The Moore-Aronszajn Theorem

Conventions. Unless stated otherwise, assume the following:

- $K \in \{\mathbb{R}, \mathbb{C}\}.$
- X will denote a generic set.
- Vector spaces will be over K.
- Evaluation functions on any subset of K^X will be denoted by δ_x 's. These are clearly linear maps in case the domain is a subspace of K^X .
- \mathscr{H} will denote a Hilbert space over K.
- Abusing the notation slightly, the same notation will be used to denote the restriction to $\mathbb{R} \to \mathbb{R}$ of Re, Im and complex conjugation.
- Whenever $\langle \cdot, \cdot \rangle$ is semi-inner-product on a vector space,¹ we'll use the usual $\|\cdot\|$ to denote the induced seminorm.²
- For any function $k: X \times X \to K$, we'll use k_x to stand for $k(\cdot, x): X \to K$.

1. RKHS'S AND KERNELS

Definition 1.1 (p.s.d. kernels). A positive semi-definite kernel on X is a function $k: X \times X \to K$ that is

(i) conjugate symmetric, i.e., $k(y, x) = \overline{k(x, y)}$; and,

¹That is, it's almost a norm except not possibly satisfying the positive definiteness.

²Note that a semi-inner-product obeys the Cauchy-Schwarz inequality (just follow Schwarz's proof using the quadratic polynomial).

(ii) positive semi-definite, i.e., for any $x_1, \ldots, x_n \in X$ and any $\alpha_1, \ldots, \alpha_n \in K$, we have

$$\sum_{i,j=1}^{n} \overline{\alpha_i} \, k(x_i, x_j) \, \alpha_j \ge 0.$$

Definition 1.2 (r.k.'s and RKHS's). Let \mathscr{H} be a vector subspace of K^X and $k: X \times X \to K$ be such that for any $x \in X$, we have that $k_x \in \mathscr{H}$ and that it obeys the reproducing property, *i.e.*,³

$$\delta_x = \langle \cdot, k_x \rangle.$$

Then we say that " \mathscr{H} is a reproducing kernel Hilbert space with a reproducing kernel k".

Remark. As is usual, we'll use the following terminology:

- (i) " \mathscr{H} is an RKHS of functions on X" iff \mathscr{H} is a vector subspace of K^X and there exists a $k: X \times X \to K$ such that \mathscr{H} becomes an RKHS with a reproducing kernel k.
- (ii) "k is a reproducing kernel on X" iff there exists a Hilbert space \mathscr{H} which is a vector subspace of K^X such that \mathscr{H} becomes an RKHS with a reproducing kernel k.

Corollary 1.3 (Immediate consequences).

- (i) A reproducing kernel is a p.s.d. kernel.
- (ii) $\mathscr{H} \subseteq K^X$ is an RKHS \iff evaluation functionals on it are continuous.
- (iii) Convergence in an $RKHS \implies pointwise$ convergence.
- (iv) An RKHS's reproducing kernel is unique.

Proof. (i) Let k be a reproducing kernel of $\mathscr{H} \subseteq K^X$.

- Conjugate symmetry: $k(y, x) = k_x(y) = \langle k_x, k_y \rangle = \overline{\langle k_y, k_x \rangle} = \overline{k_y(x)} = \overline{k_y(x)} = \overline{k(x, y)}$.
- Positive semi-definite: Let $x_1, \ldots, x_n \in X$ and $\alpha_1, \cdots, \alpha_n \in K$. Then

$$\sum_{i,j} \overline{\alpha_i} k(x_i, x_j) \alpha_j = \sum_{i,j} \overline{\alpha_i} \langle k_{x_j}, k_{x_i} \rangle \alpha_j$$
$$= \sum_{i,j} \langle \alpha_j k_{x_j}, \alpha_i k_{x_i} \rangle$$
$$= \left\| \sum_i \alpha_i k_{x_i} \right\|^2$$
$$\ge 0.$$

³Equivalently, $f(x) = \langle f, k_x \rangle$ for any $f \in \mathscr{H}$.

What about the converse?

- (ii) If k is a reproducing kernel for \mathscr{H} , then $\delta_x = \langle \cdot, k_x \rangle$, which is continuous. Conversely, if the evaluations are continuous, then by Riesz, we can define $k \colon X \times X \to K$ such that $k_x \in \mathscr{H}$ and $\delta_x = \langle \cdot, k_x \rangle$.
- (iii) Follows from (ii).
- (iv) Suppose k and k' are reproducing kernels for $\mathscr{H} \subseteq K^X$. Then for any $f \in \mathscr{H}$ and $x \in X$, we have $\langle f, k_x k'_x \rangle = f(x) f(x) = 0$ so that $k_x = k'_x$. Since x was arbitrary, k = k'.

Remark. The converse of (i) is the content of Theorem 2.3. Also note how completeness of \mathscr{H} is used in " \Leftarrow " of ?? (ii).

Theorem 1.4 (RKHS \mapsto r.k. is injective). *Distinct RKHS's have distinct reproducing kernels.*

Proof. Let k be the reproducing kernel for $\mathscr{H} \subseteq K^X$. It suffices to show that \mathscr{H} is uniquely determined (along with its inner product⁴) by k. Let \mathscr{H}_0 be the subspace of \mathscr{H} spanned by k_x 's for $x \in X$. Note that $\mathscr{H}_0^{\perp} = \{0\}$ (because of k's reproducing property) so that $\overline{\mathscr{H}_0} = (\mathscr{H}_0^{\perp})^{\perp} = \mathscr{H}$.⁵ This determines \mathscr{H} as a set, for a general element of \mathscr{H} is a limit of the Cauchy sequence in \mathscr{H}_0 , which is just its pointwise limit (which is existent due to ?? (ii) of Corollary 1.3). All that now remains is to determine is the norm on \mathscr{H} , which is determined once it's determined on its dense subset \mathscr{H}_0 . Note that this will also determine the inner product on \mathscr{H}_0 (due to polarization).

Indeed, for $f = \sum_{i=1}^{n} \alpha_i k_{x_i}$, we have

$$|f||^{2} = \sum_{i,j=1}^{n} \alpha_{i} \overline{\alpha_{j}} \langle k_{x_{i}}, k_{x_{j}} \rangle$$
$$= \sum_{i,j=1}^{n} \overline{\alpha_{j}} k(x_{j}, x_{i}) \alpha_{i}.$$

Remark. Note how the completeness of \mathscr{H} was used in writing $\overline{\mathscr{H}_0} = (\mathscr{H}_0^{\perp})^{\perp}$.

Any example to show the necessity of this?

 $^{^4\}mathrm{Note}$ that addition and scalar multiplication are already determined (namely, pointwise) by definition.

⁵A naïve glance suggests that this fixes \mathscr{H} as a set, but it *doesn't*!—at least yet. We haven't yet reduced the description of \mathscr{H} to only that of k. The closure of \mathscr{H}_0 (which *does* only depend on k) is dependent on the norm topology induced from \mathscr{H} , which might still depend on the choice of \mathscr{H} , not just k.

We summarize our results so far:

$$\begin{cases} \text{RKHS's of} \\ \text{functions on } X \end{cases} \xrightarrow[\text{Corollary 1.3 (iv)}]{\text{Theorem 1.4}}_{\text{Corollary 1.3 (iv)}} \{ \text{r.k.'s on } X \} \xrightarrow[\text{(inclusion)}]{\text{(inclusion)}} \begin{cases} \text{p.s.d. kernels} \\ \text{on } X \end{cases}$$

To complete the circle of ideas, we show in the next section that any p.s.d. kernel is a reproducing kernel for some (and hence unique) RKHS which, among other things, will lead the inclusion above to become equality.

2. MOORE-ARONSZAJN

The upcoming lemmas are geared towards the following goal: Given a p.s.d. kernel k on X, we find an RKHS \mathscr{H} whose reproducing kernel is precisely k. We do so in the following steps:

- (i) Each k_x must lie in \mathscr{H} . Thus, we are motivated to first define a vector space \mathscr{H}_0 spanned by k_x 's.
- (ii) We show that there's a unique inner product on \mathscr{H}_0 with respect to which k has the reproducing property.
- (iii) Finally, we complete \mathscr{H}_0 , and verify that it's the required RKHS.

Lemma 2.1. Let k be a p.s.d. kernel on X. Define \mathscr{H}_0 to be the subspace of K^X generated by k_x 's for $x \in X$. Then \mathscr{H}_0 admits a unique inner product with respect to which k has the reproducing property.

Proof. We show that

$$\langle f,g \rangle = \sum_{i,j} \overline{\beta_j} \, k(y_j, x_i) \, \alpha_i$$
 (2.1)

defines an inner product on \mathscr{H}_0 for $f = \sum_{i=1}^m \alpha_i k_{x_i}$ and $g = \sum_{j=1}^n \beta_j k_{y_j}$. That it's well-defined follows because

$$\sum_{j} \overline{\beta_{j}} f(y_{j}) = \sum_{i,j} \overline{\beta_{j}} k(y_{j}, x_{i}) \alpha_{i} = \sum_{i} \overline{g(x_{i})} \alpha_{i}$$
(2.2)

where the second equality follows since <u>k</u> is conjugate symmetric. It's immediate from Eq. (2.1) that $\langle \cdot, \cdot \rangle$ is p.s.d. and conjugate symmetric (since <u>k</u> is a p.s.d. kernel), and from Eq. (2.2) that it's bilinear with $\langle f, k_x \rangle = f(x)$ for any $x \in X$ (take $g = k_x$). Only positive definiteness remains to be shown:

Note that $\langle \cdot, \cdot \rangle$ is a semi-inner-product so that it obeys Cauchy-Schwarz and induces a seminorm. Now, let ||f|| = 0. Then for any $x \in X$, we have $|f(x)| = |\langle f, k_x \rangle| \le ||f|| ||k_x|| = 0$.

Lemma 2.2. Continuing Lemma 2.1, let⁶ $S := \{Cauchy \text{ sequences in } \mathcal{H}_0\}$. Then there exists a linear map $\phi: S \to K^X$ that maps Cauchy sequences to their pointwise limits, the kernel of which consists precisely of sequences that converge to 0 in \mathcal{H}_0 .

Proof. First we show that ϕ is indeed well-defined:

Let (f_n) be Cauchy in \mathscr{H}_0 . Then for any $x \in X$, we have $|f_m(x) - f_n(x)| = |\langle f_m - f_n, k_x \rangle| \le ||f_n - f_m|| ||k_x|| \xrightarrow{w} 0$ as $m, n \to \infty$ so that $(f_n(x))$ is Cauchy in K and hence convergent. Thus, pointwise limits of Cauchy sequences in \mathscr{H}_0 do exist.

Linearity of ϕ is easy. We now compute ker ϕ . If $f_n \to 0$ in \mathscr{H}_0 , then for any $x \in X$, we have $f_n(x) = \langle f_n, k_x \rangle \xrightarrow{w} 0$. Conversely, let (f_n) be a Cauchy sequence in \mathscr{H}_0 that converges to 0 pointwise. We show that it converges to 0 in \mathscr{H}_0 as well:

Fix an N and write $f_N = \sum_i \alpha_i k_{x_i}$ for finitely many *i*'s. Now,

$$|f_n||^2 = |\langle f_n - f_N, f_n \rangle + \langle f_N, f_n \rangle|$$

$$\leq |\langle f_n - f_N, f_n \rangle| + \left| \sum_i \alpha_i \overline{f_n(x_i)} \right|$$

$$\leq ||f_n - f_N|| ||f_n|| + \sum_i |\alpha_i| |f_n(x_i)|$$

so that taking N large enough ensures that the above is eventually less than any arbitrary $\varepsilon > 0$.

Thus, we have the following commutative diagram:

The map $\mathscr{H}_0 \to S$ represents the function $f \mapsto (f, f, \ldots)$.

Now we make our final arguments:

- (i) $\iota: f \mapsto \overline{(f, f, \ldots)}$ is a metric completion with the usual metric on $S/\ker\phi$, namely $d(\overline{(f_i)}, \overline{(g_i)}) = \lim_i d(f_i, g_i) \stackrel{w}{=} \lim_i \|f_i - g_i\|$.
- (ii) Thus, the metric space $S/\ker \phi$ admits a (unique) Hilbert space structure such that ι becomes a norm completion with the norm recovering the metric.
- (iii) The vector space structure thus endowed on $S/\ker\phi$ is precisely the one due to the algebraic quotient:

 $^{{}^{6}}$ "S" for "sequences".

Note that any two generic elements of $S/\ker \phi$ are given by $\overline{(f_i)}$ and $\overline{(g_i)}$ where (f_i) , (g_i) are Cauchy sequences in \mathscr{H}_0 . Note that $\iota(f_n) \xrightarrow{n} \overline{(f_i)}$ and $\iota(g_n) \xrightarrow{n} \overline{(g_i)}$ (easy). Continuity of addition and linearity of ι ensure that $\iota(f_n + g_n) \xrightarrow{n} \overline{(f_i)} + \overline{(g_i)}$. Finally, note that $\iota(f_n + g_n) \xrightarrow{n} \overline{(f_i + g_i)}$ as well so that we indeed have $\overline{(f_i)} + \overline{(g_i)} = \overline{(f_i + g_i)}$, which is precisely the definition of vector addition in the algebraic quotient. Similarly, one can verify for scalar multiplication.

- (iv) $\tilde{\phi}$ is a vector space isomorphism.⁷ Thus, the inner product on $S/\ker\phi$ can be transported to im ϕ without altering the latter's vector space structure, making $\tilde{\phi}$ an isometric isomorphism.
- (v) Note that $\phi \circ \iota$ is precisely the inclusion $\mathscr{H}_0 \hookrightarrow \operatorname{im} \phi$ (just traverse along the top arrows in the commutative diagram above) which is thus an isometric linear map.
- (vi) im ϕ is complete since $S/\ker \phi$ is, and thus is a Hilbert space.
- (vii) Finally, we show that k still has the reproducing property on $\operatorname{im} \phi$:

Let $f \in \operatorname{im} \phi$ be the pointwise limit of the Cauchy sequence (f_i) in \mathscr{H}_0 . Then $f_i \to f$ in $\operatorname{im} \phi$ as well:

Note that $f = \tilde{\phi}(\overline{(f_i)})$ and $f_j = \tilde{\phi} \circ \iota(f_j)$. Thus it suffices to have $\iota(f_j) \xrightarrow{j} \overline{(f_i)}$ in $S / \ker \phi$ which is indeed true.

Thus, for any $x \in X$, one has $\langle f, k_x \rangle = \lim_i \langle f_i, k_x \rangle = \lim_i f_i(x) = f(x)$ as claimed.

We have thus constructed a Hilbert space, namely im ϕ , whose reproducing kernel is precisely k, proving the following:

Theorem 2.3 (Moore-Aronszajn). Any p.s.d. kernel is a reproducing kernel.

3. A TOY EXAMPLE

3.1 For finite X

Here, we ask the question: If k is a p.s.d. kernel on a finite X, what is the associated RKHS?

⁷With respect to the algebraic vector space structure on $S/\ker\phi$, not neceassrily the vector space structure coming from completion. Thus, it was crucial to show that these two structures are exactly the same.

Without loss of generality, let $X = \{1, ..., n\}$ for $n \in \mathbb{N}$. Now, any p.s.d. kernel k on X is simply a p.s.d. and conjugate symmetric $n \times n$ matrix and our inner product space \mathscr{H}_0 (in the language of Lemma 2.1) is the column space $\operatorname{col}(k)$ of k. It's complete being finite dimensional and thus itself is the required RKHS. In this case, Eq. (2.1) becomes

$$\langle k\alpha, k\beta \rangle = \sum_{i,j=1}^{n} \alpha_i k(j,i) \overline{\beta_j}$$
$$= \sum_{i,j=1}^{n} \alpha_i \overline{k(i,j)\beta_j}$$
$$= \langle \alpha, k\beta \rangle_e$$

where $\langle \cdot, \cdot \rangle_e$ denotes the usual Euclidean inner product on K^n .

Noting that $\operatorname{col} k = K^n$ for positive definite k's we recover the familiar correspondence between inner products on K^n and positive definite $n \times n$ matrices.

3.2 Finite-dimensional spaces

Let \mathscr{H} be finite-dimensional subspace of K^X . We ask: Is V an RKHS? If so, what is the associated reproducing kernel?

The answer is an easy yes. Suppose it indeed is with the reproducing kernel being k. Let f_1, \ldots, f_n form an orthonormal basis for \mathscr{H} . Then we must have

$$k_x = \sum_{i=1}^n \langle k_x, f_i \rangle f_i$$
$$= \sum_{i=1}^n \overline{f_i(x)} f_i$$

yielding

$$k(x,y) = \sum_{i=1}^{n} f_i(x)\overline{f_i(y)}.$$
(3.1)

Now, it's straightforward to check that k defined by Eq. (3.1) indeed is a reproducing kernel for \mathscr{H} :

• Firstly, note that each $k_x \in \mathscr{H}$ being a linear combination of f_i 's.

• Secondly, for $g \in \mathscr{H}$, we have $\langle g, k_x \rangle = \sum_i f_i(x) \langle g, f_i \rangle = \left(\sum_i \langle g, f_i \rangle f_i \right)(x) = g(x)$.

Taking \mathscr{H} to be the set of all polynomials of degree less than or equal to an $n \in \mathbb{N}$ with the inner product being such that the monomials form an orthonormal basis, Eq. (3.1) becomes

$$k(x,y) = \begin{cases} \frac{1-(x\overline{y})^{n+1}}{1-x\overline{y}}, & x\overline{y} \neq 1\\ n+1, & \text{otherwise} \end{cases}.$$

4. References

- 1. Aronszajn's theorem by Jean-Philippe Vert. Link.
- 2. Uniqueness of the RKHS by Jean-Philippe Vert. Link.