . . . , αn).
Then the following are equivalent:

(i) ϕ as F → L is algebraic.

(ii) Each αi is ϕ-algebraic.

1Since F is a field, this means that p is nonconstant.
2Since 1F present, we can use the “xi” notation.
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(iii) [L : F ]ϕ <∞.3

If the above equivalent conditions hold, then we have that

ϕ(F )(α1, . . . , αn) = ϕ(F )[α1, . . . , αn].

4 Splitting extensions

April 26, 2023

Definition 4.1 (Splitting extension). An extension ϕ : F → K is called
splitting for a polynomial f ∈ F [x] \ {0} iff

(i) fϕ = c(x− α1) · · · (x− αn) for n ≥ 0 in K[x]; and

(ii) K = ϕ(F )(α1, . . . , αn).

Theorem 4.2 (Existence). Each nonzero polynomial has a splitting exten-
sion.

Theorem 4.3 (Isomorphism extension). Let µ : F1 → F2 be an isomorphism.
Let ϕ1 : F1 → K1 be a splitting extension for f ∈ F [x]\{0} and ϕ2 : F2 → K2

be one for fµ. Then there exists an isomorphism ν : K1 → K2 making the
following commute:

F1 F2

K1 K2

µ

ϕ1 ϕ2

ν

Corollary 4.4. Any two splitting field extensions of an f ∈ F [x] \ {0} are
F -extension isomorphic.

5 Algebraic closures

Do this!

3The ϕ is actually a restriction.
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6 Separable extensions

April 26, 2023

Definition 6.1 (Separable polynomials and extensions). An irreducible poly-
nomial f ∈ F [x] is called separable iff it4 has no repeated roots in any of
(equivalently, one of) its splitting extensions.5

A polynomial f ∈ F [x] \ {0} is called separable iff all of its irreducible
factors are separable.

An algebraic extension ϕ : F → K is called separable iff the minimal
polynomial of each α ∈ K is separable.

Proposition 6.2 (The formal derivative). Define DF : F [x] → F [x] by

n∑
i=0

ai x
i 7→

n∑
i=1

nai x
i−1.

Then the following hold:

(i) D is linear.

(ii) For f, g ∈ F [x], we have

DF (fg) = DF (f) g + f DF (g).

(iii) If ϕ : F → K is a homomorphism, then

DK ◦ ϕ = ϕ ◦DF .

Notation. We’ll often use the more convenient notation of f ′.

Lemma 6.3 (Extensions preserve gcd’s of polynomials). Let ϕ : F → K be
an extension and S ⊆ F [x] with d ∈ F [x] being a gcd. Then dϕ is a gcd of
ϕ(S).

Proposition 6.4 (Characterizing separability). Let f ∈ F [x] \ {0}. Then
the following are equivalent:

(i) f is separable.

4By “it”, we obviously mean fϕ.
5Equivalently, f has no repeated roots in any of (not some of) its extensions.
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(ii) f , f ′ have no common zero in any extension.6

(iii) f , f ′ have a unit as their gcd in some (equivalently, in all) extensions.

Corollary 6.5. The (nonzero) polynomials of a field with characteristic 0
are always separable.

Example 6.6 (A class of non-separable polynomials). If charF = p > 0, then
any nonconstant polynomial in

F [xp] :=

{
polynomials of the form

n∑
i=0

ai x
pi

}
is non-separable.

6Of course, we mean the images of f and f ′.



Chapter III

Galois theory

1 The set Autϕ

April 26, 2023

Corollary 1.1 (Group of field-fixing automorphisms). Given an extension
ϕ : F → K, the set

Autϕ := {F -extension isomorphisms K → K}

forms a group under function composition.

Remark. If one wants to be more explicit than necessary for the benefit of
clarity, they might write Autϕ(F )(K).

Corollary 1.2. Given the extensions F
ϕ−→ K

ψ−→ L, we have that

Autψ ≤ Autψ◦ϕ .

Proposition 1.3 (The fixed subfield). Given an extension ϕ : F → K and
a subset H ⊆ Autϕ, the set

Fixϕ(H) := {elements of K that remain fixed by all σ ∈ H}

forms a subfield of K containing ϕ(F ).
Also, if H1 ⊆ H2, then Fixϕ(H1) ⊇ Fixϕ(H2).

Lemma 1.4. Let ϕ : F → K and ψ : F → L be isomorphic F -extensions.
Then as groups,

Autϕ ∼= Autψ .

10
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2 Galois groups

April 26, 2023

Definition 2.1 (Galois groups). The group Autϕ is called a Galois group of
f ∈ F [x] iff ϕ is a splitting extension of f .

Remark. The Galois groups of f are unique up to isomorphisms.

Lemma 2.2 (“Roots get mapped to roots”). Consider the following F -
extension homomorphism:

F

K L

ϕ ψ

ξ

Then for any f ∈ F [x], we have

fϕ(α) = 0 in K =⇒ fψ(ξ(α)) = 0 in L.

Theorem 2.3. Let ϕ : F → K be splitting for f ∈ F [x] \ {0}. Then

|Autϕ| ≤ [K : F ]ϕ

with equality holding for separable f ’s.

3 Galois extensions

April 26, 2023

Definition 3.1 (Galois extensions). An extension ϕ : F → K is called Galois
iff

|Autϕ| = [K : F ]ϕ <∞.

Example 3.2 (Q(
√
2,
√
3) and Q( 3

√
2, ω)). Do this!

Notation. By F ∗, we’ll mean the multiplicative group of F .
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Definition 3.3 (Characters of groups). A character of a group G is a group
homomorphism G→ F ∗.

Example 3.4. A field extension F → K induces a character F ∗ → K∗.

Proposition 3.5 (“Linear independence” of characters of a group). Let
χ1, . . . , χn : G→ F ∗ be characters of a group G for n ≥ 0 and α1, . . . , αn ∈ F .
Then

α1 χ1 + · · ·+ αn χn = 0 =⇒ each αi = 0.



Appendix A

Some ring theory

1 Having zero and identity

April 4, 2023

Definition 1.1 (Notions in commutative rings). On a commutative ring, we
can define the following:

(i) “a | b” and “a ∼ b” relations.

(ii) gcd, lcm of subsets.

(iii) prime elements.

If the ring also has an identity, then we can also define irreducibles.
If the ring is further an integral domain, then we also have “a/b” whenever

b | a and a ̸= 0.

Remark. We may also call irreducibles as atoms occasionally.

Proposition 1.2 (Facts for commutative rings). In a commutative ring, the
following hold:

(i) a ∼ b and c ∼ d =⇒ ac ∼ bd.

(ii) Let d be a gcd of S. Then d′ is also a gcd of S ⇐⇒ d ∼ d′. Similarly
for lcm.

(iii) p is prime ⇐⇒ (p) is nonzero prime.

(iv) ∼ preserves primality.

i



APPENDIX A. SOME RING THEORY ii

Proposition 1.3 (When we also have an identity). In a commutative ring
with identity, the following hold:

(i) ∼ becomes an equivalence relation.

(ii) ∼ preserves irreducibility.

(iii) (p) is maximal and nonzero =⇒ p is irreducible.1

(iv) Maximal ideals are prime.

(v) “a | b” becomes a “partial order” with “= replaced with ∼”.

(vi) (a)
∑

s∈S (s) = (d) =⇒ d is a gcd of S.
(b)

⋂
s∈S (s) = (m) =⇒ m is an lcm of S.

Remark. We’ll occasionally call integral domains simply as domains.

Proposition 1.4 (When we have no zero divisors). In an integral domain,
the following hold:

(i) a ∼ b ⇐⇒ a = ub for some unit u.

(ii) nd is a gcd of nS and n ̸= 0 =⇒ d is a gcd of S. The converse holds
if nS has a gcd. Similarly for lcm.

(iii) Let a, b ̸= 0. Then the following hold:

(a) d is a gcd of a, b and ax, bx have gcd’s for each x =⇒ ab/d is
an lcm of a, b.

(b) m is an lcm of a, b =⇒ ab/m is a gcd of a, b.

(iv) Primes are irreducible.

(v) “Uniqueness” of prime factorizations.2

(vi) Form of divisors of prime products.3

(vii) Any two prime products have a gcd.

2 Euclidean domains

April 4, 2023

1Converse holds in Bézout domains. See Corollary 6.4.
2This comes in two versions: (i) “p1 · · · pm = q1 · · · qn” form; and (ii) “upe11 · · · pemm =

vqf11 · · · qfnn ” form. In the latter, pi’s (respectively qj ’s) need to be nonassociates.
3This also comes in two versions. However, we don’t need pi’s to be nonassociates here

in either version.
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Definition 2.1 (Euclidean domains). Let D be a domain. Then a primitive
Euclidean valuation on D is a function ν : D \ {0} → N such that for every
a, b ∈ D with b ̸= 0, there exist q, r ∈ D such that the following hold:

(i) a = bq + r.

(ii) r ̸= 0 =⇒ ν(r) < ν(b).

ν is called a Euclidean valuation iff it also satisfies

ν(ab) ≤ ν(a) ν(b).

A domain with a Euclidean valuation is called a Euclidean domain.

Proposition 2.2 (Euclidean valuations from primitive). Let D be a domain
with a primitive Euclidean valuation ν. Then D becomes a Euclidean domain
with the following valuation:

a 7→ min
x ̸=0

ν(ax) (a ̸= 0)

Corollary 2.3. Let D be a Euclidean domain with valuation ν. Then the
following hold:

(i) The minimum value of ν is ν(1D).

(ii) a | b =⇒ ν(a) ≤ ν(b) for a, b ̸= 0.

(iii) a ∼ b =⇒ ν(a) = ν(b) for a, b ̸= 0.

(iv) u is a unit ⇐⇒ ν(u) = ν(1D).

Proposition 2.4. A Euclidean domain is a PID.

3 GCD and LCM domains

April 5, 2023

Definition 3.1 (GCD and LCM domains). A domain in which finite sets
have gcd’s (respectively lcm’s) are called GCD (respectively LCM) domains.

Corollary 3.2. PID’s are GCD domains.

Corollary 3.3. A sufficient condition for a domain to be a GCD (respectively
LCM) domain is that any two elements have a gcd (respectively an lcm).

Corollary 3.4. A GCD domain is an LCM domain, and conversely.



APPENDIX A. SOME RING THEORY iv

Result 3.5. Let D be a domain and p be a nonprime atom. Therefore, take a, b
such that p | ab but p ∤ a, b. Then ab and pb don’t have any gcd. Consequently,
the ideal (ab, pb) is not principal either.

Example 3.6 (A Noetherian domain that is not GCD). 2 is a nonprime atom in
the Noetherian Z[

√
−3], dividing

4 = (1 +
√
−3)(1−

√
−3)

but neither of the factors.4

Corollary 3.7. In a GCD domain, irreducibles and primes coincide.

4 Atomic domains

April 4, 2023

Definition 4.1 (Atomic domains). A domain in which every nonzero nonunit
admits an irreducible factorization.

Corollary 4.2. Any nonzero element of an atomic domain admits a factor-
ization of the form

u pe11 · · · penn
for n ≥ 0, where u is a unit, pi’s are non-associate irreducibles and each
ei ≥ 1.

Definition 4.3 (Ascending chain condition on principal ideals, ACCP). An
arbitrary ring is said to satisfy ACCP iff every ascending chain of its principal
ideals stabilizes.

Definition 4.4 (Well-founded relations). A relation R on a set X is called
well-founded iff every nonempty subset of X has a minimal element.

Corollary 4.5. In a domain, ACCP is equivalent to having that the “proper”
divisibility is well-founded.5

Theorem 4.6. An domain satisfying ACCP is atomic.

Corollary 4.7. Noetherian domains are atomic.6

4Note that Z[
√
−3] is Noetherian (and hence atomic; see Theorem 4.6), being the image

of the ring homomorphism Z[x] → Z[
√
−3].

5Requires DC.
6Converse not true; see Example 5.3.
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5 Unique factorization domains

April 5, 2023

Definition 5.1 (UFD’s). An atomic domain in which each irreducible fac-
torization is “unique”.

Example 5.2 (A Noetherian domain that is not a UFD). In Z[
√
−5],

2 · 3 = (1 +
√
−5)(1−

√
−5)

are irreducible factorizations with 2 ≁ 1±
√
−5.

Example 5.3 (A UFD that is not Noetherian). Z[x1, x2, . . .].7

Theorem 5.4. For a domain D, the following are equivalent:8

(i) D satisfies ACCP and its irreducibles are prime.

(ii) D is a UFD.

(iii) D is atomic as well as a GCD domain.

Corollary 5.5. PID’s are UFD’s.

Example 5.6 (A UFD that is not a PID). In the UFD Z[x, y], the ideal (2, x)
is not principal.9

6 Bézout domains

April 5, 2023

Definition 6.1 (Bézout domains). A domain in which each finitely generated
ideal is principal.

Corollary 6.2 (Relation with gcd’s). Let A be a commutative ring with
identity and a1, . . . , an ∈ A. Then the following are equivalent:

7That it’s a UFD will follow from This will follow from Theorem 7.7.
8Do (i) ⇔ (ii) ⇔ (iii).
9That this is a UFD follows from Theorem 7.7.
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(i) ai’s have a gcd of the form a1x1 + · · ·+ anxn.

(ii) (a1, . . . , an) is principal.

Proposition 6.3 (Relation with Bézout lemma). For a domain D, the fol-
lowing are equivalent:

(i) D is Bézout.

(ii) D is GCD; and, whenever d is a gcd of a, b, we have

(d) = (a)+ (b).

Corollary 6.4. In a Bézout domain, irreducibles form maximal ideals.

Corollary 6.5. PID =⇒ Bézout =⇒ GCD.

Theorem 6.6. Bézout + ACCP =⇒ PID.

Proposition 6.7 (Nice summary). We have the following Venn diagram:10

Bézout

GCD

No
eth

eri
an

AC
CPAt

om
ic

Z[x]

Z[x1, x2, . . . ]

Z
[√

−3
]

Z
[√

−5
]

Z
[
1
2

(
1 +

√
−19

)]

Algebraic integers

Euclidean

Z

PID

UFD

In particular, we have the following implications:

UFD

Euclidean PID GCD

Bézout
10Each portion is nonempty.
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Not yet proven the above for algebraic integers and Z[(1 +
√
−19)/2]!

7 Studying polynomial rings

April 5, 2023

Convention. In this section A will denote a commutative ring with identity,
unless otherwise stated.

Definition 7.1 (Primitives and very primitives). A polynomial f inA[x1, . . . , xn]
is called very primitive11 iff the A-ideal generated by its coefficients is the
entire A.

f is called primitive iff 1A is a gcd of the coefficients of f .

Convention. We’ll identity the common elements of A, A[x], A[x, y], etc.

Theorem 7.2. Let f, g ∈ A[x1, . . . , xn]. Write f =
∑

|α|≤m aαx
α ∈ A[x1, . . . , xn]

for m,n ≥ 0. Then the following hold:

(i) f is a unit ⇐⇒ a0 is a unit and all the rest are nilpotents.

(ii) f is a nilpotent ⇐⇒ each aα is a nilpotent.

(iii) An ideal of A[x1, . . . , xn] which is annihilated by some nonzero polyno-
mial is also annihilated by some nonzero constant.12

(iv) fg is very primitive ⇐⇒ f , g are very primitive.

(v) fg is primitive =⇒ f , g are primitive.13

Theorem 7.3 (Eisenstein). Let p be a prime ideal of A. Let f :=
∑n

i=0 aix
i ∈

A[x] such that the following hold:

(i) a0, . . . , an−1 ∈ p but an /∈ p.

(ii) a0 /∈ p2.

Then we can’t write f as a product of two polynomials each having strictly
smaller degree.14

11Following Paolo’s terminology.
12This is due to Conrad.
13See Theorem 7.4 for a converse.
14The hypotheses automatically imply that f ̸= 0, so that we can talk of its degree.
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Theorem 7.4 (Gauss’ lemma). Let D be a GCD domain wherein each
nonunit has an irreducible (or equivalently, prime) factor. Then the following
hold:

(i) f , g in D[x] are primitive =⇒ fg is primitive.

(ii) Irreducibles of D[x] are also irreducible in Frac(D)[x].

Lemma 7.5 (Irreducibles and primitives).

(i) Nonconstant irreducibles polynomials over a GCD domain are primi-
tive.

(ii) A nonconstant primitive polynomial over a domain that doesn’t factor
into two polynomials of strictly smaller degrees, is primitive.

Lemma 7.6. Primitive polynomials over a domain admit irreducible factor-
izations.

Theorem 7.7. D is a UFD =⇒ D[x1, . . . , xn] is a UFD.

Corollary 7.8. D is a UFD =⇒ D[x1, x2, . . .] is a UFD.
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