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Chapter I

Matrices

1 Row echelon

August 27, 2022

Remark. We’ll take the matrix entries from a field.

Lemma 1.1.

(i) Deleting rightmost column or a non-pivot column preserves row reduced echelon
form.

(ii) A row reduced echelon matrix in which each column contains a pivot is of the
form [

In
0

]
,

i.e., its diagonal entries are 1 and rest are 0.

(iii) Deleting corresponding columns preserves row equivalence.

Theorem 1.2. The row reduced echelon form of a matrix is unique.

2 LU decomposition

Lemma 2.1 (Triangular matrices).

(i) Product of lower (respectively upper) triangular square matrices is lower (re-
spectively upper) triangular.
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CHAPTER I. MATRICES 2

(ii) The inverse of a lower (respectively upper) triangular square is lower (respec-
tively upper) triangular.

(iii) The diagonal entries of the product of lower (respectively upper) triangular
square matrices is the product of their diagonal entries.

Definition 2.2 (LU decomposition). Expressing a square matrix as a product of a
lower and respectively an upper triangular matrix is called an LU decomposition of
it.

Proposition 2.3 (Uniqueness of LU decomposition). Let A be an invertible matrix
with an LU decomposition. Then its LU decomposition in which all diagonal the
entries of the upper triangular matrix are 1, is unique.

Remark. An invertible matrix needn’t have an LU decomposition: Consider

[
0 1
1 0

]
.

A non-invertible matrix can have more than one “standard” LU decompositions:

Consider

[
0 0
0 1

]
.

3 Determinants

Give a general formalism for (commutative) rings and prove all the things! Define
det :

⋃
n∈NR

n×n → R. Also define Rn×n.

Definition 3.1 (Inversions). Let n ≥ 2 and σ ∈ Sn. Then (i, j), for 1 ≤ i, j ≤ n is
called an inversion of σ iff

i < j and σ(i) > σ(j).

Definition 3.2 (Odd or even permutations). A permutation is said to be odd (re-
spectively even) if it has odd (respectively even) number of inversions.

Lemma 3.3. Let A be a finite set and f : A→ A such that f ◦ f = id and f(a) ̸= a
for all a ∈ A. Then |A| is even.

Theorem 3.4. A transposition changes the parity of permutation.

Definition 3.5 (Determinant). Let A be an n × n square matrix for n ≥ 1. Then
we define

detA :=
∑
σ∈Sn

a1,σ(1) · · · an,σ(n).
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Corollary 3.6 (Immediate facts).

(i) Determinant of of triangular matrices is the product of its diagonal entries.

(ii) We have
det(At) = detA.

(iii) We have
det(I) = 1.

(iv) If a row or a column of a matrix is zero, then its determinant is 0.

Theorem 3.7 (Determinant under elementary row operations). Let A be a square
matrix. Then the following hold:

(i) i→ i+ cj leaves determinant unchanged.

(ii) i↔ j negates the determinant for i ̸= j.

(iii) i→ ci scales the determinant by c.

Corollary 3.8 (Determinant of elementary matrices). The determinant of the ele-
mentary matrix corresponding to the row operations i → i + cj, i ↔ j (for i ̸= j),
i→ ci are respectively 1, −1, c.

Corollary 3.9. For an elementary matrix E, we have

det(EA) = (detE)(detA).

Lemma 3.10. The reduced row echelon form R of a square matrix A is either I or
has the last row as zero. Further, A is invertible ⇐⇒ R = I.

Theorem 3.11. We have

det(AB) = (detA)(detB).

Theorem 3.12 (Characterizing invertibility). A square matrix A is invertible ⇐⇒
detA ̸= 0.

Corollary 3.13. If A is invertible, then det(A) ̸= 0, and

det(A−1) = (detA)−1.

Definition 3.14 (Determinant-like functions). A function δ that assigns to each
square matrix a scalar is called a determinant-like function iff ]tfh:

(i) We have
δ(I) = 1.
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(ii) δ gets negated if two rows are interchanged.

(iii) δ is “linear” in the first row, i.e., for any 1 × n row vectors r1, . . . , rn, r
′
1 and

scalars k, l, we have

δ


kr1 + lr′1

r2
...
rn

 = k δ


r1
r2
...
rn

+ l δ


r′1
r2
...
rn

.
Theorem 3.15 (Characterizing det). The determinant given by Definition 3.5 is the
unique determinant-like function.

Remark. Having defined determinants, Now we are in a shape to analyze Atul’s
parity definition.

Theorem 3.16 (Equivalence of the parity definitions for permutations). Parity of
the number of inversions in a permutation is the same as the parity of the number
of the transpositions that it can be decomposed into.



Chapter II

Vector spaces

1 Spaces and subspaces

October 11, 2022

Definition 1.1 (Vector spaces). Let V be an additive abelian group and F be a
field, along with a scalar multiplication operation F × V → V . Then V is called a
vector space over F iff the following hold:

(i) 1v = v.

(ii) (ab)v = a(bv).

(iii) (a+ b)v = av + bv, and a(u+ v) = au+ av.

Remark. We have followed the usual convention that any ”multiplicative” opera-
tion (here, the scalar multiplication) precedes over the ”additive” operation (here,
the vector addition).

We’ll call the elements of V as vectors, and the group operation of V as vector
addition.

We’ll often omit specifying F , and just call the elements of xF as scalars.

Example 1.2 (Matrices). The set of m × n matrices with scalar entries, Fm×n for
m,n ≥ 1 forms a vector space over F with the usual operations.

Notation. We’ll sometimes denote Fm×1 by simply Fm.

5



CHAPTER II. VECTOR SPACES 6

Proposition 1.3. Let V be a vector space, v1, . . . , vn ∈ V and a1, . . . , an be a scalars
with m,n ≥ 0. Then ( m∑

i=1

ai

)( n∑
j=1

vj

)
=

m∑
i=1

n∑
j=1

aivj.

Definition 1.4 (Subspaces). Let V be a vector space over a field F . ThenW ⊆ V is
called a subspace of V iff the operations of vector addition and scalar multiplication
can be inherited to W such that W itself forms a vector space over F under these
inherited operations.

Proposition 1.5 (Characterizing subspaces). Let V be a vector space and W ⊆ V .
Then W is a subspace of V ⇐⇒ W ̸= ∅ and W is closed under vector addition and
scalar multiplication.

Proposition 1.6.

(i) Subspaces of a subspace are subspaces of the parent space.

(ii) Nonempty intersections of subspaces are subspaces.

(iii) If U , W are subspaces of a vector space V such that W ⊆ U , then W is a
subspace of U .

2 Sums of subspaces

October 11, 2022

Definition 2.1 (Sums of subspaces). Let V be a vector space andWi’s be subspaces
of V for i ∈ I. Then we define∑

i∈I

Wi :=

{
finite sums in

⋃
i∈I

Wi

}
.

Proposition 2.2.

(i) Sums of subspaces are subspaces.

(ii)
∑

iWi is the smallest subspace containing ∪iWi.

Definition 2.3 (Sum of two subspaces). Let U , W be subspaces of a vector space
V . Then we define

U +W :=
∑

X∈{U,W}

X.
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Proposition 2.4. For subspaces U , W , X of a vector space V , we have

U +W = W + U ,

(U +W ) +X = U + (W +X), and

U + {0} = U .

Proposition 2.5 (No notational collision). The inductive definition of finite sums
of subspaces via the binary operation + gives the same subspace as the one given by
Definition 2.1.

Proposition 2.6 (Finite sums of subspaces). Let n ≥ 0 andW1, . . . ,Wn be subspaces
of a vector space V . Then

W1 + · · ·+Wn = {w1 + · · ·+ wn : wi ∈ Wi}.

Definition 2.7 (Direct sums). Let V be a vector space and Wi’s be subspaces of V
for i ∈ I. Then V is called the direct sum of Wi’s iff for each v ∈ V , there exists a
unique w ∈

∏
i∈I Wi such that the set J := {i ∈ I : wi ̸= 0} is finite, and

v =
∑
i∈J

wi.

We call this w as the decomposition of w in the direct sum.

Remark. We’ll denote this fact by

V =
⊕
i∈I

Wi.

Proposition 2.8 (Characterizing direct sums). Let Wi’s be subspaces of a vector
space V , for i ∈ I such that V =

∑
i∈I Wi. Then the following are equivalent:

(i) 0 vector admits a unique finite sum of nonzero vectors in
⋃

i∈I Wi (i.e., the
empty sum).

(ii) V =
⊕

i∈I Wi.

Proposition 2.9 (Finite direct sums). Let n ≥ 0 and W1, . . . ,Wn be subspaces of a
vector space V such that V = W1 + · · ·+Wn. Then the following are equivalent:

(i) For each v ∈ V , there exists a unique w ∈
∏n

i=1Wi such that v = w1+ · · ·+wn.

(ii) The above holds for v = 0.
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(iii) V = W1 ⊕ · · · ⊕Wn

Proposition 2.10 (Characterizing direct sums of two subspaces). Let U and W
be subspaces of a vector space V such that V = U + W . Then the following are
equivalent:

(i) U ∩W = {0}.
(ii) V = U ⊕W .

3 Algebra to simplify the later work

October 15, 2022

Definition 3.1 (Simplifying notation for linear combinations). Let V be a vector
space, v ∈ V m and a be an m × n matrix of scalars, for m,n ≥ 0. Then we define
va ∈ V n as

(va)j :=
m∑
i=1

ai,j vi.

Proposition 3.2 (Algebra of V n over matrices). Let V be a vector space and n ≥ 1.
Then V n forms an abelian group under slot-wise addition, and for v ∈ V n and
matrices a, b of scalars of appropriate sizes, the following hold:

(va)b = v(ab)

(v + w)a = va+ wa

v(a+ b) = va+ vb

4 Spans, independence, bases. . .

October 11, 2022

Definition 4.1 (Span). Let V be a vector space and S ⊆ V . Then we define

spanS := smallest subspace of V containing S.

Corollary 4.2. For subspaces Wi’s of a vector space V , we have∑
i
Wi = span

(⋃
i
Wi

)
.
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Definition 4.3 (Linear combinations). Let V be a vector space and S ⊆ V . Then
a linear combination of vectors in S is a vector of the form

a1v1 + · · ·+ anvn

where v1, . . . , vn ∈ S for an n ≥ 0 and a1, . . . , an are scalars.
We’ll denote this by

Proposition 4.4 (Characterizing spans). Let V be a vector space and S ⊆ V . Then

spanS = {linear combinations of vectors in S}.

Proposition 4.5 (Characterizing spans of finite sets). Let V be a vector space and
v ∈ V n for n ≥ 0. Then

span
(
{v1, . . . , vn}

)
= {va : a ∈ F n}.

Definition 4.6 (Independence). Let V be a vector space. Then a set L ⊆ V is
called independent iff for any v ∈ Ln for n ≥ 0 with distinct vi’s, we have that

va = 0 =⇒ a = 0

for all a ∈ F n.

Proposition 4.7 (Independence of finite sets). Let V be a vector space and v ∈ V n

for n ≥ 0 with distinct vi’s. Then the following are equivalent:

(i) {v1, . . . , vn} is independent.

(ii) va = 0 =⇒ a = 0 for any a ∈ F n.

Proposition 4.8.

(i) Any subset of an independent set is independent as well.

(ii) Independence in a subspace is the same as that in the parent space.

Definition 4.9 (Bases). A subset B of a vector space V is called a basis iff it is
independent and spanB = V .

Lemma 4.10. Let L be an independent set in a vector space V and v ∈ V \ spanL.
Then L ∪ {v} is independent too.

Theorem 4.11 (Extending independent sets to bases1). Let V be a vector space and
L, S ⊆ V such that L is independent and spanS = V with |S| < ∞. Then there
exists a subset T ⊆ S such that L ∪ T is a basis for V .

1For |S| = ∞, the same result can be proven using Zorn’s lemma.
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Definition 4.12 (Finite-dimensional vector spaces). A vector space is called finite-
dimensional iff it can be spanned by some finite subset of it.

Corollary 4.13 (Existence of bases). Every finite-dimensional vector space has a
basis.

Theorem 4.14 (Independence, span and cardinality). Let V be a vector space and
L, S ⊆ V such that L is independent and spanS = V with |S| <∞. Then

|L| ≤ |S|.

Corollary 4.15 (Dimension of finite-dimensional vector spaces). Let V be a finite-
dimensional vector space. Then there exists a unique natural dimV ≥ 0 such that
any basis for V has dimV number of vectors.

Corollary 4.16. Let V be a finite-dimensional vector space and L, S ⊆ V such that
L is independent and spanS = V . Then the following hold:

(i) |L| ≤ dimV ≤ |S|.
(ii) |L| = dimV =⇒ L is a basis.

(iii) |S| = dimV =⇒ S is a basis.

Proposition 4.17 (Dimension of subspaces). Let W be a subspace of a finite-
dimensional vector space V . Then the following hold:

(i) W is finite-dimensional.

(ii) dimW ≤ dimV .

(iii) dimW = dimV ⇐⇒ W = V .

Proposition 4.18. Let W1, . . . ,Wn be finite-dimensional subspaces of a vector space
V for n ≥ 0. Then

∑n
i=1Wi is finite-dimensional too.

Proposition 4.19 (Dimension of sum of two finite-dimensional subspaces). Let U ,
W be subspaces of a finite-dimensional vector space V such that V = U +W . Then

dimV = dimU + dimW − dimU ∩W .

Proposition 4.20 (Dimension of finite sum of finite-dimensional subspaces). Let
W1, . . . ,Wn be subspaces of a finite-dimensional vector space V for n ≥ 0 such that
V = W1 + · · ·+Wn. Then the following hold:

(i) dimV ≤ dimW1 + · · ·+ dimWn.

(ii) dimV = dimW1 + · · ·+ dimWn ⇐⇒ V = W1 ⊕ · · · ⊕Wn.

Corollary 4.21. Let U , V be subspaces of a finite-dimensional vector space V such
that U ∩ V = {0}. Then dimV = dimU + dimW ⇐⇒ V = U ⊕W .
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5 Subspaces associated with a matrix

October 16, 2022

Remark. Here, the matrices are over F .

Definition 5.1 (Row, column and null spaces and their dimensions). Let A by an
m× n matrix. Then we define the following spaces:

row(A) := span{rows} ⊆ F 1×n

col(A) := span{columns} ⊆ Fm×1

null(A) := {X : AX = 0} ⊆ F n×1

We further define

row rank := dim row(A),

column rank := dim col(A), and

nullity := dimnull(A).

Proposition 5.2. For a square matrix A of size n, the following are equivalent:

(i) Row rank is n

(ii) A is invertible.

(iii) Column rank is n.

Lemma 5.3. For matrices A = BC, we have that

row(A) ⊆ row(C), and

col(A) ⊆ col(B).

Theorem 5.4. For any matrix, we have

row rank = column rank.

Remark. This allows to talk of the “rank” of matrices.
Also, prove the above in two ways: first by Gauss elimination, and second by

using the above lemma.

Corollary 5.5 (Somme immediate consequences).
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(i) Rank of a matrix is bounded by the its number of rows and columns.

(ii) Rank of AB is bounded by those of A and B.

(iii) If Am×nBn×m = Im, then m ≤ n.

Proposition 5.6. Row operations on matrices preserve the span of rows and the
independence of columns.

Proposition 5.7. Complex conjugation of a complex matrix preserves the indepen-
dence of rows and columns.

Corollary 5.8 (Rank preserving operations). The following operations on a matrix
preserve its rank:

(i) Row operations.

(ii) Transpositions.

(iii) Complex conjugation for complex matrices.

Lemma 5.9. For the linear map F n → Fm given by X 7→ AX for A ∈ Fm×n, we
have that

ker = null(A), and

im = col(A).

Theorem 5.10 (Rank-nullity). For any matrix, we have

rank+ nullity = #(columns).



Chapter III

Linear maps

Remark. Again, we’ll fix a field F , and call its elements, scalars.

1 Basics

October 15, 2022

Definition 1.1 (Linear maps and isomorphisms). Let V , W be vector spaces over
a common field. Then a function ϕ : V → W is called a linear maps iff

(i) ϕ(u+ v) = ϕ(u) + ϕ(v), and

(ii) ϕ(au) = a ϕ(u).

If ϕ is a bijection too, then we call it a (linear) isomorphism, and call V and W ,
isomorphic.

Notation. We’ll write “T : V → W is linear” to mean “V , W are vector spaces over
a common field and T : V → W is a linear map”.

We’ll also, for a linear map T : V → W , write Tv for T (v).

Example 1.2 (Matrix operations). Let m,n, k ≥ 1.

(i) An m × n matrix A induces a linear map F n×k → Fm×k given by X 7→ AX.
(Similarly, another map due to right-multiplication is also induced.)

(ii) Matrix transposition X 7→ X t gives another linear map Fm×n → F n×m.

Proposition 1.3 (Properties of linear maps).

13
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(i) Composition of linear maps (respectively isomorphisms) is a linear map (re-
spectively an isomorphism).

(ii) A linear map is injective ⇐⇒ its kernel is {0}.
(iii) The kernel of a linear map is a subspace of the domain space.

(iv) Restriction of a linear map to a subspace of the domain space is linear.

(v) Inclusion map from a subspace is linear.

(vi) Inverse of an isomorphism is linear too.

(vii) “Being isomorphic” is an equivalence relation.

Proposition 1.4 (Properties preserved by isomorphisms). Let T : V → W be an
isomorphism and S ⊆ V . Then the following hold:

(i) S is independent in V ⇐⇒ T (S) is independent in W .

(ii) span(S) = V ⇐⇒ span(T (S)) = W .

(iii) S is a basis of V ⇐⇒ T (S) is a basis of W .

(iv) V (or equivalently, W ) is finite-dimensional =⇒ W (and equivalently V ) is
finite-dimensional and dimV = dimW .

Proposition 1.5 (Algebra of linear maps). Let V ,W be vector spaces over a common
field F . Then the set L(V,W ) of linear maps V → W , forms a vector space over F
under the following operations:

(T + S)(v) := Tv + Sv

(aT )(v) := a(Tv)

Further, if V = W , then we can also define the products

TS := T ◦ S.

This makes L(V, V ) into an associative F -algebra1 with identity idV and the corre-
sponding homomorphism is given by

a 7→ a idV .

Result 1.6 (Projections on component spaces in direct sums). Let V be a vector space
and U , W be subspaces such that V = U ⊕W . For each v ∈ V , define PUv ∈ U and
PWv ∈ W so that

PUv + PWv = v.

Then the following hold:

1See §4.1.
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(i) PU ,PW : V → V are linear.

(ii) P2
U = PU and P2

W = PW .

(iii) PU + PW = idV .

Remark. Note that PU depends not just on U , but the entire direct product de-
composition of V , i.e., on U as well as W .

Result 1.7 (Characterizing such projections). Let T : V → V be linear with T 2 = T .
Then

(i) V = imT ⊕ kerT .

(ii) T is precisely the projection on imT in the direct sum V = imT ⊕ kerT .

Theorem 1.8 (A linear map is uniquely determined by its action of basis). Let V ,
W be vector spaces over a common field, B be a basis of V and f : B → W be any
function. Then there exists a unique linear map T : V → W such that for all u ∈ B,
we have

Tu = f(u).

Theorem 1.9 (Fundamental theorem of linear maps). For a linear map T from a
finite-dimensional domain space V , we have that imT is finite-dimensional, and

dimV = dim(kerT ) + dim(imT ).

Corollary 1.10. Let T : V → W be linear with V , W being finite-dimensional. Then
the following hold:

(i) T is surjective =⇒ dimV ≥ dimW .

(ii) T is injective =⇒ dimV ≤ dimW .

(iii) If dimV = dimW , then T is surjective ⇐⇒ T is injective.

2 Making linear maps act on tuples of vectors

October 15, 2022

Remark. The elements of V n should be viewed as n-tuples. For us, tuples and
matrices are different things.

This collides with the earlier notation of F n which contained column vectors.
Thus clarification will be needed when not clear from context.
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Definition 2.1 (T acting on V n). Let T : V → W be a linear map and v ∈ V n for
n ≥ 0. Then we define Tv ∈ W n so that

(Tv)i := Tvi.

Proposition 2.2 (T ’s action V n is “linear”). Let T : V → W be a linear map,
v, w ∈ V m and a be an m× n matrix of scalars for m,n ≥ 0. Then

T (v + w) = Tv + Tw

T (va) = (Tv)a

3 Studying matrices of linear maps

October 15, 2022

Definition 3.1 (Ordered bases for finite-dimensional spaces). Let V be a finite-
dimensional vector space. Then an n-tuple of distinct vectors (u1, . . . , un) for n ≥ 0
is called an ordered basis for V iff {u1, . . . , un} is a basis for V .

Theorem 3.2 (Finite-dimensional spaces isomorphic to F n’s). Let V be a finite-
dimensional vector space and B be an ordered basis. Then for each v ∈ V , there
exists a unique column vector [v]B ∈ F n so that

v = B[v]B.

The map V → F n given by v 7→ [v]B is an isomorphism.

Corollary 3.3. Any finite-dimensional vector space V is isomorphic to F dimV×1.

Notation. Unless stated otherwise, the vectors ei’s will be reserved for the standard
basis of F n (for the specified n’s).

Theorem 3.4. Any linear map T : F n → Fm for m,n ≥ 1 is due to the left-
multiplication by a unique m× n matrix [T ], which is given by

[T ] :=

 Te1 · · · Ten

.
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Remark. It’ll turn out (in Theorem 3.5) that this [T ] is precisely [T ]C←B where C
and B are the standard ordered bases for Fm and F n respectively.

Theorem 3.5 (Matrices of linear maps). Let T : V → W be a linear map with V ,
W finite-dimensional. Let B and C respectively be ordered bases for V and W . Then
there exists a unique dimW × dimV matrix [T ]C←B such that

[Tv]C = [T ]C←B [v]B.

This is given by

[T ]C←B =

 [Tu1]C · · · [Tun]C

,
where (u1, . . . , un) = B.

We have the following commutative diagrams:

V W

F dimV F dimW

T

B C

[T ]B←C

v Tv

[v]B [Tv]C

Further, the map L(V,W ) → F dimW×dimV given by

T 7→ [T ]C←B

is an isomorphism.

Remark. Strictly speaking, we must require dimV, dimW ≥ 1 since we normally
don’t have 0×n or m×0 matrices. We’ll not care in the future to make this remark.

Notation. For composable linear maps S, T , we’ll denote T ◦ S by TS.

Theorem 3.6 (Matrix of compositions). Let S : U → V and T : V → W be linear
maps with U , V , W being finite-dimensional. Let B, C, D be their respective ordered
bases. Then

[TS]D←B = [T ]D←C [S]C←B.
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We have the following commutative diagram:

U V W

F dimU F dimV F dimW

S

B

TS

T

C D

[S]C←B

[TS]D←B

[T ]D←C

Remark. This says that the map on L(V, V ) → F n×n given by T 7→ [T ]B←B in
Theorem 3.5 is an algebra isomorphism!2

Corollary 3.7 (Change of basis). Let V be a finite-dimensional vector space and B,
C be ordered bases of V . Then [idV ]C←B is such that

[v]C = [idV ]C←B [v]B.

This is given by

[idV ]C←B

 [u1]C · · · [un]C


where (u1, . . . , un) = B.

Further, we have that
[idV ]B←C [idV ]C←B = I.

Corollary 3.8 (Change of bases in maps). Let T : V → W be a linear map and V ,
W be finite-dimensional vector spaces. Let B, B′ be ordered bases of V and C, C ′

be those of W . Then

[T ]C′←B′ = [idW ]C′←C [T ]C←B [idV ]B←B′.

2See §4.1. Also see Proposition 4.36 that uses this.



Chapter IV

Inner product spaces

Remark. In this chapter, our field F would be either R or C. We’ll denote this fact
by changing our notation to K.

Remark. When writing A ∈ Km×n, we’ll omit saying “m,n ≥ 1”.

1 Basics

October 15, 2022

Definition 1.1 (Inner product spaces). A vector space V over K along with a
function (called the inner product) ⟨·, ·⟩ : V × V → K is called an inner product
space iff the following hold:

(i) ⟨v, v⟩ ≥ 0.

(ii) ⟨v, v⟩ = 0 ⇐⇒ v = 0.

(iii) ⟨w, v⟩ = ⟨v, w⟩.
(iv) ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩.
(v) ⟨av, w⟩ = a⟨v, w⟩.
We’ll also define

∥v∥ :=
√

⟨v, v⟩.

Proposition 1.2 (Easy identities). Let V be an inner product space. Then the

19
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following hold:

⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u,w⟩
⟨u, av⟩ = a⟨u, v⟩
∥av∥ = |a| ∥v∥

∥x+ y∥2 + ∥x− y∥2 = 2
(
∥x∥2 + ∥y∥2

)
⟨x, y⟩ =

{
∥x+y∥2−∥x−y∥2

4
+ i∥x+iy∥2−∥x−iy∥2

4
, K = C

∥x+y∥2−∥x−y∥2
4

, K = R

Theorem 1.3 (Cauchy-Schwarz inequality). Let V be an inner product space and
u, v ∈ V. Then

|⟨u, v⟩| ≤ ∥u∥ ∥v∥.

with equality holding if and only if {u, v} is dependent.

Proposition 1.4 (Triangle inequality). Let V be an inner product space and u, v ∈
V . Then

∥u+ v∥ ≤ ∥u∥+ ∥v∥

with equality holding if and only if ⟨u, v⟩ = ∥u∥ ∥v∥.

Proposition 1.5 (Matrix representation of inner product). Let V be a finite-dimensional
inner product space with an ordered basis B := (u1, . . . , un) for n ≥ 1. Then we have

⟨v, w⟩ = [v]tB A [w]B

where A ∈ Kn×n is given by

A :=

⟨u1, u1⟩ · · · ⟨u1, un⟩
...

...
⟨un, u1⟩ · · · ⟨un, un⟩

 .

Remark. If B is orthonormal (see Definition 2.1), then this reduces to ⟨u, v⟩ =
[v]tB [w]B.
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1.1 The Euclidean inner product on Km×n

October 17, 2022

Definition 1.6 (Complex conjugation of matrices). Let A ∈ Km×n. Then we define
A ∈ Km×n as

(A)i,j := Ai,j.

Remark. Hence, we are also defining complex conjugation for real matrices, for
which this will leave the matrix unchanged.

Proposition 1.7 (Properties of complex conjugation). Let A, B be matrices over
K and λ ∈ K. Then whenever defined, the following hold:

A+B = A+B

λA = λA

AB = AB

(A)t = At

(A)−1 = A−1 if A is invertible

det(A) = detA if A is square

Notation. We denote (A)t by A∗.

Definition 1.8 (Trace). For a square matrix A over any field, we define

trA :=
∑
i

Ai,i.

Proposition 1.9. Let A, B be matrices over any field. Then whenever defined, the
following hold:

tr(A+B) = trA+ trB

tr(λA) = λ(trA)

tr(AB) = tr(BA)
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Proposition 1.10 (An inner product on Km×n). On Km×n over K, we can define
an inner product as

⟨A,B⟩ := tr(AT B).

It follows that, whenever defined, the following equalities hold across the appro-
priate spaces:

⟨At, Bt⟩ = ⟨A,B⟩
⟨A,B⟩ = ⟨A,B⟩

Example 1.11 (An inner product on C[0, 1]). On C[0, 1], the space of continuous K-
valued functions on interval [0, 1],

⟨f, g⟩ :=
∫ 1

0

g(t) f(t) dt

defines an inner product.

2 Orthogonality

October 17, 2022

Definition 2.1 (Orthogonal and orthonormal sets). Let V be an inner product
space. Then an L ⊆ V is called orthogonal iff for each u, v ∈ L, we have

⟨u, v⟩ = 0 whenever u ̸= v.

If we further have
∥v∥ = 1

for each v ∈ L, we call L orthonormal.
For M,N ⊆ V , we also say that M is orthogonal to N , written M ⊥ N , iff

u ∈M and v ∈ N =⇒ ⟨u, v⟩ = 0.

Corollary 2.2 (Preservation of orthonormality). The following preserve the or-
thonormality and orthogonality of a set in an inner product space:

(i) Taking subsets.

(ii) Scaling vectors by scalars of absolute value 1.
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Proposition 2.3. Orthogonal set of nonzero vectors is independent.

Proposition 2.4 (Expansion in orthogonal bases). Let V be a finite-dimensional
inner product space and B be an ordered orthogonal basis. Then for any v ∈ V , we
have

[v]B =

(
⟨v, u1⟩
∥u1∥2

, . . . ,
⟨v, un⟩
∥un∥2

)
where (u1, . . . , un) = B.

Proposition 2.5 (Pythagoras). Let V be an inner product space and v1, . . . , vn ∈ V
be distinct and orthogonal for n ≥ 0. Then

∥v1 + · · ·+ vn∥2 = ∥v1∥2 + · · ·+ ∥vn∥2.

Theorem 2.6 (Gram-Schmidt1). Let V be an inner product space and v1, . . . , vn be
distinct independent vectors for n ≥ 1. Define e1, . . . , en as

e1 :=
v1
∥v1∥

, and

ei+1 :=
vi+1 −

∑i
j=1⟨vi+1, ej⟩ej

∥vi+1 −
∑i

j=1⟨vi+1, ej⟩ej∥
for 1 ≤ i < n.

Then e1, . . . , en so obtained are orthonormal such that for each 1 ≤ i ≤ n, we have

span
(
{e1, . . . , ei}

)
= span

(
{v1, . . . , vi}

)
.

Corollary 2.7. Every orthonormal set in a finite-dimensional inner product space
can be extended to an orthonormal basis.2

3 Orthogonal complements

October 16, 2022

Proposition 3.1 (Orthogonal complements). Let V be an inner product space and
W be a subspace. Then

W⊥ := {v ∈ V : ⟨v, w⟩ = 0 for all w ∈ W}

is a subspace of W such that

1Countable bases can be orthonormalized using this too.
2Complete infinite-dimensional inner product spaces have no orthonormal basis.



CHAPTER IV. INNER PRODUCT SPACES 24

(i) W ∩W⊥ = {0}, and
(ii) W if finite-dimensional =⇒ V = W ⊕W⊥.

Remark. This allows to talk of “orthogonal projections on a subspaceW” whenever
V = W ⊕W⊥.

Proposition 3.2 ((W⊥)⊥ andW ). Let U , W be subspaces of an inner product space
V . Then the following hold:

(i) U ⊆ W =⇒ W⊥ ⊆ U⊥.3

(ii) U ⊆ (U⊥)⊥.4

(iii) V = U ⊕ U⊥ =⇒ U = (U⊥)⊥.5

(iv) V = U +W and U ⊥ W =⇒ U⊥ = W and W⊥ = U .

Proposition 3.3. Let V be an inner product space and U , W be orthogonal sub-
spaces.

Proposition 3.4 (Orthogonal projections). Let V be an inner product space and W
be a subspace such that V = W ⊕W⊥. Let PW : V → V be the orthogonal projection
onto W . Then

⟨PWu, v⟩ = ⟨u, PWv⟩.

Proposition 3.5 (Characterizing orthogonal projections). Let V be an inner product
space and T : V → V be linear with such that T 2 = T and ⟨Tu, v⟩ = ⟨u, Tv⟩. Then
in addition to the conclusion of Result 1.7, we also have

(imT )⊥ = kerT and (kerT )⊥ = imT

so that T is the orthogonal projection onto imT .

Proposition 3.6 (Orthogonal projections via orthogonal bases). Let V be an inner
product space and W be a finite-dimensional subspace with an ordered orthogonal
basis (u1, . . . , un) for n ≥ 0. Then the orthogonal projection PW : V → V onto W is
given by

PWv =
n∑

i=1

⟨v, ui⟩
∥ui∥2

ui.

3For a counterexample for converse, consider V := ℓ2 and U := {x ∈ ℓ2 :
only finitely many xi’s are nonzero}.

4Same example to show proper inclusion.
5For a counterexample to the converse, see this.

https://math.stackexchange.com/a/4554794/673223
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Lemma 3.7. Let V be a vector space and U , W be subspaces such that V = U ⊕W .
Let PU : V → V be the projection onto U in the direct sum. Let u ∈ U and v ∈ V .
Then

u = PUv ⇐⇒ v − u ∈ W .

Theorem 3.8 (Orthogonal projections as approximations). Let V be an inner prod-
uct space and W be a subspace such that V = W ⊕W⊥. Let v0 ∈ V and w ∈ W and
PW : V → V be the orthogonal projection onto W . Then

∥w − v0∥ ≥ ∥PWv0 − v0∥

with equality holding if and only if w = PWv0, or equivalently, w − v0 ∈ W⊥.

4 Applying to the matrices over K
October 17, 2022

Lemma 4.1. Let A ∈ Km×n. Then under the Euclidean inner product in Kn×1, we
have

col(A∗) ⊥ null(A).

Remark. A∗ is the usual complex conjugate of the complex matrix A.

Theorem 4.2. Let A ∈ Km×n. Then in Kn×1 with the Euclidean inner product, the
following hold:

Kn×1 = col(A∗)⊕ nullA

col(A∗) = (nullA)⊥

Remark. col(A∗) is just (the transpose of) row(A).

Theorem 4.3 (Least squares in Kn). Let A ∈ Km×n, and x ∈ Kn×1 and b ∈
Km×1. Let Pcol(A) : Km×1 → Km×1 be the orthogonal projection onto col(A). Then
the following are equivalent:

(i) ∥Ax− b∥ = ∥Pcol(A)b− b∥.
(ii) Ax = Pcol(A)b.

(iii) A∗Ax = A∗b.
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Corollary 4.4 (On A∗A). For A ∈ Km×n, the following hold:

(i) A∗Ax = 0 ⇐⇒ Ax = 0.

(ii) A’s columns are independent ⇐⇒ A∗A is invertible.

Corollary 4.5 (Orthogonal projections in Kn). Let A ∈ Km×n with independent
columns. Then the orthogonal projection Pcol(A) : Km×1 → Km×1 onto col(A) is given
by

Pcol(A) b = A(A∗A)−1A∗ b.

5 Orthogonal matrices

October 17, 2022

Definition 5.1 (Orthogonal matrices). An square matrix A over K is called orthog-
onal iff

AtA = I.

Remark. We could have equivalently demanded A∗A = I.

Remark. “Unitary” vs “orthogonal”: Unitary is stuck because U∗U = I is like an
extension of complex units.

Remark. (This remark is imprecise!) Given a linear map T : V → W where V ,
W are inner product spaces, it’s possible to define an “adjoint operator” T ∗ so that
[T ∗] = [T ]∗. This allows to define “orthogonal operators”.

It’s possible to generalize these even further so that we don’t require V and W
to be inner product spaces.

Proposition 5.2 (Properties of orthogonal matrices). Let A ∈ Kn×n be orthogonal.
Then

|detA| = 1

rendering A invertible with
A−1 = A∗.

Further, At, A, A∗ are orthogonal too.
Also, product of orthogonals is orthogonal.
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Proposition 5.3 (Characterizing orthogonal matrices). Let A ∈ Kn×n. Then the
following are equivalent:

(i) A is orthogonal.

(ii) Rows of A are orthonormal.

(iii) Columns of A are orthonormal.

(iv) A preserves ∥·∥.
(v) A preserves ⟨·, ·⟩.

Remark. The eigenvalues of an orthogonal matrix have absolute value 1. (Re-
sult 2.7.)

Result 5.4. Let V be a finite-dimensional inner product space and E, F be ordered
orthonormal bases. Then [idV ]F←E is orthogonal.

Lemma 5.5. An upper-triangular matrix orthogonal matrix with positive diagonal
entries is necessarily I.

Theorem 5.6 (QR decomposition). Let A ∈ Km×n with independent columns. Then
there exist unique Q ∈ Km×n and R ∈ Kn×n such that

(i) A = QR,

(ii) Q’s columns are orthonormal, i.e., Q∗Q = In, and

(iii) R is upper-triangular with positive diagonal entries.

Further, this R is invertible, and if A = [a1, . . . , an] and Q = [q1, . . . , qn], then R
is given by

R =

 ⟨a1, q1⟩ · · · ⟨an, q1⟩
. . .

...
⟨an, qn⟩

.



Chapter V

Eigenvalues and eigenvectors

1 Basics

October 25, 2022

Definition 1.1 (Linear operators). A linear operator is a linear map from one vector
space to itself.

Definition 1.2 (Eigenvalues and eigenvectors). Let T : V → V be linear, λ be
a scalar and v ∈ V be nonzero. Then v is called an eigenvector of T , and v a
corresponding eigenvector, iff

Tv = λv.

Similarly, we define eigenvalues and eigenvalues of square matrices (which are
precisely the linear operators on F n).

Remark. We had a choice here: We could’ve defined this so that 0 would be an
eigenvector of each scalar. But then we’d have had to specify nonzero-ness of eigen-
vectors each time (like we now do for “nonzero zero divisors”).

Proposition 1.3 (Eigenspaces are subspaces). Let T : V → V be linear with an
eigenvalue λ. Then

{v ∈ V : Tv = λv} = ker(T − λ idV ).

Theorem 1.4. Vectors corresponding to distinct eigenvalues of a linear operator are
independent.

28
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Definition 1.5 (Diagonalizability). A linear operator T : V → V is called diagonal-
izable iff there exists a basis of V , comprising only of eigenvectors of T .1

In the same way, we define diagonalizability of square matrices.

Corollary 1.6. If T : V → V with V being finite-dimensional and T having dimV
many distinct eigenvalues, then T is diagonalizable.

Proposition 1.7 (Matrices suffice for finite-dimensional spaces). Let T : V → V be
linear with V being finite-dimensional. Let B be an ordered basis of V . Then the
following hold:

(i) For any vector v and any scalar λ, the following are equivalent:

(a) v is an eigenvector of T with eigenvalue λ.
(b) [v]B is an eigenvector of [T ]B←B with eigenvalue λ.

(ii) T is diagonalizable ⇐⇒ [T ]B←B is diagonalizable.

Remark. All of this above can be seen elegantly by formulating “morphisms be-
tween maps” and then we’ll have that isomorphisms between maps preserve eigen-
values, eigenvectors and diagonalizability.

2 Diagonalizability of matrices

October 25, 2022

Definition 2.1 (Similar matrices). Two square matrices A and B (of same size) are
called similar iff there exists an invertible P such that

A = P−1BP .

Proposition 2.2. Similarity is an equivalence relation.

Proposition 2.3 (Similar matrices have same eigenvalues2). Let A,P ∈ F n×n with
P invertible. Then for any λ ∈ F and any v ∈ F n×1, the following are equivalent:

(i) v is an eigenvector of A with eigenvalue λ.

(ii) P−1v is an eigenvector of P−1AP with eigenvalue λ.

Corollary 2.4. Similarity preserves diagonalizability.

1See Corollary 2.6 for the motivation to call it “diagonalizability”.
2Also see Proposition 4.10.
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Theorem 2.5 (Diagonalizing matrix contains eigenvectors). Let A,P ∈ F n×n with
P =: [v1, . . . , vn] invertible and let λ1, . . . , λn ∈ F . Then the following are equivalent:

(i) P−1AP = diag(λ1, . . . , λn).

(ii) Avi = λivi for i = 1, . . . , n.

Corollary 2.6. An n × n matrix is diagonalizable iff it is similar to a diagonal
matrix.

Result 2.7. Orthogonal matrices over K have eigenvalues with absolute value 1.

Proposition 2.8. Eigenspaces corresponding to distinct eigenvalues are independent.

Theorem 2.9 (Characterizing diagonalizability3). Let T : V → V be linear with V
finite-dimensional and λ1, . . . , λk be distinct eigenvalues of T for k ≥ 0. Let Eλi

be
the corresponding eigenspaces. Then the following are equivalent:

(i) T is diagonalizable.

(ii) V = Eλ1 ⊕ · · · ⊕ Eλk
.

(iii) dimV = dimEλ1 + · · ·+ dimEλk
.

2.1 Orthogonal diagonalization

October 25, 2022

Definition 2.10 (Orthogonal diagonalizability). Let V be an inner product space.
Then a linear operator T : V → V is called orthogonally diagonalizable iff there
exists an orthonormal basis of V comprising of eigenvectors of T .

Similarly, we define orthogonal diagonalizability for square matrices overK (under
the Euclidean inner product on Kn).

Definition 2.11 (Hermitian matrices). An n×n Amatrix over K is called Hermitian
iff

A∗ = A.

Proposition 2.12. Eigenvalues of a Hermitian matrix are real and its eigenspaces
are orthogonal.

Theorem 2.13 (Spectral theorem for matrices). A square matrix over K is orthog-
onally diagonalizable with real eigenvalues ⇐⇒ it is Hermitian.

3Also see
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3 Reflections

October 25, 2022

Proposition 3.1 (Reflections and reflection matrices). Let V be an inner product
space and u ∈ V with ∥u∥ = 1. Then the function V → V given by

v 7→ v − 2⟨v, u⟩u

is linear and has eigenvalues ±1 with

E−1 = span({u}), and
E1 = E⊥−1.

If V = Kn×1 with the Euclidean inner product, then this map is given by

v 7→ (I − uu∗)v.

The matrix R := I − uu∗ is Hermitian and orthogonal, and hence R2 = I.

Remark. When there’s no confusion, we’ll denote eigenspaces by Eλ.

4 Cardinal polynomials

Remark. For this section, fix a general ring R. As usual, we’ll assume V to be a
vector space over some fixed general field F .

4.1 Modules and algebras

October 27, 2022

Definition 4.1 (R-modules). An R-module is an abelian additive group (M,+)
along with a scalar multiplication R×M →M (denoted by juxtaposition) such that
the following hold:

(i) (r + s)m = rm+ sm.

(ii) r(m+ n) = rm+ rn.

(iii) (rs)m = r(sm).
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(iv) If R has an identity, then 1Rm = m.

Definition 4.2 (R-algebras). An R-module A along with a multiplication × : A ×
A→ A is said to be an R-algebra iff × is bilinear in both slots, i.e.,

(i) a× (b+ c) = a× b+ a× c,

(ii) (a+ b)× c = a× c+ b× c, and

(iii) (ra)× (sb) = (rs)(a× b).

We say that A is associative (respectively commutative; has an identity) iff × is
associative (respectively commutative; has an identity).

Definition 4.3 (Nice homomorphisms). A ring homomorphism ϕ : R → S is called
nice iff this holds: R has an identity =⇒ ϕ(1R) is the identity in S.

Definition 4.4 (Algebras via homomorphisms). Let S be a ring. Then a nice ring
homomorphism ϕ : R → S is called an algebra iff ϕ(R) is central in S.

We say that ϕ is commutative (respectively, has an identity) iff S is commutative
(respectively, has an identity).

Theorem 4.5 (Interplay of Definitions 4.2 and 4.4). Let R have identity and A be
an associative R-algebra with identity. Define ϕ : R → A as

ϕ(r) := r1A.

Then A is a ring and ϕ is an algebra with identity.
Conversely, let S be a ring and ϕ : R → S be a nice ring homomorphism. Define

scalar multiplication R× S → S as

(r, s) 7→ ϕ(r)s.

Then S forms an R-module. If ϕ(R) is further central in S (i.e., ϕ is an algebra),
then S is an associative R-algebra.

Lemma 4.6 (“Transitivity” of modules and algebras). Let ϕ : R → S and ψ : S → T
be ring homomorphisms. Then the following hold:

(i) ϕ, ψ are nice =⇒ ψ ◦ ϕ is nice.

(ii) ψ(S) is central =⇒ (ψ ◦ ϕ)(R) is central.

Proposition 4.7. We have the following nice ring homomorphisms:

R

R[x] Rn×n

ax
0← [a a7→

aI
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If R is commutative, then a 7→ a x0 is a commutative algebra as well.

Remark. To distinguish elements of R from the constant polynomials in R[x], we’ll
use x0.

Lemma 4.8 (When is ϕ : R[x] → S a homomorphism?). For a ring S, a function
ϕ : R[x] → S is a ring homomorphism ⇐⇒ the following hold:

(i) ϕ(0R[x]) = 0S.

(ii) ϕ(p+ axi) = ϕ(p) + ϕ(axi).

(iii) ϕ(axi bxj) = ϕ(axi)ϕ(bxj).

Proposition 4.9 (Substitution homomorphisms). Let ϕ : R → S be an algebra and
s ∈ S. Then the function R[x] → S given by

a0x
0 + · · ·+ anx

n 7→ ϕ(a0) + ϕ(a1)s
1 + · · ·+ ϕ(an)s

n

is a nice homomorphism.

Remark. Strictly speaking, the well-defined-ness of this function needs to be shown.

Notation. For such homomorphisms, we’ll use the notation p 7→ p(s), and also
denote the image of R[x] as ϕ(R)[s].

Remark. If R is a subring of S, we’ll take ϕ to be the inclusion R ↪→ S if not
explicitly mentioned.

Proposition 4.10 (T and p(T ) have the same eigenvectors). Let T : V → V be
linear and p ∈ F [x]. Let v ∈ V and λ ∈ F . Then

Tv = λv =⇒ p(T )v = p(λ)v.
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4.2 Characteristic polynomial

Proposition 4.11 (Matrices of polynomials and vice-versa). We have the following
commutative diagram with the canonical nice homomorphisms:

R

R[x] Rn×n

(
R[x]

)n×n
Rn×n[x]

Here, the homomorphism Rn×n[x] →
(
R[x]

)n×n
is given by[

a
(0)
ij

]
x0 + · · ·+

[
a
(n)
ij

]
xn 7→

[
a
(0)
ij x

0 + · · ·+ a
(n)
ij x

n

]
.

The solid arrows become algebras if R is commutative.

Definition 4.12 (Characteristic polynomial of matrices). Let R be commutative
and A ∈ Rn×n. Then we define the characteristic polynomial to be the polynomial
in R[x] given by

det
(
f(−Ax0 + Ix)

)
where f : Rn×n[x] →

(
R[x]

)n×n
is the homomorphism as given in Proposition 4.11.

Remark. We have the nice properties of determinants holding only when the matrix
entries come from a commutative rings. Hence we care to define det only here.

Proposition 4.13. Let R be commutative and A ∈ Rn×n. Then the characteristic
polynomial of A is monic and of degree n.

Proposition 4.14. The eigenvalues of a square matrix over a field are precisely the
zeroes of its characteristic polynomial.

Proposition 4.15. Similar matrices have the same characteristic polynomial.

Corollary 4.16 (Characteristic polynomial of operators). Let T : V → V be linear
with V finite-dimensional4 and B, C ordered bases of V . Then the characteristic
polynomials of [T ]B←B and [T ]C←C are the same.

4Finite-dimensionality is needed to talk of any matrix of T .
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Remark. This allows us to talk of “the characteristic polynomial of T”.

Corollary 4.17. Let T : V → V be linear with V being finite-dimensional. Then the
eigenvalues of T are precisely the zeroes of its characteristic polynomial.

Theorem 4.18 (Characterizing diagonalizability). Let T : V → V be linear with V
finite-dimensional. Let λ1, . . . , λk be eigenvalues of T and Eλ1 , . . . , Eλk

be the corre-
sponding eigenspaces. Then T is diagonalizable ⇐⇒ the characteristic polynomial
of T is given by

(x− λ1)
dimEλ1 · · · (x− λk)

dimEλk .

Remark. In writing statements on vector spaces, we’ll simply write x instead of
1Fx, etc.

Proposition 4.19. Let R be commutative. Then for a square block matrix over R,
we have

det

[
A B
0 D

]
= detA detD,

where A and B are square of possibly different sizes.
Similarly, we have that the characteristic polynomial also factorizes as above.

Definition 4.20 (Invariant subspaces). Let T : V → V be linear. Then a subspace
W of V is called T -invariant iff

T (W ) ⊆ W .

Notation. We’ll denote the restriction of T on W → W by TW .

Corollary 4.21. Let T : V → V be linear with V being finite-dimensional. Let W
be a T -invariant subspace. Then the characteristic polynomial of TW divides that of
T .

Result 4.22. Let T : V → V be linear. Then the following hold:

(i) {0}, V , kerT , imT as well as eigenspaces are all T -invariant.

(ii) Let W be a subspace and p ∈ F [x]. Then W is T -invariant =⇒ W is p(T )-
invariant.
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4.3 Division

Proposition 4.23 (Associates). Let R have an identity. Then the relation on R
defined by

a ∼ b iff a = ub for some invertible u ∈ R

is an equivalence relation.

Remark. Similarly, “a = bu” will define another equivalence relation. For commu-
tative rings, both the relations coincide.

Theorem 4.24 (Division is a “partial order” in integral domains). Let R be an
integral domain. Then the following hold:

(i) a | a.
(ii) a | b and b | a =⇒ a, b are associates.

(iii) a | b and b | c =⇒ a | c.

Remark. This allows to define gcd and lcm with these being “greatest” and “least”
in some sense.

Definition 4.25 (gcd and lcm in integral domains). Let R be an integral domain
and a, b ∈ R. Then an x ∈ R is called

(i) a gcd of a, b iff

(a) x is a common divisor of a, b, and
(b) if d is any common divisor of a, b, then d | x;

(ii) an lcm of a, b iff

(a) x is a common multiple of a, b, and
(b) if m is any common multiple of a, b, then x | m.

Proposition 4.26. In an integral domain, gcd’s (respectively lcm’s) of a pair of
elements are unique up to associativity.

Definition 4.27 (Coprimes). Let R be an integral domain. Then a, b ∈ R are said
to be coprime iff they have 1R as a gcd.

Definition 4.28 (Primes). Let R be commutative. Then p ∈ R \ {0R} (p ̸= 1R too
if R has identity) is called prime iff

p | ab =⇒ p | a or p | b.
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Proposition 4.29 (Divisors of prime products). Let R be an integral domain p1, . . . , pn
be primes for n ≥ 0. Let u be invertible and d1, . . . , dn ≥ 0. Then divisors of
upd11 · · · pdnn are precisely of the form

vpe11 · · · penn
where v is invertible and 0 ≤ ei ≤ di.

Lemma 4.30. Primes are irreducible in an integral domain.

Proposition 4.31. Let R be an integral domain and λ, µ ∈ R be distinct. Then
1Rx

1 − λx0 and 1Rx
1 − µx0 are non-associate primes.

Proposition 4.32. R is an integral domain ⇐⇒ R[x] is an integral domain.

Theorem 4.33 (Division in R[x] and the factor theorem). Let R have identity and
f, g ∈ R[x] with g being monic.5 Then the following hold:

(i) There exist q, r ∈ R[x] such that

f = qg + r with r = 0, or else, deg r < deg q.

(ii) For α ∈ R, we have that

p(α) = 0R ⇐⇒ (1Rx
1 − αx0) divides p from both sides.

(iii) If R further has no nonzero zero divisor, then these q, r are unique.

Remark. Exactly similar proposition will hold for the quotient q appearing on the
right of g.

4.4 Annihilators

Definition 4.34 (Annihilating and minimal polynomials6). Let ϕ : R → S be an
R-algebra.7 Let I be an ideal of S and s ∈ S. Then a polynomial p ∈ R[x] is called
an I-annihilator of s iff

p(s) ∈ I.

If p is such a nonzero polynomial with least degree, it’s called a minimal I-
annihilator of s.

When I = {0S}, we’ll simply call these annihilators.

5We can weaken this by demanding the leading coefficient of q to be invertible.
6In this case, S fails in general to be an R[x]-algebra (we could define a product (p, s) 7→ p(s)

on R[x]× S → S), hence the “annihilators of a module” will not suffice for us.
7ϕ is required to be an R-algebra to talk of p(s).
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Remark. I am allowing minimal annihilators to be non-monic.
In the case of a vector space V over F , we’ll have R = F , S = L(V, V ) or F n×n

(all of which have identities), and I = {0} with ϕ : α 7→ α idV or α In.

Proposition 4.35 (Monic minimals divide all the annihilators, and are unique). Let
ϕ : R → S be an algebra. Let I be an ideal of S and s ∈ S. Then the following hold:

(i) The set
A := {I-annihilators of s}

forms an ideal of R[x].

(ii) If R further has an identity8 and m ∈ R[x] is any monic minimal I-annihilator
for s, then

A = mR[x] = R[x]m = LmM.

(iii) In addition, R further has no nonzero zero divisors, then the monic minimal
I-annihilator of s, if existent, is unique.

Proposition 4.36 (Polynomials over matrices suffice for finite-dimensional). Let
T : V → V be linear with V being finite-dimensional. Let B be an ordered basis for
V and p ∈ F [x]. Then [

p(T )
]
B←B

= p
(
[T ]B←B

)
.

Hence, the (minimal) annihilators of T are precisely the (minimal) annihilators
of [T ]B←B.

Corollary 4.37. Each T ∈ L(V, V ) for finite-dimensional V has a unique minimal
annihilator.

Proposition 4.38 (Minimals also give eigenvalues). For any A ∈ F n×n, the char-
acteristic and minimal polynomials have the same zeros.

Proposition 4.39. Similarity preserves (minimal) annihilators.

8This is required to talk of monic m which is in turn required for division. See Theorem 4.33.
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