
The Moore-Aronszajn Theorem

Conventions. Unless stated otherwise, assume the following:

· K ∈ {R,C}.

· X will denote a generic set.

· Vector spaces will be over K.

· Evaluation functions on any subset of KX will be denoted by δx’s. These are
clearly linear maps in case the domain is a subspace of KX .

· H will denote a Hilbert space over K.

· Abusing the notation slightly, the same notation will be used to denote the
restriction to R → R of Re, Im and complex conjugation.

· Whenever ⟨·, ·⟩ is semi-inner-product on a vector space,1 we’ll use the usual ∥·∥
to denote the induced seminorm.2

· For any function k : X ×X → K, we’ll use kx to stand for k(·, x) : X → K.

1. RKHS’s and Kernels

Definition 1.1 (p.s.d. kernels). A positive semi-definite kernel on X is a function
k : X ×X → K that is

(i) conjugate symmetric, i.e., k(y, x) = k(x, y); and,

1That is, it’s almost a norm except not possibly satisfying the positive definiteness.
2Note that a semi-inner-product obeys the Cauchy-Schwarz inequality (just follow Schwarz’s

proof using the quadratic polynomial).
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(ii) positive semi-definite, i.e., for any x1, . . . , xn ∈ X and any α1, . . . , αn ∈ K, we
have

n∑
i,j=1

αi k(xi, xj)αj ≥ 0.

Definition 1.2 (r.k.’s and RKHS’s). Let H be a vector subspace of KX and k : X×
X → K be such that for any x ∈ X, we have that kx ∈ H and that it obeys the
reproducing property, i.e.,3

δx = ⟨·, kx⟩.
Then we say that “H is a reproducing kernel Hilbert space with a reproducing kernel
k”.

Remark. As is usual, we’ll use the following terminology:

(i) “H is an RKHS of functions on X” iff H is a vector subspace of KX and there
exists a k : X ×X → K such that H becomes an RKHS with a reproducing
kernel k.

(ii) “k is a reproducing kernel on X” iff there exists a Hilbert space H which is
a vector subspace of KX such that H becomes an RKHS with a reproducing
kernel k.

Corollary 1.3 (Immediate consequences).

(i) A reproducing kernel is a p.s.d. kernel.

(ii) H ⊆ KX is an RKHS ⇐⇒ evaluation functionals on it are continuous.

(iii) Convergence in an RKHS =⇒ pointwise convergence. What about
the converse?(iv) An RKHS’s reproducing kernel is unique.

Proof. (i) Let k be a reproducing kernel of H ⊆ KX .

· Conjugate symmetry: k(y, x) = kx(y) = ⟨kx, ky⟩ = ⟨ky, kx⟩ = ky(x) =

k(x, y).

· Positive semi-definite: Let x1, . . . , xn ∈ X and α1, · · · , αn ∈ K. Then∑
i,j

αi k(xi, xj)αj =
∑

i,j
αi ⟨kxj , kxi ⟩αj

=
∑

i,j
⟨αjkxj , αikxi⟩

=
∥∥∥∑

i
αikxi

∥∥∥2
≥ 0.

3Equivalently, f(x) = ⟨f, kx⟩ for any f ∈ H .
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(ii) If k is a reproducing kernel for H , then δx = ⟨·, kx⟩, which is continuous.
Conversely, if the evaluations are continuous, then by Riesz, we can define
k : X ×X → K such that kx ∈ H and δx = ⟨·, kx⟩.

(iii) Follows from (ii).

(iv) Suppose k and k′ are reproducing kernels for H ⊆ KX . Then for any f ∈ H
and x ∈ X, we have ⟨f, kx − k′x⟩ = f(x)− f(x) = 0 so that kx = k′x. Since x
was arbitrary, k = k′.

Remark. The converse of (i) is the content of Theorem 2.3. Also note how complete-
ness of H is used in “⇐” of ?? (ii).

Theorem 1.4 (RKHS 7→ r.k. is injective). Distinct RKHS’s have distinct reproducing
kernels.

Proof. Let k be the reproducing kernel for H ⊆ KX . It suffices to show that H is
uniquely determined (along with its inner product4) by k. Let H0 be the subspace
of H spanned by kx’s for x ∈ X. Note that H ⊥

0 = {0} (because of k’s reproducing
property) so that H0 = (H ⊥

0 )⊥ = H .5 This determines H as a set, for a general
element of H is a limit of the Cauchy sequence in H0, which is just its pointwise
limit (which is existent due to ?? (ii) of Corollary 1.3). All that now remains is
to determine is the norm on H , which is determined once it’s determined on its
dense subset H0. Note that this will also determine the inner product on H0 (due
to polarization).

Indeed, for f =
∑n

i=1 αikxi , we have

∥f∥2 =
n∑

i,j=1

αiαj⟨kxi , kxj ⟩

=
n∑

i,j=1

αj k(xj , xi)αi.

Remark. Note how the completeness of H was used in writing H0 = (H ⊥
0 )⊥. Any example

to show the
necessity of
this?

4Note that addition and scalar multiplication are already determined (namely, pointwise) by
definition.

5A näıve glance suggests that this fixes H as a set, but it doesn’t !—at least yet. We haven’t
yet reduced the description of H to only that of k. The closure of H0 (which does only depend on
k) is dependent on the norm topology induced from H , which might still depend on the choice of
H , not just k.
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We summarize our results so far:{
RKHS’s of

functions on X

}
{r.k.’s on X}

{
p.s.d. kernels

on X

}
Theorem 1.4

Corollary 1.3 (iv)

Corollary 1.3 (i)

(inclusion)

To complete the circle of ideas, we show in the next section that any p.s.d. kernel
is a reproducing kernel for some (and hence unique) RKHS which, among other
things, will lead the inclusion above to become equality.

2. Moore-Aronszajn

The upcoming lemmas are geared towards the following goal: Given a p.s.d. kernel
k on X, we find an RKHS H whose reproducing kernel is precisely k. We do so in
the following steps:

(i) Each kx must lie in H . Thus, we are motivated to first define a vector space
H0 spanned by kx’s.

(ii) We show that there’s a unique inner product on H0 with respect to which k
has the reproducing property.

(iii) Finally, we complete H0, and verify that it’s the required RKHS.

Lemma 2.1. Let k be a p.s.d. kernel on X. Define H0 to be the subspace of KX

generated by kx’s for x ∈ X. Then H0 admits a unique inner product with respect
to which k has the reproducing property.

Proof. We show that

⟨f, g⟩ =
∑

i,j
βj k(yj , xi)αi (2.1)

defines an inner product on H0 for f =
∑m

i=1 αikxi and g =
∑n

j=1 βjkyj . That it’s
well-defined follows because∑

j
βjf(yj) =

∑
i,j

βj k(yj , xi)αi =
∑

i
g(xi)αi (2.2)

where the second equality follows since k is conjugate symmetric. It’s immediate
from Eq. (2.1) that ⟨·, ·⟩ is p.s.d. and conjugate symmetric (since k is a p.s.d. kernel),
and from Eq. (2.2) that it’s bilinear with ⟨f, kx⟩ = f(x) for any x ∈ X (take g = kx).
Only positive definiteness remains to be shown:

Note that ⟨·, ·⟩ is a semi-inner-product so that it obeys Cauchy-Schwarz and
induces a seminorm. Now, let ∥f∥ = 0. Then for any x ∈ X, we have |f(x)| =
|⟨f, kx⟩| ≤ ∥f∥∥kx∥ = 0.
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Lemma 2.2. Continuing Lemma 2.1, let6 S := {Cauchy sequences in H0}. Then
there exists a linear map ϕ : S → KX that maps Cauchy sequences to their pointwise
limits, the kernel of which consists precisely of sequences that converge to 0 in H0.

Proof. First we show that ϕ is indeed well-defined:
Let (fn) be Cauchy in H0. Then for any x ∈ X, we have |fm(x) − fn(x)| =
|⟨fm − fn, kx⟩| ≤ ∥fn − fm∥∥kx∥

w→ 0 as m,n → ∞ so that (fn(x)) is Cauchy
in K and hence convergent. Thus, pointwise limits of Cauchy sequences in H0

do exist.
Linearity of ϕ is easy. We now compute kerϕ. If fn → 0 in H0, then for any

x ∈ X, we have fn(x) = ⟨fn, kx⟩
w→ 0. Conversely, let (fn) be a Cauchy sequence

in H0 that converges to 0 pointwise. We show that it converges to 0 in H0 as well:
Fix an N and write fN =

∑
i αikxi for finitely many i’s. Now,

∥fn∥2 =
∣∣⟨fn − fN , fn⟩+ ⟨fN , fn⟩

∣∣
≤

∣∣⟨fn − fN , fn⟩
∣∣+ ∣∣∣∣∑

i

αifn(xi)

∣∣∣∣
≤ ∥fn − fN∥∥fn∥+

∑
i

|αi||fn(xi)|

so that taking N large enough ensures that the above is eventually less than
any arbitrary ε > 0.

Thus, we have the following commutative diagram:

S

H0 S/ kerϕ imϕ

ϕ|

ι
ϕ̃

The map H0 → S represents the function f 7→ (f, f, . . .).
Now we make our final arguments:

(i) ι : f 7→ (f, f, . . .) is a metric completion with the usual metric on S/ kerϕ,
namely d((fi), (gi)) = limi d(fi, gi)

w
= limi∥fi − gi∥.

(ii) Thus, the metric space S/ kerϕ admits a (unique) Hilbert space structure such
that ι becomes a norm completion with the norm recovering the metric.

(iii) The vector space structure thus endowed on S/ kerϕ is precisely the one due
to the algebraic quotient:

6“S” for “sequences”.
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Note that any two generic elements of S/ kerϕ are given by (fi) and (gi)
where (fi), (gi) are Cauchy sequences in H0. Note that ι(fn)

n→ (fi) and
ι(gn)

n→ (gi) (easy). Continuity of addition and linearity of ι ensure that
ι(fn+gn)

n→ (fi)+(gi). Finally, note that ι(fn+gn)
n→ (fi + gi) as well so

that we indeed have (fi)+(gi) = (fi + gi), which is precisely the definition
of vector addition in the algebraic quotient. Similarly, one can verify for
scalar multiplication.

(iv) ϕ̃ is a vector space isomorphism.7 Thus, the inner product on S/ kerϕ can be
transported to imϕ without altering the latter’s vector space structure, making
ϕ̃ an isometric isomorphism.

(v) Note that ϕ̃◦ι is precisely the inclusion H0 ↪→ imϕ (just traverse along the top
arrows in the commutative diagram above) which is thus an isometric linear
map.

(vi) imϕ is complete since S/ kerϕ is, and thus is a Hilbert space.

(vii) Finally, we show that k still has the reproducing property on imϕ:
Let f ∈ imϕ be the pointwise limit of the Cauchy sequence (fi) in H0.
Then fi → f in imϕ as well:

Note that f = ϕ̃( (fi) ) and fj = ϕ̃ ◦ ι(fj). Thus it suffices to have

ι(fj)
j→ (fi) in S/ kerϕ which is indeed true.

Thus, for any x ∈ X, one has ⟨f, kx⟩ = limi⟨fi, kx⟩ = limi fi(x) = f(x) as
claimed.

We have thus constructed a Hilbert space, namely imϕ, whose reproducing kernel
is precisely k, proving the following:

Theorem 2.3 (Moore-Aronszajn). Any p.s.d. kernel is a reproducing kernel.

3. A Toy Example

3.1 For finite X

Here, we ask the question: If k is a p.s.d. kernel on a finite X, what is the associated
RKHS?

7With respect to the algebraic vector space structure on S/ kerϕ, not neceassrily the vector
space structure coming from completion. Thus, it was crucial to show that these two structures are
exactly the same.
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Without loss of generality, let X = {1, . . . , n} for n ∈ N. Now, any p.s.d. kernel
k on X is simply a p.s.d. and conjugate symmetric n × n matrix and our inner
product space H0 (in the language of Lemma 2.1) is the column space col(k) of k.
It’s complete being finite dimensional and thus itself is the required RKHS. In this
case, Eq. (2.1) becomes

⟨kα, kβ⟩ =
n∑

i,j=1

αik(j, i)βj

=
n∑

i,j=1

αik(i, j)βj

= ⟨α, kβ⟩e

where ⟨·, ·⟩e denotes the usual Euclidean inner product on Kn.
Noting that col k = Kn for positive definite k’s we recover the familiar correspon-

dence between inner products on Kn and positive definite n× n matrices.

3.2 Finite-dimensional spaces

Let H be finite-dimensional subspace of KX . We ask: Is V an RKHS? If so, what
is the associated reproducing kernel?

The answer is an easy yes. Suppose it indeed is with the reproducing kernel being
k. Let f1, . . . , fn form an orthonormal basis for H . Then we must have

kx =
n∑

i=1

⟨kx, fi⟩fi

=
n∑

i=1

fi(x)fi

yielding

k(x, y) =
n∑

i=1

fi(x)fi(y). (3.1)

Now, it’s straightforward to check that k defined by Eq. (3.1) indeed is a reproducing
kernel for H :

· Firstly, note that each kx ∈ H being a linear combination of fi’s.
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· Secondly, for g ∈ H , we have ⟨g, kx⟩ =
∑

i fi(x)⟨g, fi⟩ =
(∑

i⟨g, fi⟩fi
)
(x) =

g(x).

Taking H to be the set of all polynomials of degree less than or equal to an
n ∈ N with the inner product being such that the monomials form an orthonormal
basis, Eq. (3.1) becomes

k(x, y) =

{
1−(xy)n+1

1−xy
, xy ̸= 1

n+ 1, otherwise
.

4. References

1. Aronszajn’s theorem by Jean-Philippe Vert. Link.

2. Uniqueness of the RKHS by Jean-Philippe Vert. Link.

https://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/notes/aronszajn.pdf
https://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/notes/uniquenessRKHS.pdf

	RKHS's and Kernels
	Moore-Aronszajn
	A Toy Example
	For finite X
	Finite-dimensional spaces

	References

