REAL ANALYSIS Prof Mohan Joshi¹

Organized Results complied by Sarthak 2

November 2022

To Giuseppe, for inspiring me once, and then for all...

¹mcj@iitgn.ac.in
²vijaysarthak@iitgn.ac.in

Contents

Ι	Rea	l number system	1			
	1	Dedekind cuts of an Archimedean ordered field	1			
	2	Properties of \mathbb{R}	5			
	3	Base representation for \mathbb{R}	7			
	4	Absolute value—the norm on \mathbb{R}	8			
II	Sequences and series of reals 10					
	1	Sequences	10			
	2	Subsequences	13			
	3	Series	15			
II	[Con	tinuity	17			
	1	Topological aspects	17			
	2	Limits of functions	18			
	3	Continuous functions	20			
	4	Uniform and Lipschitz continuities	21			
	5	Three important theorems	22			
	6	Polynomials	24			
	7	One-sided limits	25			
	8	Monotone functions	25			
IV	Diff	erentiability	27			
	1	Taking derivatives	27			
	2	Mean value theorems	29			
	3	Taylor's theorem	30			
	4	Inverse function theorem	33			
	5	One-sided derivatives	34			
	6	Convex functions	34			

\mathbf{V}	The	Riemann integral	36
	1	Darboux sums	36
	2	Connection with Riemann sums	39
	3	Properties of the integral	40
	4	The fundamental theorems of calculus	42

Chapter I

Real number system

1 Dedekind cuts of an Archimedean ordered field

August 15, 2022

Remark. We'll fix an ordered Archimedean field F in this section, and denote by $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, the appropriate embeddings in F.

Definition 1.1 (Dedekind cuts). Let $A \subseteq F$. Then A is called a (Dedekind) cut iff the following hold:

- (i) $A \neq \emptyset, F$.
- (ii) A is "closed downwards", *i.e.*,

$$a \in A$$
 and $a' \leq a \implies a' \in A$.

(iii) A has no maximum.

Proposition 1.2 (Sum of cuts). Let A, B be cuts. Then the set

$$A + B := \{a + b : a \in A, b \in B\}$$

is a cut.

Proposition 1.3. Sum of cuts is commutative and associative.

Proposition 1.4 (F's embedding in the set of cuts). Let $x \in F$. Then the set

$$x^* := (-\infty, x)$$

is a cut.

Proposition 1.5. 0* is the additive identity for cuts.

Lemma 1.6. Let A be a cut such that $F \setminus A$ has a minimum, namely L. Then

$$A = (\infty, L)$$

Proposition 1.7 (Negation of cuts). Let A be a cut. Then the set

$$-A := \begin{cases} -(F \setminus A), & F \setminus A \text{ has no minimum} \\ -(F \setminus (A \cup \{L\})), & L \text{ is the minimum of } F \setminus A \end{cases}$$

is a cut.

It follows that

$$-A = \{x \in F : for some \ y \in F \setminus A, we have \ y < -x\}$$

Remark. We have abused the notation -X above for $X \subseteq F$ due to overloading. Show the "well-ordering" for \mathbb{Z} inside F.

Proposition 1.8. Negation of a cut is its additive inverse.

Remark. Proposition 1.8 is the first time that Archimedean-ness is used.

Theorem 1.9. Cuts form an abelian additive group.

Definition 1.10 (Order on cuts). For cuts A and B, we write

 $A \leq B$ iff $A \subseteq B$.

Theorem 1.11. \leq is a total order for cuts, and it preserves addition, i.e.,

$$A \leq B \implies A + C \leq B + C.$$

Proposition 1.12 (Product of cuts). Let A, B be cuts with $A, B \ge 0^*$. Then the set

$$AB := 0^* \cup \{ab : a \in A \setminus 0^*, b \in B \setminus 0^*\}.$$

forms a cut.

Using this, for any cuts A, B, we define

$$AB := \begin{cases} AB, & A, B \ge 0^* \\ -((-A)B), & A < 0^*, B \ge 0^* \\ -(A(-B)), & A \ge 0^*, B < 0^* \\ (-A)(-B), & A, B < 0^* \end{cases}$$

which is again a cut.

Remark. Again, we have abused notation slightly. (We must have denoted the first product by a different notation.)

Proposition 1.13. *Products of cuts is commutative.*

Lemma 1.14. Let A, B be cuts. Then we have

$$A(-B) = -(AB) = (-A)B.$$

Proposition 1.15. *Product of cuts is associative.*

Proposition 1.16. 1^{*} is the multiplicative identity for cuts..

Proposition 1.17 (Reciprocation of cuts). Let $A > 0^*$ be a cut. Then the set

$$A^{-1} := \begin{cases} 0^* \cup \{0\} \cup (F \setminus A)^{-1}, & F \setminus A \text{ has no minimum} \\ 0^* \cup \{0\} \cup (F \setminus (A \cup \{L\})), & L \text{ is the minimum of } F \setminus A \end{cases}$$

is a cut, and it follows that

$$A^{-1} = 0^* \cup \{0\} \cup \{x > 0 : for some \ y \in F \setminus A, we have \ y < x^{-1}\}$$

Using this, we define, for any $A \neq 0^*$,

$$A^{-1} := \begin{cases} A^{-1}, & A > 0^* \\ -((-A)^{-1}), & A < 0^* \end{cases}$$

which is again a cut.

Remark. We again have abused notations here, two times.

We can't extend the above definition to 0^* since that would yield $(0^*)^{-1} = F$, which isn't a cut.

Define exponentiation!

Lemma 1.18. Let $x \in F$ such that x > 1. Then x^n can be made arbitrarily large for $n \in \mathbb{N}$.

Proposition 1.19. Reciprocation of a nonzero cut is its multiplicative inverse.

Remark. Proposition 1.19 is the second time that the Archimedean-ness of F is used (via Lemma 1.18).

Theorem 1.20. Nonzero cuts form an abelian multiplicative group.

Theorem 1.21. Cut multiplication distributes over cut addition.

Remark. Just showing for the all-positive does all the work!

Theorem 1.22. Order preserves multiplication, i.e.,

 $A \leq B \text{ and } C \geq 0^* \implies AC \leq BC.$

Remark. We'll use Halmos' terminology for partially ordered sets.

Theorem 1.23 (Least upper bound property). Let S be a nonempty set of cuts that is bounded above. Then

 $\bigcup S$

is the least upper bound of S.

Remark. We'll use the usual notations for addition and multiplication operations on any set, and also for the inverses and identities therein.

Definition 1.24 ((Complete) (ordered) fields). Consider a set K with addition and multiplication. Then K is called a field iff each of the following hold:

- (i) K is an abelian group under addition.
- (ii) $K \setminus \{0\}$ is an abelian group under multiplication.
- (iii) Multiplication distributes over addition.

We call K an ordered field iff it is a field along with a total order \leq such that

- (i) $a \leq b \implies a + c \leq b + c$, and
- (ii) $a \le b$ and $c \ge 0 \implies ac \le bc$.

K is called a complete ordered field iff it is an ordered field with each nonempty bounded-above set in it having a least upper bound (*i.e.*, it is order-complete).

Show independence of axioms!

Theorem 1.25. The set of cuts is a complete ordered field.

Show the following!

Theorem 1.26. (Embedding of) F is a subfield of the field of cuts.

Theorem 1.27. Any complete ordered field is isomorphic to the above field of cuts.

Remark. Hence, from now on, we'll fix a complete ordered field, \mathbb{R} , calling its elements, reals. We'll denote by \mathbb{N} , \mathbb{Z} , \mathbb{Q} , the embeddings of appropriate sets, and call their elements as naturals, integers, rationals.

2 Properties of \mathbb{R}

August 29, 2022

Remark. Note that \mathbb{R} is a field, and hence the usual algebraic results like x0 = 0, (-1)x = -x, et cetera will hold.

Theorem 2.1. Nonempty bounded-below sets have greatest lower bounds.

Theorem 2.2. \mathbb{R} is Archimedean.

Definition 2.3 (Monotone functions). A function $f: X \to \mathbb{R}$, where $X \subseteq \mathbb{R}$, is called weakly (respectively strictly) monotonically increasing iff for any $x, y \in \mathbb{X}$, we have f(x) < f(y) (respectively $f(x) \leq f(y)$) whenever x < y.

We have similar definition for monotonically decreasing functions.

Remark. We'll mean weak monotonicity when not specified.

Theorem 2.4 (Floor and ceiling). Let $x \in \mathbb{R}$. Then there exist unique integers $\lfloor x \rfloor$ and $\lceil x \rceil$ such that

$$\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1 \text{ and } \lceil x \rceil - 1 < x \leq \lceil x \rceil.$$

Further, the following hold:

(i) The functions $x \mapsto |x|$ and $x \mapsto [x]$ are monotonically increasing.

(ii) $x \in \mathbb{Z} \implies |x| = x = \lceil x \rceil$.

(iii) $x \notin \mathbb{Z} \implies \lfloor x \rfloor < x < \lceil x \rceil$.

Definition 2.5 (Integer powers). Since non-zero reals form a multiplicative group, we'll define their integer powers in the usual way.

We'll also define 0^n for $n \ge 0$: it being 1 for n = 0, and 0 otherwise.

Remark. The properties of powers proved in Atul's Algebra will hold. Since the reals also form an additive group, we can also define nx's for integer n's (using the additive notation).

Lemma 2.6 ($\sqrt{2}$ is not rational). $x^2 \neq 2$ for any $x \in \mathbb{Q}$.

Remark. We'll use the usual sup A and inf notations.

Theorem 2.7 ($\sqrt{2}$ is real). Let $A := \{x \in \mathbb{R} : x^2 \leq 2\}$, which is nonempty and bounded above. Let $\alpha := \sup A$. Then $\alpha \geq 0$ and

$$\alpha^2 = 2.$$

Theorem 2.8. Between any two reals is a rational as well as an irrational.

Remark. We'll use \mathbb{R}^+ as well as \mathbb{R}^- .

Result 2.9. Let $A, B \subseteq \mathbb{R}$ be nonempty and bounded above. Then A + B and -A are nonempty and bounded above, and

$$\sup(A+B) = \sup A + \sup B, \text{ and}$$
$$\sup(-A) = -\inf A.$$

If $A, B \subseteq \mathbb{R}^+ \cup \{0\}$, then AB is nonempty and bounded above, and

$$\sup(AB) = (\sup A)(\sup B).$$

If A is bounded below by some positive real, then A^{-1} is nonempty and bounded above, and

$$\sup(A^{-1}) = (\inf A)^{-1}.$$

3 Base representation for \mathbb{R}

August 23, 2022

Proposition 3.1. Let r > 1 be a real and $0 \le d_{-1}, d_{-2}, \ldots < \lceil r \rceil$ be naturals. For $n \ge 0$, define

$$D_n := \sum_{i=1}^n d_{-i} r^{-i}.$$

Then

$$0 \leq D_n < \frac{\lceil r \rceil - 1}{r-1}$$

and we define

$$0.d_{-1}d_{-2}\ldots := \sup_{n\in\mathbb{N}} D_n.$$

It follows that

$$0.d_{-1}d_{-2}\ldots \in \left[\frac{\lceil r \rceil - 1}{r - 1}\right]$$

Remark. Strictly speaking, we should also incorporate r in the notation.

If the sequence d_{-1}, d_{-2}, \ldots terminates (*i.e.*, becomes zero after some point), then we can truncate the representation too.

Lemma 3.2. Let $x, \varepsilon \in \mathbb{R}$ with $0 < \varepsilon < 1$. Let (a_i) be a real sequence such that

$$a_i < x \leq a_i + \varepsilon^i$$
.

Then

 $\sup_i a_i = x.$

Theorem 3.3 (Representation of (0,1]). Let r > 1 be a real and $x \in (0,1]$. Then there exist unique naturals $0 \le d_{-1}, d_{-2}, \ldots < \lceil r \rceil$ such that for each $n \ge 0$, we have

 $D_n < x \le D_n + r^{-n}.$

Further, we have that

$$x = 0.d_{-1}d_{-2}\dots$$

and that the above is a non-terminating expansion.

Conversely, if $0 \leq e_{-1}, e_{-2}, \ldots < \lceil r \rceil$ are non-terminating, and if $r \in \mathbb{N}$, then

$$E_n < 0.e_{-1}e_{-2} \dots \le E_n + r^{-n}$$

We further have that

$$0.e_{-1}e_{-2}\ldots \in (0,1].$$

Remark. For non-natural r, the converse breaks: For base ϕ , we have that 11 = 100 and hence 0.1111... = 0.1010..., which are both non-terminating.

Definition 3.4. Let r > 1 be a real. Let $k \ge 0$ and $0 \le n_0, \ldots, n_k < \lceil r \rceil$ be naturals. Then we define

$$n_k \dots n_0 := \sum_{i=0}^k n_i r^i.$$

Remark. Again, we should've incorporated r into the notation.

Theorem 3.5 (Representing the integral parts for $[1, \infty)$). Let r > 1 and $x \ge 1$ be reals. Then there exist naturals $k \ge 0$ and $0 \le n_0, \ldots, n_k < \lceil r \rceil$ such that $n_k \ne 0$ and

$$0 \le x - n_k \dots n_0 < 1$$

and if $r \in \mathbb{N}$, then the above naturals are unique.

Remark. For non-integer r, the uniqueness might break: For ϕ , we have 11 = 100.

Definition 3.6 (Representing $(0, \infty)$). Let r > 1 be a real. Let $k \ge 0$ and $0 \le n_0, \ldots, n_k, d_{-1}, d_{-2}, \ldots < \lceil r \rceil$ be naturals. Then we define

$$n_k \dots n_0 d_{-1} d_{-2} \dots := n_k \dots n_0 + 0 d_{-1} d_{-2} \dots$$

Remark. There was a possible notational collision for $0.d_{-1}d_{-2}...$, but it does not happen since the above definition is a continuation of the previous one.

Theorem 3.7. \mathbb{R} is uncountable.

4 Absolute value—the norm on \mathbb{R}

August 30, 2022

Definition 4.1 (Absolute value). For $x \in \mathbb{R}$, we define

$$|x| := \begin{cases} x, & x \ge 0\\ -x, & x < 0 \end{cases}.$$

Proposition 4.2 (Properties of absolute values). Let $x, y \in \mathbb{R}$. Then the following hold:

$$(i) |x| \ge 0.$$

$$(ii) x = 0 \iff |x| = 0.$$

$$(iii) ||x| - |y|| \le |x + y| \le |x| + |y|.$$

$$(iv) |-x| = |x|.$$

$$(v) |xy| = |x||y|.$$

$$(vi) If x \ne 0, then |x^n| = |x|^n \text{ for } n \in \mathbb{Z}.$$

$$(vii) |x| < y \iff -y < x < y.$$

Chapter II

Sequences and series of reals

1 Sequences

August 30, 2022

Definition 1.1 (Sequences). Any function from an interval of \mathbb{Z} to \mathbb{R} is be called a real sequence. Depending on the finiteness of the domain interval, we'll call the sequence *finite* or *infinite*.

Notation. That "a is a sequence" will be conveyed via these phrases as well:

- (i) " (a_i) (or $(a_i)_i$) is a sequence."
- (ii) " $(a_i)_{i=m}^n$ is a sequence" where $m, n \in \mathbb{Z} \cup \{-\infty, +\infty\}$, when we want to mention the domain of a as well.

Definition 1.2 (Cauchy sequences). A sequence $(a_i)_{i=m}^{\infty}$ is said to be Cauchy iff for every $\varepsilon > 0$, there exists an $N \ge m$ such that for all $i, j \ge N$, we have

$$|a_i - a_j| < \varepsilon.$$

Lemma 1.3 (Cauchy-ness blind to initial segments). Let $(a_i)_{i=m}^{\infty}$ be a sequence and $n \ge m$. Then the following are equivalent:

(i) $(a_i)_{i=m}^{\infty}$ is Cauchy.

¹Unless stated otherwise, such m's will be integers.

²Unless stated otherwise, ε will always represent reals.

³Obviously, N is an integer. We'll not make such remarks again.

⁴Here, i, j are integers.

- (ii) $(a_{i+N})_{i=m}^{\infty}$ is Cauchy.⁵
- (iii) $(a_i)_{i=n}^{\infty}$ is Cauchy.⁶

Definition 1.4 (Bounded sequences). A (possibly finite) sequence (a_i) is said to be bounded above (respectively bounded below) iff there exists an⁷ M such that each $a_i \leq M$ (respectively $a_i \geq M$).

Lemma 1.5. Bounded-ness of sequences obeys an analogue of Lemma 1.3.

Lemma 1.6 (Characterizing bounded-ness). A sequence (a_i) is bounded $\iff (|a_i|)$ is bounded.⁸

Definition 1.7 (Convergent sequences). A sequence $(a_i)_{i=m}^{\infty}$ is said to converge to an $L \in \mathbb{R}$, denoted⁹

$$a_i \to L \text{ or } a_i \stackrel{i}{\to} L,$$

iff for each $\varepsilon > 0$, there exists an $N \ge m$ such that for all $i \ge N$, we have

$$|a_i - L| < \varepsilon.$$

Lemma 1.8. Analogue of Lemma 1.3 holds for convergence of sequences to reals as well.

Proposition 1.9. For real sequences, we have

 $convergent \implies Cauchy \implies bounded.$

Remark. Theorem 2.9 is the converse of the first implication.

Example 1.10. The sequence $((-1)^n)_n$ is bounded but neither convergent nor Cauchy.

Proposition 1.11. A sequence can converge to at most one point.

Notation. Hence, if existent, we'll denote this limit by $\lim_{i \to \infty} a_i$ or by $\lim_{i \to \infty} a_i$.

⁸Abuse of notation: The sequence " $(|a_i|)$ " is the sequence whose *i*-th element is $|a_i|$.

⁵We are abusing notation here: We are actually talking about a sequence $(b_i)_{i=m}^{\infty}$ given by $b_i := a_{i+N}$.

⁶Again an abuse: This represents the restriction of the sequence.

⁷It doesn't matter if this M is an integer or a real.

⁹Note that the information about m is contained within a.

Theorem 1.12 (Limit manipulations). Let $a_i \to L$ and $b_i \to M$ in \mathbb{R} . Then the following hold:¹⁰

- (i) $a_i + b_i \to L + M$.
- (ii) $\alpha a_i \to \alpha L$ for any $\alpha \in \mathbb{R}$.
- (iii) $|a_i| \rightarrow |L|$.
- (iv) $a_i b_i \to LM$.
- (v) Each $a_i \neq 0$ and $L \neq 0 \implies a_i^{-1} \rightarrow L^{-1}$.
- (vi) $a_i \to 0 \iff |a_i| \to |L|$.
- (vii) Each $a_i \leq b_i \implies L \leq M$.

Theorem 1.13 (Sandwich). Let $a_i, c_i \to L$ and (b_i) be sandwiched between them, *i.e.*, each $a_i \leq b_i \leq c_i$. Then $c_i \to L$ as well.

Theorem 1.14 (Geometric sequences). Let $r \in \mathbb{R}$. Then we have the following cases:

- (i) $|r| < 1 \implies r^n \to 0.$
- (ii) $|r| > 1 \implies (r^n)$ is unbounded.

Theorem 1.15 (Ratio test). Let (a_i) be a sequence with each $a_i \neq 0$ such that

$$\left|\frac{a_{i+1}}{a_i}\right| \to L$$

in \mathbb{R} . Then we have the following cases:

- (i) $L < 1 \implies a_i \to 0.$
- (ii) $L > 1 \implies (a_i)$ is unbounded.

Result 1.16 (($(n!)^{1/n}$) diverges). For any real C > 0, we have that

$$\frac{C^n}{n!} \to 0,$$

and hence, we have that the sequence $((n!)^{1/n})$ is unbounded.

Theorem 1.17 (Monotone convergence). A monotonically increasing (respectively decreasing) sequence (a_i) that is bounded above (respectively bounded below) is convergent, with

 $a_i \to \sup_i a_i \text{ (respectively } a_i \to \inf_i a_i).$

¹⁰Notation abuse: " $a_i + b_i$ " is a sequence whose *i*-th element is $a_i + b_i$, etc.

Result 1.18 (Monotonic functions create monotone sequences). Let $S \subseteq \mathbb{R}$ and $f: S \rightarrow \mathbb{R}$ be monotonically increasing with $f(S) \subseteq S$. Let $c \in S$ and define

$$a_0 := c$$
, and
 $a_{n+1} := f(a_n)$ for $n \ge 0$

Then (a_i) is monotonically increasing (respectively decreasing) if $a_0 \leq a_1$ (respectively $a_0 \geq a_1$).

If f were monotonically decreasing, then $f \circ f$ would be monotonically increasing and we'd have gotten interlaced monotonic sequences.

2 Subsequences

November 10, 2022

Definition 2.1 (Subsequences). Let $(a_i)_{i=m}^{\infty}$ be a sequence. Let $n \in \mathbb{Z}$ and $f: \{n, n+1, \ldots\} \rightarrow \{m, m+1, \ldots\}$ be a strictly increasing function. Then the sequence $(a_{f(i)})_{i=n}^{\infty}$ is called a subsequence of $(a_i)_{i=m}^{\infty}$.

Lemma 2.2. Subsequences of a convergent sequence converge to the same limit.

Result 2.3. Monotone sequences having a convergent subsequence are convergent.

Result 2.4. Let $(a_{f_1(k)})_k, \ldots, (a_{f_n(k)})_k$ be subsequences of a sequence (a_i) for $n \ge 1$ such that the ranges of f_i 's cover the domain of a and that $a_{f_1(k)}, \ldots, a_{f_n(k)} \to L$. Then $a_i \to L$.

Definition 2.5 (lim sup and lim inf). Let $(a_i)_{i=m}^{\infty}$ be a sequence. If it is bounded above, then we define the sequence $(a_k^+)_{k=m}^{\infty}$ via

$$a_k^+ := \sup_{i \ge k} a_i.$$

If $(a_i)_{i=m}^{\infty}$ is bounded below, then we also define the sequence $(a_k^-)_{k=m}^{\infty}$ via

$$a_k^- := \inf_{i \ge k} a_i.$$

If $(a_k^+)_{i=m}^\infty$ is bounded below, we define

$$\limsup_i a_i := \inf_{k \ge m} a_k^+,$$

and if $(a_k^-)_{i=m}^\infty$ is bounded above, we also define

$$\liminf_i a_i := \sup_{k \ge m} a_k^-.$$

Lemma 2.6. An analogue of Lemma 1.3 also holds for limit and limsup.

Theorem 2.7 (Bolzano-Weierstrasß). Any bounded sequence has a subsequences converging to its lim sup and lim inf.

Proposition 2.8. Let (a_i) be a bounded sequence and $L \in \mathbb{R}$. Then

 $\limsup_i a_i = L = \limsup_i a_i \iff a_i \to L.$

Theorem 2.9 (\mathbb{R} is Cauchy-complete). Cauchy sequences in \mathbb{R} are convergent.

Proposition 2.10. Let (a_i) be a sequence and $L \in \mathbb{R}$. Then $a_i \to L \iff$ every subsequence of (a_i) has a subsequence converging to L.

Proposition 2.11 (Nested interval lemma). Let $I_1 \supseteq I_2 \supseteq \cdots$ be a nested sequence of nonempty closed intervals in \mathbb{R} . Then

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$

Result 2.12 (Convergence of contractive sequences). Let $(a_i)_{i=0}^{\infty}$ be a sequence and $0 < \alpha < 1$ such that

$$|a_{i+1} - a_i| \le \alpha |a_i - a_{i-1}|.$$

Then (a_i) is Cauchy with

$$\left|a_{i} - \lim_{i} a_{i}\right| \leq \frac{\alpha^{i}}{1 - \alpha} \left|a_{1} - a_{0}\right|$$

Remark. Cauchy sequences needn't be contractive as $(1/n^2)$ shows. (See Theorem 3.6.)

3 Series

August 31, 2022

Definition 3.1 (Convergence of series). Let $(a_i)_{i=m}^{\infty}$ be sequence. Then we say that the associated series converges, written " $\sum_{i=m}^{\infty} a_i$ converges", iff the sequence $(s_k)_{k=m}^{\infty}$ of the partial sums, defined by

$$s_k := \sum_{i=m}^k a_i, \quad \text{for } k \ge m$$

converges, and in this case, we define

$$\sum_{i=m}^{\infty} a_i := \lim_k s_k.$$

If $(s_k)_{k=m}^{\infty}$ diverges, written " $\sum_{i=m}^{\infty} a_i$ diverges", we say that the associated series diverges.

Remark. The initial integer is important here: Although the initial segments don't affect the limits of convergent sequences, they do affect the sum of the convergent series!

Remark. Since writing $\sum_{i=m}^{k} a_i \xrightarrow{k} S$ every time is cumbersome, we will just write that $\sum_{i=m}^{\infty} a_i = S$, omitting to mention that the partial sums are convergent.

Lemma 3.2. Let $(a_i)_{i=m}^{\infty}$ be sequence and $n \ge m$. Then we have that $\sum_{i=m}^{\infty} a_i$ converges $\iff \sum_{i=n}^{\infty} a_i$ converges. And if they do, then

$$\sum_{i=m}^{\infty} a_i = \sum_{i=m}^{n} a_i + \sum_{i=n+1}^{\infty} a_i.$$

Proposition 3.3. Only sequences converging to zero can have convergent series.

Theorem 3.4 (Manipulating series). Let $\sum_{i=m}^{\infty} a_i$ and $\sum_{i=m}^{\infty} b_i$ be convergent series. Then the following hold:

- (i) $\sum_{i=m}^{\infty} (a_i + b_i) = \sum_{i=m}^{\infty} a_i + \sum_{i=m}^{\infty} b_i.$ (ii) $\sum_{i=m}^{\infty} (\alpha a_i) = \alpha \sum_{i=m}^{\infty} a_i \text{ for } \alpha \in \mathbb{R}.$

(*iii*) Each $a_i \ge 0 \implies \sum_{i=m}^{\infty} a_i \ge 0$. (*iv*) Each $a_i \le b_i \implies \sum_{i=m}^{\infty} a_i \le \sum_{i=m}^{\infty} b_i$.

Result 3.5 (Cesàro sums). Let $(a_i)_{i=1}^{\infty}$ be a convergent sequence. Then

$$\frac{1}{n}\sum_{i=1}^{n}a_i \to \lim_i a_i.$$

Remark. The series $((-1)^n)_n$ gives a counterexample to the converse.

Theorem 3.6. Let p > 0 be real. Then the series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

is convergent for p > 1 and unbounded for $p \leq 1$.

Result 3.7. A sequence converging to 0 has a subsequence whose series is convergent.

Result 3.8. Let $(a_i)_{i=1}^{\infty}$ be a sequence. Then the following hold:

- (i) $\sum_{i=1}^{\infty} |a_{i+1} a_i|$ is convergent $\implies (a_i)$ is Cauchy.
- (ii) (a_i) is Cauchy \implies there exists a subsequence $(a_{n_k})_{k=1}^{\infty}$ such that the series $\sum_{k=1}^{\infty} |a_{n_{k+1}} a_{n_k}|$ is convergent.

Remark. Note that (1/n) shows that $|a_{i+1} - a_i| \to 0$ is not sufficient for (a_i) to be Cauchy.

Proposition 3.9. Let $(a_i)_{i=1}^{\infty}$ and $(b_i)_{i=1}^{\infty}$ be sequences of positive reals such that $a_i/b_i \to L$ for an L > 0. Then $\sum_{i=1}^{\infty}$ converges $\iff \sum_{i=1}^{\infty}$ converges.

Chapter III Continuity

Remark. In this chapter, S, T, U will be some fixed subsets of \mathbb{R} .

1 Topological aspects

November 10, 2022

Definition 1.1. For $\varepsilon > 0$ and $x \in \mathbb{R}$, we define

$$B_{\varepsilon}(x) := (x - \varepsilon, x + \varepsilon).$$

Definition 1.2 (Cluster points). A point $c \in \mathbb{R}$ is called a cluster point of S iff for every $\varepsilon > 0$, we have that

 $B_{\varepsilon}(c) \cap S \setminus \{c\} \neq \emptyset.$

We also set

 $\ell(S) := \{ x \in \mathbb{R} : x \text{ is a cluster point of } S \}$

Theorem 1.3 (Connection with limits of sequences). Let $c \in \mathbb{R}$. Then the following are equivalent:¹

- (i) $c \in \ell(S)$.
- (ii) There exists a sequence $(x_i) \in S \setminus \{c\}$ such that $x_i \to c$.

Proposition 1.4 (Connection with subsets). Let $S \subseteq T$ and $c \in \mathbb{R}$. Then the following hold:

 1 "(i) \Rightarrow (ii)" used CC.

- (i) $c \in \ell(S) \implies c \in \ell(T).$
- (ii) The converse of the above holds if $S \supseteq B_r(c) \cap T$ for some r > 0.

Proposition 1.5. For $c \in \mathbb{R}$, we have

$$\ell(S) = \ell((-\infty, c) \cap S) \cup \ell(S \cap (c, +\infty)).$$

Corollary 1.6 (Removing finitely many points doesn't affect cluster points). Let $c \in \mathbb{R}$. Then

$$\ell(S) = \ell(S \setminus \{c\}).$$

Definition 1.7 (Closed subsets of \mathbb{R}). S is said to be closed iff every Cauchy sequence in S converges to some point in itself.

Corollary 1.8. For $a, b \in \mathbb{R}$, closed intervals are closed.

Definition 1.9 (Closure sets). We define

$$\overline{S} := \{ x \in \mathbb{R} : B_{\varepsilon}(x) \cap S \neq \emptyset \text{ for all } \varepsilon > 0 \}.$$

Proposition 1.10.

- (i) S is closed $\iff \overline{S} = S$.
- (*ii*) $\overline{\overline{S}} = \overline{S}$.
- (iii) $\overline{S} \setminus \ell(S) \subseteq S$.
- (iv) $\overline{S} = S \cup \ell(S)$.

Proposition 1.11 (Intervals are connected). Let $I \subseteq \mathbb{R}$. Then the following are equivalent:

- (i) I is an interval.
- (ii) For any $a, b, c \in \mathbb{R}$, we have that a < b < c and $a, c \in I \implies b \in I$.

2 Limits of functions

November 10, 2022

Definition 2.1 (Limiting values of functions). Let $f: S \to T$ and $c, L \in \mathbb{R}$. Then we write

 $f(x) \to L \text{ as } x \to c$

iff for every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$f(B_{\delta}(c) \cap S \setminus \{c\}) \subseteq B_{\varepsilon}(L).$$

Proposition 2.2 (Uniqueness of limits). Let $f: S \to T$ and $c \in \mathbb{R}$. Then the following hold:

- (i) c is a cluster point of $\mathbb{R} \implies$ there exists at most one $L \in \mathbb{R}$ such that $f(x) \rightarrow L$ as $x \rightarrow c$.
- (ii) c is not a cluster point of $S \implies f(x) \to L$ as $x \to c$ for every $L \in \mathbb{R}$.

Remark. In case of c being a cluster point, this allows to denote the unique L (if existent) by $\lim_{x\to c} f(x)$.

Theorem 2.3 (Limit manipulations). Let $f, g: S \to T$ and $c, L, M \in \mathbb{R}$ such that $f(x) \to L$ and $g(x) \to M$ as $x \to c$. Then, as $x \to c$, the following hold:²

- (i) $f(x) + g(x) \rightarrow L + M$.
- (ii) $\alpha f(c) \to \alpha L$ for any $\alpha \in \mathbb{R}$.
- (iii) $|f(x)| \to |L|$.
- (iv) $f(x)g(x) \to LM$.
- (v) $f(x)^{-1} \to L^{-1}$ if $f(x) \neq 0$ for any $x \in S$, and $L \neq 0$.
- (vi) $f(x) \to 0 \iff |f(x)| \to 0.$
- (vii) Each $f(x) \leq g(x)$ and c is a cluster point of $S \implies L \leq M$.

Theorem 2.4 (Sandwich). Let $f, g, h: S \to T$ and $c, L \in \mathbb{R}$ such that $f(x), h(x) \to L$ as $x \to c$, and $f(x) \leq g(x) \leq h(x)$ for each $x \in S$. Then

$$g(x) \to L \text{ as } x \to c.$$

Remark. By " $(x_i) \in A$ ", we'll mean that (x_i) is a sequence that takes values in the set A.

Theorem 2.5 (Connection with limits of sequences). Let $f: S \to T$ and $c, L \in \mathbb{R}$. Then the following are equivalent:³

(i) $f(x) \to L \text{ as } x \to c.$

(ii) For each $(x_i) \in S \setminus \{c\}$, we have that $x_i \to c \implies f(x_i) \to L$.

Proposition 2.6 (Connection with restrictions). Let $f: S \to T$, and $X \subseteq S$ and $f(X) \subseteq Y$. Define $g: X \to Y$ as $x \mapsto f(x)$. Then, for $c, L \in \mathbb{R}$, the following hold:

- (i) $f(x) \to L \text{ as } x \to c \implies g(x) \to L \text{ as } x \to c.$
- (ii) The converse of above holds if $X \supseteq B_r(c) \cap S$ for some r > 0.

²Note that we are at least being *consistent* in our abuse of notation. 3 "(ii) \Rightarrow (i)" used CC.

3 Continuous functions

Definition 3.1 (Continuity). Let $f: S \to T$ and $c \in S$. Then f is said to be *continuous at* c iff $f(x) \to f(c)$ as $x \to c$.

f is said to be *continuous* iff f is continuous at each $c \in S$.

Theorem 3.2 (Continuity preserving operations). Let $f, g: S \to T$ be continuous at $c \in S$. Then the following functions $S \to \mathbb{R}$ are also continuous at c:

- (*i*) f(x) + g(x).
- (*ii*) $\alpha f(x)$.
- (iii) |f(x)|.
- (iv) f(x)g(x).
- (v) $f(x)^{-1}$ if $f(x) \neq 0$ for all $x \in S$.

Proposition 3.3. Constant and identity functions, and hence polynomials, are continuous on $\mathbb{R} \to \mathbb{R}$.

Theorem 3.4 (Connection with limits of sequences). Let $f: S \to T$ and $c \in S$. Then the following are equivalent:

- (i) f is continuous at c.
- (ii) For every $(x_i) \in S$, we have that $x_i \to c \implies f(x_i) \to f(c)$.

Theorem 3.5 (Compositions). Let $f: S \to T$ and $g: T \to U$. Let $c \in S$ and $L \in T$ with $f(x) \to L$ as $x \to c$ and g be continuous at L. Then

$$g(f(x)) \to g(L) \text{ as } x \to c.$$

Remark. We can't weaken the continuity hypothesis of g to $g(x) \to M$ as $x \to L$ to conclude that $g(f(x)) \to M$ as $x \to c$.

Corollary 3.6 (Composition of continuous functions). Let $f: S \to T$ and $g: T \to U$ with f being continuous at $c \in S$ and g being continuous at f(c). Then $g \circ f$ is continuous at c.

Proposition 3.7 (Connection with restrictions). Let $f: S \to T$, and $X \subseteq S$ and $f(X) \subseteq Y$. Define $g: X \to Y$ as $x \mapsto f(x)$. Then, for $c \in X$, the following hold:

- (i) f is continuous at $c \implies g$ is continuous at c.
- (ii) The converse of the above holds if $X \supseteq B_r(c) \cap S$ for some r > 0.

Theorem 3.8 (Extending a continuous function at limiting values⁴). Let $f: S \to T$ be continuous and $T \subseteq \ell(S)$ such that $\lim_{x\to c} f(x)$ exists for each $c \in T$. Then there exists a unique continuous function $\hat{f}: S \cup T \to \mathbb{R}$ which is an extension of f.

Further, this \hat{f} is given by

$$\hat{f}(c) = \begin{cases} f(c), & c \in S\\ \lim_{x \to c} f(x), & c \in T \end{cases}$$

Result 3.9. A continuous automorphism on $(\mathbb{R}, +)$ is of the form $x \mapsto \alpha x$ for some $\alpha \in \mathbb{R}$.

Theorem 3.10 (Pasting lemma⁵). Let S, T be closed, and $f: S \to \mathbb{R}$ and $g: T \to \mathbb{R}$ be continuous with f, g agreeing on $S \cap T$. Then the pasted function $h: S \cup T \to \mathbb{R}$ given by

$$h(x) = \begin{cases} f(x), & x \in S \\ g(x), & x \in T \end{cases}$$

 $is \ continuous.$

Result 3.11. Let $f, g: \mathbb{R} \to \mathbb{R}$ be continuous at $c \in \mathbb{R}$. Define $h: \mathbb{R} \to \mathbb{R}$ as

$$x \mapsto \begin{cases} f(x), & x \in \mathbb{Q} \\ g(x), & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Then for any $L \in \mathbb{R}$, the following are equivalent:

- (i) h is continuous at c with h(c) = L.
- (ii) f(c) = L = g(c).

4 Uniform and Lipschitz continuities

November 10, 2022

Definition 4.1 (Uniform continuity). A function $f: S \to T$ is called uniformly continuous iff for every $\varepsilon > 0$, there exists a δ such that for all $x, y \in S$, we have that

$$|x-y| < \delta \implies |f(x) - f(y)| \le \varepsilon.$$

⁴This used CC. 5CC and 1

 5 CC used.

Definition 4.2 (Lipschitz continuity). A function $f: S \to T$ is called Lipschitz continuous iff there exists an $\alpha > 0$ such that for all $x, y \in S$, we have that

$$|f(x) - f(y)| \le \alpha |x - y|$$

Proposition 4.3. For a function $f: S \to T$, we have

 $Lipschitz \ continuous \implies uniformly \ continuous \implies continuous.$

Proposition 4.4. Uniformly (respectively Lipschitz) continuous functions are closed under addition and scalar multiplication.

Theorem 4.5. Uniform continuity preserves Cauchy-ness of sequences.

Remark. Cauchy-ness is not preserved for continuous functions in general: Consider $(1/n)_n$ under the function $x \mapsto 1/x$.

Theorem 4.6. A continuous function with a closed and bounded domain is uniformly continuous.⁶

Remark. For a function $f: S \to T$ and $c \in \ell(S)$, we'll write " $\lim_{x\to c} f(x)$ exists" to mean that there exists an $L \in \mathbb{R}$ such that $f(x) \to L$ as $x \to c$.

Theorem 4.7 (Connection with limiting values). Let $f: S \to T$ be continuous. Then the following hold:⁷

- (i) f is uniformly continuous $\implies \lim_{x\to c} f(x)$ exists for each $c \in \ell(S)$.
- (ii) The converse of the above holds if S is bounded.

5 Three important theorems

November 10, 2022

⁶CC is used. ⁷CC used in both. **Theorem 5.1** (Contraction mapping). Let $S \neq \emptyset$ be closed, $f: S \rightarrow S$ and $0 < \alpha < 1$ be such that

 $|f(x) - f(y)| \le \alpha |x - y|.$

Then there exists a unique fixed point $c \in S$, i.e., f(c) = c. Further, for $\alpha \in S$, if we define a sequence $(x_i) \in S$ as

$$x_0 := \alpha, and$$

 $x_{i+1} := f(x_i) \text{ for } i \ge 0,$

then $x_i \to c$ contractively.⁸

Remark. " $f: S \to T$ achieves its maximum (respectively minimum) on S" will mean that f(S) is bounded above (respectively bounded below) and that there exists an $x \in S$ such that $f(x) \leq f(x)$ (respectively $f(x) \geq f(x)$) for each $x \in S$.

Theorem 5.2 (Extreme value⁹). Let $S \neq \emptyset$ be closed and bounded and $f: S \to T$ be continuous. Then f achieves its maximum and minimum on S.

Corollary 5.3. There doesn't exist any continuous bijection from a closed bounded interval to an open or a half-open-half-closed interval.

Lemma 5.4. Let a < b be reals and $f : [a, b] \to S$ be continuous with f(a) < 0 < f(b). Then define sequences (a_i) , (b_i) as follows:

$$(a_0, b_0) := (a, b), and$$

$$(a_{i+1}, b_{i+1}) := \begin{cases} \left(\frac{a_i + b_i}{2}, b_i\right), & f\left(\frac{a_i + b_i}{2}\right) < 0\\ \left(a_i, \frac{a_i + b_i}{2}\right), & f\left(\frac{a_i + b_i}{2}\right) \ge 0 \end{cases} \text{ for } i \ge 0.$$

Then (a_i) , (b_i) converge contractively to some same fixed point of f.

Remark. By 'b lies between a and c", we'll mean that either $a \le b \le c$ or $c \le b \le a$. We'll also use "strict" in the usual sense here.

Theorem 5.5 (Intermediate value). Let a < b be reals and $f: [a, b] \to S$ be continuous. Let y_0 lie strictly between f(a) and f(b). Then there exists an $x_0 \in (a, b)$ such that

$$f(x_0) = y_0$$

⁸Meaning that the sequence (x_i) is contractive. (See Result 2.12.) ⁹CC used.

Corollary 5.6. Continuous functions map intervals to intervals.¹⁰

Lemma 5.7 (Characterizing monotonicity). Let $|S| \ge 3$ and $f: S \to T$ not be strictly monotonic. Then there exist $a < b < c \in S$ such that f(b) does not lie strictly between f(a) and f(c).

Corollary 5.8. A continuous function on an interval (having more more than one^{11} element) is injective \iff it is strictly monotonic.

6 Polynomials

November 11, 2022

Remark. By a "polynomial", unless stated otherwise, we'll mean the function determined by the formal polynomial.

Our polynomials will be over \mathbb{R} unless stated otherwise.

Theorem 6.1 (Asymptotic behaviour depends on the degree). Let $a_0, \ldots, a_n \in \mathbb{R}$ for $n \ge 0$. Then there exists an $N \ge 1$ such that for each $x \in \mathbb{R}$, we have that

 $|x| \ge N \implies |x^{n+1}| > |a_0| + \dots + |a_n x^n|.$

Theorem 6.2. A polynomial of odd degree has at least one root in \mathbb{R} .

Theorem 6.3. A bounded polynomial is constant.

Corollary 6.4 (Polynomial determines its coefficients). Let $a_0, \ldots, a_n \in \mathbb{R}$ for $n \ge 0$ and define $p: \mathbb{R} \to \mathbb{R}$ by $x \mapsto a_0 + \cdots + a_n x^n$. Suppose p(x) = 0 for each $x \in \mathbb{R}$. Then each $a_i = 0$.

Result 6.5. Polynomials are Lipschitz continuous on [0, 1].

 $^{^{10}\}mathrm{Theorem}\ 8.2$ gives a converse for monotones.

¹¹And hence infinitely many.

7 One-sided limits

November 11, 2022

Notation. If $f: S \to T$, then for $X \subseteq S$, we'll write $f|_X$ to be the restriction of f on $X \to T$.

Definition 7.1 (One-sided limits). Let $f: S \to T$ and $c, L \in \mathbb{R}$. Then we write

- (i) " $f(x) \to L$ as $x \to c^{-}$ " iff $f|_{(-\infty,c)\cap S}(x) \to L$ as $x \to c$.
- (ii) " $f(x) \to L$ as $x \to c^+$ " iff $f|_{S \cap (c,+\infty)}(x) \to L$ as $x \to c$.

Further, if $c \in \ell((-\infty, c) \cap S)$, then we'll denote $\lim_{x\to c} f|_{(-\infty,c)\cap S}(x)$, if existent, by

$$\lim_{x \to c^-} f(x)$$

Similarly, we'll use

$$\lim_{x \to c^+} f(x)$$

for $\lim_{x\to c} f|_{S\cap(c,+\infty)}(x)$, if existent, for $c \in \ell(S \cap (c,+\infty))$.

Corollary 7.2. The analogue of Theorem 2.3 holds for one-sided limits (with appropriate modification in the last point there).

Lemma 7.3 (Connection with usual limits). Let $f: S \to T$ and $c, L \in \mathbb{R}$. Then the following are equivalent:

(i) $f(x) \to L$ as $x \to c$. (ii) $f(x) \to L$ as $x \to c^-$, and as $x \to c^+$.

Corollary 7.4 (Connection with continuity). Let $f: S \to T$ and $c \in S$. Then the following are equivalent:

- (i) f is continuous at c.
- (ii) $f(x) \to f(c)$ as $x \to c^-$, and as $x \to c^+$.

8 Monotone functions

November 11, 2022

Remark. For an $A \subseteq \mathbb{R}$, when we say "sup A exists", we mean that $A \neq \emptyset$ and that A is bounded above.

Theorem 8.1 (Bounded monotones have one-sided limits). Let $f: S \to T$ be monotonically increasing and $c, d \in \mathbb{R}$ such that

$$L^{-} := \sup\{f(x) : x \in (-\infty, c) \cap S\}, \text{ and} \\ L^{+} := \inf\{f(x) : x \in S \cap (d, +\infty)\}$$

exist. Then the following hold:

(i) $f(x) \to L^-$ as $x \to c^-$, and $f(x) \to L^+$ as $x \to d^+$. (ii) $c \le d \implies L^- \le L^+$. (iii) $c > d \implies L^- \ge L^+$.

Remark. Similar proposition holds for monotonically decreasing f.

Theorem 8.2. Let I be an interval and $f: I \to S$ be monotone with f(I) being an interval. Then f is continuous.

Corollary 8.3 (A source for homeomorphisms). Let I, J be intervals and $f: I \to J$ be a strictly monotonic surjection. Then f and f^{-1} are continuous.

Theorem 8.4. A monotone function can have at most countably many discontinuities.¹²

 $^{12}\mathsf{AC}$ used here.

Chapter IV Differentiability

Remark. In this chapter too, we'll take S, T, U to be some fixed subsets of \mathbb{R} . We'll also take I, J to be some fixed intervals of \mathbb{R} .

1 Taking derivatives

November 11, 2022

Definition 1.1 (Derivative). Let $f: S \to T$ and $c \in S$. Define the quotient function $\tilde{f}: S \setminus \{c\} \to \mathbb{R}$ as

$$\tilde{f}(x) := \frac{f(x) - f(c)}{x - c}$$

If $c \in \ell(S \setminus \{c\})$ (or equivalently, $c \in \ell(S)$), then, if existent, we set

$$f'(c) := \lim_{x \to c} \tilde{f}(x)$$

and say that f is differentiable at c with f'(c) being its derivative.

For a subset $X \subseteq S \cap \ell(S)$, we say that f is differentiable on X iff f is differentiable at each $c \in X$.

We also say that f is differentiable iff f is differentiable on $S \cap \ell(S)$.

Lemma 1.2 (Differentiability and continuity of the quotient function). Let $f: S \to T$. Let $c \in S \cap \ell(S)$ and $L \in \mathbb{R}$. Define $f: S \to \mathbb{R}$ as

$$f(x) := \begin{cases} \frac{f(x) - f(c)}{x - c}, & x \neq c \\ L, & x = c \end{cases}$$

¹See Corollary 1.6.

Then f is continuous at $c \iff f$ is differentiable at c with f'(c) = L.

Theorem 1.3 (Differentiability \implies continuity). Let $f: S \to T$ be differentiable at $c \in S \cap \ell(S)$. Then f is continuous at c.

Remark. For a function $f: S \to T$ and $c \in S \cap \ell(S)$, by "f'(c) = L", we'll mean that f'(c) exists and equals L.

Theorem 1.4 (Manipulating derivatives). Let $f, g: S \to T$ be differentiable at $c \in S \cap \ell(S)$. Then the following hold:

- (i) (f(x) + g(x))'(c) = f'(c) + g'(c).
- (*ii*) $(\alpha f(x))'(c) = \alpha f'(c).$
- (*iii*) (f(x)g(x))'(c) = f'(c)g(c) + f(c)g'(c).

(iv)
$$(f(x)/g(x))'(c) = (f'(c)g(c) - f(c)g'(c))/g(c)^2$$
 if $g(x) \neq 0$ for all $x \in S$.

Theorem 1.5 (Chain rule). Let $f: S \to T$ be differentiable at $c \in S \cap \ell(S)$ and $g: T \to U$ be differentiable at $f(c) \in T \cap \ell(T)$. Then

$$(g(f(x)))'(c) = g'(f(c)) f'(c).$$

Theorem 1.6 (Derivative of restrictions). Let $f: S \to T$, and $X \subseteq S$ and $f(X) \subseteq Y$. Define $g: X \to Y$ as $x \mapsto f(c)$. Let $c \in X \cap \ell(X)$. Then the following hold:

- (i) f is differentiable at $c \implies g$ is differentiable at c with g'(c) = f'(c).
- (ii) The converse of the above holds if $X \supseteq B_r(c) \cap S$ for some r > 0.

Proposition 1.7. Constant and identity functions are differentiable with their deruvatives being 0 and 1 respectively.

Proposition 1.8 (Derivative of monomials). Let $n \ge 1$ and $f : \mathbb{R} \to \mathbb{R}$ be given by $x \mapsto x^n$. Then f is differentiable with the derivative given by

$$f'(x) = nx^{n-2}$$

for $x \in \mathbb{R}$.

Result 1.9. Let $f, g: \mathbb{R} \to \mathbb{R}$ be differentiable at $c \in \mathbb{R}$. Define $h: \mathbb{R} \to \mathbb{R}$ as

$$x \mapsto \begin{cases} f(x), & x \in \mathbb{Q} \\ g(x), & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Then for any $L \in \mathbb{R}$, the following are equivalent:

CHAPTER IV. DIFFERENTIABILITY

- (i) h is differentiable at c with h'(c) = L.
- (ii) f'(c) = L = g'(c).

Proposition 1.10 (Lipschitz continuity and the derivative). Let $f: I \to S$ be differentiable. Then f is Lipschitz continuous iff f' is bounded.²

Proposition 1.11 (A version of l'Hôpital). Let $f, g: S \to T$ be differentiable at $c \in S \cap \ell(S)$ with f(c) = 0 = g(c) but with $g'(c) \neq 0$ and $g(x) \neq 0$ for all $x \in S \setminus \{c\}$. Then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}.$$

2 Mean value theorems

November 16, 2022

Definition 2.1 (Local extrema). A point $c \in \mathbb{R}$ is called a point of local minimum (respectively local maximum) iff there exists an $\varepsilon > 0$ such that for each $x \in B_{\varepsilon}(c) \cap S$, we have

 $f(x) \ge f(c)$ (respectively $f(x) \le f(c)$).

We call c a point of *local extremum* iff it is either a point of local minimum or of local maximum.

Theorem 2.2 (Slope test for local extrema). Let $f: S \to T$ and $c \in \ell((-\infty, c) \cap S) \cap S \cap \ell(S \cap (c, +\infty))$ be point of local extremum. Let f be differentiable at c. Then

$$f'(c) = 0.$$

Theorem 2.3 (Rolle's theorem). Let a < b in \mathbb{R} , and $f: [a, b] \to S$ be continuous, and differentiable on (a, b) with f(a) = f(b). Then there exists $a \in (a, b)$ such that

$$f'(c) = 0.$$

Theorem 2.4 (Cauchy's mean value). Let a < b and $f, g: [a, b] \to S$ be continuous, and differentiable on (a, b). Then there exists $a \in (a, b)$ such that

$$(f(b) - f(a))g'(c) = f'(c)(g(b) - g(a)).$$

²Of course, by f', we mean the function $x \mapsto f'(x)$. See Definition 3.1.

Corollary 2.5 (Mean value). Let a < b in \mathbb{R} , and $f: [a, b] \to S$ be continuous, and differentiable on (a, b). Then there exists a $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Corollary 2.6. Let I be an interval and $f: I \to S$ be differentiable such that f'(x) = 0 for each $x \in I$. Then f is constant over I.

Corollary 2.7 (Connection with monotonicity). Let I be an interval and $f: I \to S$ be differentiable. Then the following are equivalent:

- (i) $f'(x) \ge 0$ (respectively $f'(x) \le 0$) for each $x \in I$.
- (ii) f is increasing (respectively decreasing).

Further, strictness is preserved in "(i) \Rightarrow (ii)" direction.

Corollary 2.8. Let I be an interval and $f: I \to S$ be continuous, and differentiable on $I \setminus \{c\}$ where $c \in I$. Let $f'(x) \to L$ as³ $x \to c$. Then f is differentiable at c with f'(c) = L.

Theorem 2.9 (Intermediate value property for derivatives). Let a < b in \mathbb{R} and $f: [a,b] \to S$ be differentiable. Let y_0 lie strictly between f'(a) and f'(b). Then there exists a $c \in (a,b)$ such that

$$f'(c) = y_0$$

Example 2.10 (Discontinuous derivative). Define $f: \mathbb{R} \to \mathbb{R}$ as⁴

$$x \mapsto \begin{cases} (x\sin(1/x))^2, & x \neq 0\\ 0, & x = 0 \end{cases}$$

Then f is differentiable and Lipschitz continuous on \mathbb{R} , but the f' is discontinuous⁵ at 0.

3 Taylor's theorem

November 16, 2022

³Of course, the function here is $x \mapsto f'(x)$ on $I \setminus \{c\} \to \mathbb{R}$.

⁴We haven't defined sin yet, but we just need the periodicity and differentiability of this function. ⁵Of course, we are talking about the function $x \mapsto f'(x)$. See Definition 3.1.

Definition 3.1 (*n*-th derivatives). Let $f: S \to T$. Then we inductively define the *n*-th derivative functions $f^{(n)}$'s with codomain \mathbb{R} as follows:

- (i) dom $f^{(0)} := S$ with $x \mapsto f(x)$.
- (ii) dom $f^{(n+1)} := \{c \in \text{dom } f^{(n)} \cap \ell(\text{dom } f^{(n)}) : f^{(n)} \text{ is differentiable at } c\}$ with $x \mapsto (f^{(n)})'(x).$

We say that f is n times differentiable at $a \in \mathbb{R}$ iff $c \in \text{dom } f^{(n)}$.

We say that f is n times differentiable on an $X \subseteq \mathbb{R}$ iff $X \subseteq \text{dom } f^{(n)}$.

We say that f is n times differentiable iff

dom
$$f^{(i+1)} = \operatorname{dom} f^{(i)} \cap \ell(\operatorname{dom} f^{(i)})$$
 for all $i < n$.

Proposition 3.2. Let $f: S \to T$. Then for any $m, n \ge 0$, we have

$$(f^{(m)})^{(n)} = f^{(m+n)}$$

Theorem 3.3 (Linearity of *n*-th derivatives). Let I be an interval and $f, q: I \to S$ be n times differentiable for an $n \geq 0$. Let $\alpha \in \mathbb{R}$. Then the following hold:⁶

- (i) f + q and αf are n times differentiable.
- (*ii*) dom $f^{(n)}$, dom $q^{(n)}$, dom $(f+q)^{(n)}$, dom $(\alpha f)^{(n)}$ are all *I*.
- (*iii*) $(f+g)^{(n)} = f^{(n)} + g^{(n)}$.
- $(iv) \ (\alpha f)^{(n)} = \alpha f^{(n)}.$

Proposition 3.4 (*n*-th derivative of monomials). Let $n, i \geq 0$ and $f: \mathbb{R} \to \mathbb{R}$ be given by $x \mapsto x^n$. Then f is i times differentiable with dom $f^{(i)} = \mathbb{R}$ and is given by

$$f^{(i)}(x) = \begin{cases} \frac{n!}{(n-i)!} x^{n-i}, & i \le n\\ 0, & i > n \end{cases}$$

Theorem 3.5 (Taylor's polynomials agree nicely). Let $f: S \to T$ be n times differentiable $at^7 x_0 \in \mathbb{R}$ for an $n \geq 0$. Define the corresponding Taylor polynomial $p: \mathbb{R} \to \mathbb{R} \ as$

$$x \mapsto \sum_{i=0}^{n} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i.$$

Then for each $0 \leq i \leq n$, we have

$$p^{(i)}(x_0) = f^{(i)}(x_0).$$

 $^{^{6}}$ Here we have broken our consistency of using the imprecise notation by using the precise one. ⁷This means that $x_0 \in \text{dom } f^{(n)}$. See Definition 3.1.

CHAPTER IV. DIFFERENTIABILITY

Remark. We'll say " $f: S \to T$ is n-times continuously differentiable" iff f is n times differentiable with $f^{(i)}$ being continuous for each $i \leq n$.

Theorem 3.6 (Taylor⁸). Let a < b in \mathbb{R} and $f: [a, b] \to S$ be n times continuously differentiable, and n + 1 times differentiable on (a, b). Then there exists a $c \in (a, b)$ such that

$$f(b) = \sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!} (b-a)^{i} + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}.$$

Remark. We'll use f'' for $f^{(2)}$, etc.

Corollary 3.7 (Second derivative test). Let a < b in \mathbb{R} and $f: (a,b) \to S$ be twice continuously differentiable. Let $c \in (a,b)$ such that f(c) = 0 and f''(c) > 0 (respectively f''(c) < 0). Then c is a point of strict local minimum (respectively maximum).

Corollary 3.8. The n-th degree Taylor polynomial of a polynomial function f is equal to f.

Corollary 3.9 (Taylor polynomials as good approximations). Let a < b in \mathbb{R} and $f: [a, b] \to S$ be n times continuously differentiable for $n \ge 0$. Then there exists a $\lambda \ge 0$ such that

$$\sum_{i=0}^{n-1} \frac{f^{(i)}(a)}{i!} (x-a)^i - f(x) \le \lambda |x-a|^n$$

for all $x \in [a, b]$.

Example 3.10 (Solving an ODE). Let $a, b, c \in \mathbb{R}$. Then there exists a unique differentiable function $f \colon \mathbb{R} \to \mathbb{R}$ such that f(0) = a, f'(0) = b, and f''(x) = c for each $x \in \mathbb{R}$. It is given by

$$x \mapsto a + bx + \frac{c}{2} x^2.$$

⁸Corollary 2.5 falls out if we set n = 0.

4 Inverse function theorem

November 16, 2022

Theorem 4.1. Let I, J be intervals and $f: I \to J$ be strictly monotonic and surjective.⁹ Let f be differentiable at $c \in I$ with $f'(c) \neq 0$. Then f^{-1} is differentiable at f(c) with

$$(f^{-1})'(f(c)) = \frac{1}{f'(c)}.$$

Further, if f is continuously differentiable with $f'(x) \neq 0$ for all $x \in I$, then f^{-1} is too.

Remark. By an endpoint of an interval, we'll mean its sup or inf, if existent. Thus, the only endpoint of $(-\infty, 1)$ is 1.

Theorem 4.2 (Inverse function). Let I be an interval and $f: I \to S$ be continuously differentiable. Let $c \in I$ such that c is not an endpoint of I and f is differentiable at c with $f'(c) \neq 0$. Then there exists an open interval J such that $c \in J \subseteq I$, and the function $\check{f}: J \to f(J)$ defined by $x \mapsto f(x)$ is invertible with the inverse being continuously differentiable, given by

$$(\check{f}^{-1})'(y) = \frac{1}{f'(\check{f}^{-1}(y))}.$$

Example 4.3 (Necessity of "continuously differentiable"). The function $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) := \begin{cases} x + 2x^2 \sin(1/x), & x \neq 0\\ 0, & x = 0 \end{cases}$$

is (discontinuously) differentiable at 0 with $f'(0) \neq 0$ and still we can't invert it in any neighbourhood of 0.

⁹This already means that f and f^{-1} are continuous. See Theorem 8.2.

5 One-sided derivatives

November 17, 2022

Definition 5.1 (One-sided derivatives). Let $f: S \to T$. Then the one-sided limits, if existent, of the quotient function at a $c \in S \cap \ell(S)$, as defined in Definition 1.1, are called the one-sided derivatives of f.

If existent, these will be denoted by $f'_{-}(c)$ and $f'_{+}(d)$ for $c \in \ell((-\infty, c) \cap S) \cap S$ and $d \in S \cap \ell(S \cap (c, +\infty))$.

Theorem 5.2 (Connection with continuity and differentiability). Let $f: S \to T$ and $c \in \ell((-\infty, c) \cap S) \cap S \cap \ell(S \cap (c, +\infty))$ with $f'_{-}(c)$, $f'_{+}(c)$ existent. Then the following hold:

- (i) f is continuous at c.
- (ii) $f'_{-}(c) = f'_{+}(c) \implies f$ is differentiable at c.

6 Convex functions

November 17, 2022

Definition 6.1 (Convex functions). Then a function $f: I \to S$ is called convex iff for all $x, y \in I$ and for each $0 \le t \le 1$, we have that

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y).$$

Lemma 6.2 (Slopes of convex functions monotonically increase). Let $f: I \to S$ be convex. Then for any a < b < c in I, we have that

$$\frac{f(b) - f(a)}{b - a} \le \frac{f(c) - f(a)}{c - a} \le \frac{f(c) - f(b)}{c - b}.$$

Theorem 6.3 (Convex functions on intervals have one-sided derivatives). Let $f: I \rightarrow R$ be convex and x < y in I not be the endpoints of I. Then the following hold:

- (i) f has both, left- and right-hand derivatives existent at x, y. In particular, f is continuous at x, y.¹⁰
- (*ii*) $f'_{-}(x) \le f'_{+}(x)$.

(*iii*)
$$f'_+(x) \le f'_-(y)$$
.

¹⁰Note that f can be discontinuous at the endpoints.

Theorem 6.4 (Characterizing convexity). Let $f: I \to S$ be differentiable. Then the following are equivalent:

- (i) f is convex.
- (ii) $f(y) f(x) \ge f'(x)(y x)$ for each $x, y \in I$.
- (iii) f' is monotonically increasing.

Further, if f is twice differentiable, then we further have that f is convex \iff $f''(x) \ge 0$ for each $x \in I$.

Chapter V The Riemann integral

Remark. In this chapter, we'll again let S, T, U be some generic subsets of \mathbb{R} . We will also take a, b to be some general reals.

1 Darboux sums

November 19, 2022

Definition 1.1 (Partitions of closed bounded intervals). Let $a \leq b$. Then we call a finite sequence $(x_i)_{i=0}^n$, for $n \geq 0$, a partition of [a, b] iff it is strictly monotonic with

$$x_0 = a$$
, and
 $x_n = b$.

We will also identify the set $\{x_0, \ldots, x_n\}$ with the sequence (x_i) for partitions.¹

Definition 1.2 (Lower and upper sums). Let $a \leq b$ and $f: [a, b] \to S$ be bounded by m and M so that

$$m \le f(x) \le M$$

for each $x \in [a, b]$. Let $(x_i)_{i=0}^n$ be a partition of [a, b]. Define, for $1 \le i \le n$,

$$m_{i} := \inf\{f(x) : x_{i-1} \le x \le x_{i}\},\$$

$$M_{i} := \sup\{f(x) : x_{i-1} \le x \le x_{i}\},\$$
 and

$$\Delta x_{i} := x_{i-1} - x_{i}.$$

¹This is not very perverse since partitions are strictly increasing sequences.

Then we define the *lower* and *upper sums* of f with respect to the partition (x_i) to respectively be

$$L(f, (x_i)) := \sum_{i=1}^{n} m_i \Delta x_i, \text{ and}$$
$$U(f, (x_i)) := \sum_{i=1}^{n} M_i \Delta x_i.$$

Remark. When we say that " $f: S \to T$ is bounded on $X \subseteq S$ by m and M", we mean that $m \leq f(x) \leq M$ for each $x \in X$.

Proposition 1.3 (Lower and upper sums of a bounded function are bounded). Let $f: S \to T$ and $[a, b] \subseteq S$ for $a \leq b$ such that f is bounded on [a, b] by m and M. Let P be a partition of [a, b]. Then we have

$$m(b-a) \le L(f|_{[a,b]}, P) \le U(f|_{[a,b]}, P) \le M(b-a).$$

Remark. This allows to talk of the lower and upper integrals of f on [a, b]:

$$\int_{a}^{\overline{b}} f := \inf \{ U(f, P) : P \text{ is a partition of } [a, b] \}, \text{ and}$$
$$\int_{a}^{\overline{b}} f := \sup \{ L(f, P) : P \text{ is a partition of } [a, b] \}.$$

Lemma 1.4. Let $l: \mathbb{N} \to \mathbb{N}$ be strictly increasing with $l_0 = 0$. Let $x_1, \ldots, x_n \in \mathbb{R}$ for $n \ge 0$. Let $k \ge 0$ and $l_k \le n$. Then

$$\sum_{i=1}^{k} \left(\sum_{j=l_{i-1}+1}^{l_i} x_j \right) = \sum_{i=l_0+1}^{l_k} x_i.$$

Proposition 1.5 (Refinements' effect on lower and upper sums). Let $a \leq b$ and $f: [a, b] \rightarrow S$ be bounded. Let $P \subseteq Q$ be partitions of [a, b]. Then we have

$$L(f, P) \subseteq L(f, Q), \text{ and}$$

 $U(f, P) \supseteq U(f, Q).$

Corollary 1.6. For a bounded function on a closed bounded interval, any lower sum is less than or equal to any upper sum.

Corollary 1.7. Let $a \leq b$ and $f: [a, b] \rightarrow S$ be bounded by m and M. Then we have

$$m(b-a) \leq \underline{\int}_{a}^{b} f \leq \overline{\int}_{a}^{b} f \leq M(b-a).$$

Proposition 1.8. Changing the function at finitely many points has no effect on lower and upper integrals.

Definition 1.9 (Riemann integrability). Let $f: S \to T$ be bounded on $[a, b] \subseteq S$ where $a \leq b$. Then we say that f is *Riemann integrable on* [a, b] iff

$$\underline{\int}_{a}^{b} f = \overline{\int}_{a}^{\overline{b}} f,$$

in which case, we denote the above by

$$\int_{a}^{b} f,$$

and also define²

$$\int_{b}^{a} f := -\int_{a}^{b} f$$

Further, if S = [a, b], then f will be called *Riemann integrable* iff f is Riemann integrable on [a, b].

Example 1.10 (A non-Riemann-integrable function). For the function $f: [0,1] \rightarrow \mathbb{R}$ given by

$$f(x) := \begin{cases} 0, & x \in \mathbb{Q} \\ 1, & x \notin \mathbb{Q} \end{cases}$$

is not Riemann integrable:

$$\int_{-0}^{1} f = 0 < 1 = \int_{0}^{-1} f.$$

Theorem 1.11 (Riemann condition). Let $a \leq b$ and $f: [a, b] \rightarrow S$. Then the following are equivalent:

²There's an apparent overloading for the case a = b. But it's harmless since -0 = 0.

- (i) f is Riemann integrable on [a, b].
- (ii) For each $\varepsilon > 0$, there exists a partition P of [a, b] such that

$$U(f, P) - L(f, P) < \varepsilon.$$

Remark. Unless mentioned otherwise, for a partition (x_i) , we'll take Δx_i 's to be as defined as in Definition 1.2.

2 Connection with Riemann sums

November 22, 2022

Definition 2.1 (Riemann sums). Let $a \leq b$ and $f: [a, b] \to S$. Let $(x_i)_{i=1}^n$ be a partition of [a, b]. Then \mathscr{S} is called a Riemann sum for f with respect to the partition (x_i) iff there exist s_1, \ldots, s_n with $s_i \in [x_{i-1}, x_i]$ and

$$\mathscr{S} = \sum_{i=1}^{n} s_i \, \Delta x_i.$$

Definition 2.2 (Mesh of a partition). Let $a \leq b$ and $(x_i)_{i=0}^n$ be a partition of [a, b]. Then we define the mesh of (x_i) as

$$\mu((x_i)) := \max_{1 \le i \le n} \Delta x_i.$$

Theorem 2.3. Let $a \leq b$ and $f: [a, b] \to S$ be bounded and $\varepsilon > 0$. Then there exists $a \delta > 0$ such that for any partition P of [a, b], we have that

$$\mu(P) < \delta \implies \underline{\int}_a^b f - L(f, P), \ U(f, P) - \overline{\int}_a^b f < \varepsilon,$$

and hence, if \mathcal{S} is any Riemann sum corresponding to P, then

$$\mu(P) < \delta \implies \underline{\int}_a^b f - \varepsilon < \mathcal{S} < \overline{\int}_a^b f + \varepsilon$$

Corollary 2.4. Let $a \leq b$ and $f: [a,b] \to S$ be bounded. Let (P_i) be a sequence of partitions of [a,b] such that $\mu(P_i) \to 0$. Then we have that

$$L(f, P_i) \rightarrow \int_a^b f \text{ and } U(f, P_i) \rightarrow \int_a^b f.$$

Corollary 2.5 (Riemann sums converge to the integral). Let $a \leq b$ and $f: [a, b] \to S$ be integrable. Let (P_i) be a sequence of partitions of [a, b] such that $\mu(P_i) \to 0$. Let (S_i) be a sequence of Riemann sums such that S_i is a Riemann sum of f with respect to the partition P_i . Then

$$\mathcal{S}_i \to \int_a^b f.$$

Corollary 2.6 (The classical Riemann sums). Let $a \leq b$ and $f: [a, b] \rightarrow S$ be integrable. Then

$$\frac{1}{n}\sum_{i=1}^{n}f\left(a+i\frac{b-a}{n}\right)\to\int_{a}^{b}f.$$

3 Properties of the integral

November 19, 2022

Theorem 3.1 (Limit of integrals). Let $a \leq b$ and $f: [a, b] \to S$ be bounded. Let $a_i \to a$ and $b_i \to b$ such that $a \leq a_i \leq b_i \leq b$ for each i. Let f be Riemann integrable on each $[a_i, b_i]$. Then f is Riemann integrable on [a, b] with

$$\int_{a_i}^{b_i} f \to \int_a^b f.$$

Theorem 3.2 (Domain additivity). Let $a \leq b$ and $f: [a, b] \rightarrow S$ be bounded. Let $a \leq x \leq b$. Then

$$\underline{\int}_{a}^{b} f = \underline{\int}_{a}^{x} f + \underline{\int}_{x}^{b} f, \text{ and}$$
$$\overline{\int}_{a}^{b} f = \overline{\int}_{a}^{x} f + \overline{\int}_{x}^{b} f.$$

Further, we have that f is Riemann integrable on $[a, b] \iff f$ is Riemann integrable on [a, x] and [x, c], in which case,

$$\int_{a}^{b} f = \int_{a}^{x} f + \int_{x}^{b} f.$$

Proposition 3.3. Let $a \leq b$ and $f: [a, b] \rightarrow S$ be Riemann integrable. Let $x, y, z \in [a, b]$. Then f is integrable on all the sub-intervals determined by a, x, y, z, b and the

following hold:

$$\int_{x}^{z} f = \int_{x}^{y} f + \int_{y}^{z} f$$
$$\int_{y}^{x} f = -\int_{x}^{y} f$$

Theorem 3.4. A continuous function is Riemann integrable on a closed bounded interval.

Theorem 3.5. A monotonic function is Riemann integrable on a closed bounded interval.

Corollary 3.6. Let $a \leq b$ and $f: [a,b] \to S$. Let $(x_i)_{i=0}^n$ be a partition of [a,b] such that f is either continuous or monotone on each $[x_{i-1}, x_i]$. Then f is Riemann integrable on [a,b] with

$$\int_{a}^{b} f = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f.$$

Remark. When we say " $f: S \to T$ is bounded away from zero", we mean that there is a $\delta > 0$ such that $|f(x)| \ge \delta$ for each $x \in S$.

Notation. For $f, g: S \to T$, we will denote the functions on $S \to \mathbb{R}$ given by $x \mapsto f(x)g(x), |f(x)|$ by fg and |f| respectively.

Theorem 3.7 (Integral manipulations). Let $a \leq b$ and $f, g: [a, b] \rightarrow S$ be bounded. Then the following hold:

- (i) $\int_{a}^{b} (f+g) \ge \int_{a}^{b} f + \int_{a}^{b} g.$
- (ii) $\overline{\int}_a^b (f+g) \leq \overline{\int}_a^b f + \overline{\int}_a^b g.$
- (iii) $\int_{a}^{b} (\alpha f) = \alpha \int_{a}^{b} f \text{ for } \alpha \ge 0.$

(iv)
$$\overline{\int}_a^b(\alpha f) = \alpha \overline{\int}_a^b f \text{ for } \alpha \ge 0.$$

Further, if f, g are Riemann integrable and $\alpha \in \mathbb{R}$, then the following hold: (i) f + g, αf , fg Riemann integrable as well with

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g, \text{ and}$$

$$\int_{a}^{b} (\alpha f) = \alpha \int_{a}^{b} f.$$

If g is, in addition, bounded away from zero, then f/g is also Riemann integrable.

(ii) If $f(x) \leq g(x)$ for each $x \in [a, b]$, then

$$\int_{a}^{b} f \le \int_{a}^{b} g.$$

We also have that |f| is Riemann integrable with

$$\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|.$$

Theorem 3.8. The composition of a continuous and a Riemann-integrable function is Riemann-integrable.

Proposition 3.9. Let³ a < b and $f: [a, b] \to \mathbb{R}$ be continuous with each $f(x) \ge 0$. Then

$$\int_{a}^{b} f = 0 \implies f(x) = 0 \text{ for each } x.$$

Proposition 3.10 (Integral mean value). Let $a \leq b$ and $f, g: [a, b] \to \mathbb{R}$ such that f is continuous and g is integrable with $g(x) \geq 0$ for each x. Then there exists a $c \in [a, b]$ such that

$$\int_{a}^{b} fg = f(c) \int_{a}^{b} g$$

4 The fundamental theorems of calculus

November 20, 2022

Theorem 4.1 ("Integral of the derivative"). Let $a \leq b$ and $F: [a, b] \to S$ be continuous, and differentiable on (a, b). Let $f: [a, b] \to T$ be Riemann integrable with f(x) = F'(x) for each $x \in (a, b)$. Then

$$\int_{a}^{b} f = F(b) - F(a).$$

³This doesn't hold for a = b.

Theorem 4.2 ("Derivative of the integral"). Let $a \leq b$ and $f: [a, b] \to S$ be Riemann integrable. Let $F: [a, b] \to T$ such that $F(x) = \int_a^x f$ for each⁴ $x \in [a, b]$. Then the following hold:

(i) F is Lipschitz continuous.

(ii) f is continuous at $c \in [a, b] \implies F$ is differentiable at c with

$$F'(c) = f(c)$$

Corollary 4.3 (Transfer of properties from f to F). Let $a \leq b$ and $f: [a, b] \to S$ be continuous. Define $F: [a, b] \to \mathbb{R}$ by $x \mapsto \int_a^x f$. Then the following hold:

- (i) F is monotonically increasing $\iff f(x) \ge 0$ for each x.
- (ii) F is convex \iff f is monotonically increasing.

Result 4.4. For every $n \ge 0$, there exists a function $f: [-1,1] \to \mathbb{R}$ such that $\operatorname{dom} f^{(n)} = [-1,1]$, but $\operatorname{dom} f^{(n+1)} = [-1,1] \setminus \{0\}$.

Proposition 4.5. Let $a \leq b$ and $F: [a, b] \rightarrow S$. Then the following are equivalent:

- (i) F is continuously differentiable on [a, b].
- (ii) There exists a continuous function $f: [a, b] \to \mathbb{R}$ such that for each $x \in [a, b]$, we have that

$$F(x) = F(a) + \int_{a}^{x} f.$$

Theorem 4.6 (Change of variables). Let $\alpha \leq \beta$ be reals and $\phi: [\alpha, \beta] \to S$ be differentiable with ϕ' being Riemann integrable, and $\phi([\alpha, \beta]) \subseteq [a, b]$ where $a \leq b$. Let $f: [a, b] \to T$ be continuous. Then $(f \circ \phi)\phi': [a, b] \to \mathbb{R}$ is Riemann integrable with

$$\int_{\phi(\alpha)}^{\phi(\beta)} f = \int_{\alpha}^{\beta} (f \circ \phi) \phi'.$$

Notation. $\int_a^b f(t) dt$ will stand for $\int_a^b f$. In a similar spirit, $\frac{d}{dx}f(x)$ will stand for f'.

These are useful when we want to write the "rule" of f instead of f, and then x denotes what is the "variable" in that rule.

⁴Theorem 3.2 ensures that f is integrable on each [a, x].

Proposition 4.7 (A version of Leibniz). Let $\alpha \leq \beta$ be reals and $a \leq b$. Let $u, v: [\alpha, \beta] \rightarrow S$ be differentiable with u', v' Riemann integrable and their ranges lying inside $[\alpha, \beta]$. Let $f: [a, b] \rightarrow T$ be continuous. Then

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{u(x)}^{v(x)} f = (f \circ v)v' - (f \circ u)u'.$$

Theorem 4.8 (Integration by parts). Let $a \leq b$ and $f: [a, b] \to S$ be differentiable with f' being Riemann integrable, and $g: [a, b] \to T$ be continuous. Let $G: [a, b] \to T$ be such that $G(x) = \int_a^x g$. Then $fg, f'G: [a, b] \to \mathbb{R}$ are Riemann integrable with⁵

$$\int_{a}^{b} fg = f(b)G(b) - f(a)G(a) - \int_{a}^{b} f'G.$$

Theorem 4.9 (Another version of Taylor). Let $a \leq b$ and $f: [a, b] \rightarrow S$ be n + 1 times continuously differentiable for an $n \geq 0$. Then⁶

$$f(b) = \sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!} (b-a)^{i} + \frac{1}{n!} \int_{a}^{b} (b-t)^{n} f^{(n+1)}(t) \, \mathrm{d}t.$$

⁵Note that G(a) = 0, but I'm writing it for the sake of beauty.

⁶In the integrand, the function is on $[a, b] \to \mathbb{R}$.