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Chapter I

The multivariate derivative

Convention. Throughout the document, V ,W will stand for generic normed
linear spaces, and Ω, Υ will denote open subsets of V , W respectively. D

will denote a domain of V .

Convention. A result that involves K (or that doesn’t mention the field to
be R or C explicitly) will actually stand for two results, one for K := R, and
one for K := C.

1 The Fréchet derivative

January 10, 2023

Remark. Normed linear spaces will be over K, and we’ll also view them as
metric and topological spaces.

Definition 1.1 (Fréchet derivative). Let V , W be normed linear spaces and
f : Ω → W with Ω being open in V .1 Then we say that a linear map2

L : V → W is a (Fréchet) derivative of f at a point c ∈ Ω iff for every ε > 0,
there exists a δ > 0 such that

∥f(x)− f(c)− L(x− c)∥ < ε∥x− c∥
1Note that for a nonzero normed linear space, Ω ⊆ ℓ(Ω) as singletons are not open.
2Usual definitions require L to be bounded. See Proposition 1.7.
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CHAPTER I. THE MULTIVARIATE DERIVATIVE 2

whenever x ∈ Bδ(c) ∩ Ω \ {c}.
If such an L exists, we say that f is (Fréchet) differentiable at c.
If f : Ω → S where S ⊆ W , then we say that f is (Fréchet) differentiable

at c iff ιW←S ◦ f is differentiable at c.

Remark. Note that V , W have to be over a common field: The Fréchet
derivative is a linear map.

Hence, whenever a Fréchet derivative (or differentiability) will be men-
tioned in the hypotheses of a theorem, implicit will be the assumption that
the spaces are over a common field.

Corollary 1.2. The Fréchet derivative of a linear map is itself.

Remark. Hence, Fréchet differentiability need not imply continuity for there
are unbounded linear operators (only in infinite dimensions though): Con-
sider V :=

⊕∞
i=1R over R with sup norm, and then consider the map

T : V → R given by
en 7→ n.

Lemma 1.3. Let V , W be normed linear spaces and T : V → W be linear
such that for every ε > 0, there exists a δ > 0 such that

∥Tx∥ < ε∥x∥

for all x ∈ Bδ(0) \ {0}. Then T = 0.

Proposition 1.4. There exists at most one Fréchet derivative at any point.

Notation. This allows to denote it by Df(c). In case of f : Ω → S where
S ⊆ W , we’ll again use Df(c), but to denote D(ιW←S ◦ f)(c).

Remark. Unless stated otherwise, the norm considered on Kn will the l2
norm (which can be induced from the Euclidean inner-product).

However, it doesn’t matter if we are only interested in Fréchet differ-
entiability as norms in finite dimensions are equivalent so that we can use
Proposition 1.6.
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Proposition 1.5 (Equivalence with differentiability on R). Let Ω be open
in R and f : Ω → R with c ∈ Ω. Then f is differentiable at c ⇐⇒ f is
Fréchet differentiable at c, in which case, we have

Df(c) : x 7→ f ′(c)x.

Proposition 1.6 (Equivalent norms preserve derivative). Let V , W be vector
spaces, each equipped with a pair of equivalent norms, unprimed and primed.
Let f : Ω → W where Ω is open in W . Then f is Fréchet differentiable at
c ∈ Ω in the unprimed norms ⇐⇒ it is so in the primed norms, in which
case,

Df(c) = D′f(c).

Remark. Since norms in finite dimensions are equivalent, this means that
the Fréchet derivative is independent of the norm for finite-dimensional spaces!

Proposition 1.7. A function with a bounded Fréchet derivative at a point
is continuous at that point.

Remark. Since linear maps from finite-dimensional domains are bounded,
we don’t need to worry about boundedness of the Fréchet derivative in finite-
dimensional domains.

2 Directional derivatives

January 10, 2023

Definition 2.1 (Directional derivatives). Let V , W be normed linear spaces
and f : Ω → W where Ω is open in V . Let c ∈ Ω and v ∈ V \ {0}. Take an
ε > 0 such that c+ tv ∈ Ω for each t ∈ (−ε, ε). Then, if existent, we define3

Dvf(c) := lim
t→0

f(c+ tv)− f(c)

t∥v∥
.

If this exists, then we say that f is differentiable along v and call Dvf(c)
its derivative.

Again we define things for f : Ω → S for S ⊆ W , as before.

3On the right-hand-side, the function is on (−ε, ε) \ {0} → W . Note that 0 is a limit
point of (−ε, ε) \ {0}.
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Remark. The above limit won’t depend on ε, and hence we don’t mention
it on the left-hand-side.

Also, here, unlike for the Fréchet derivative, V and W can be over differ-
ent fields!

Corollary 2.2 (Directional derivatives are blind to magnitude). Let V , W
be normed linear spaces and f : Ω → W where Ω is open in V . Let f be
differentiable at a point c ∈ Ω along a nonzero v. Then f is also differentiable
at c along λv for any nonzero scalar λ with

Dvf(c) = Dλvf(c).

Proposition 2.3 (Fréchet differentiable =⇒ differentiable along all direc-
tions). Let V , W be normed linear spaces and f : Ω → W , with Ω open in
V , be Fréchet differentiable at c ∈ Ω. Then f is differentiable along any
v ∈ V \ {0}, and

Dvf(c) =
(Df(c))(v)

∥v∥
.

Example 2.4 (The function needn’t be differentiable even if all the directional
derivatives exist!). Consider f : R2 → R given by

f(x, y) :=

{
x2y

x4+y2
, (x, y) ̸= (0, 0)

0, (x, y) = (0, 0)
.

Then f is differentiable along all directions at (0, 0) but not even continuous at
(0, 0), let alone differentiable!4

Example 2.5 (The function needn’t be differentiable even if the derivatives along
all the directions come from some L!). Define f : R2 → R by

(x, y) 7→

{
x3y

x4+y2
, (x, y) ̸= (0, 0)

0, (x, y) = (0, 0)
.

Then for all v ∈ R2 \ {(0, 0)}, we have5

Dvf(0, 0) = 0

= 0v

and still f is not differentiable at (0, 0), let alone 0 being its Fréchet derivative.

4Differentiability =⇒ continuity in finite-dimensions.
5The 0 here is the zero map.
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Proposition 2.6 (Scaling of directional derivatives under equivalent norms).
Continuing Proposition 1.6, f is differentiable at c along a nonzero v in the
unprimed norms ⇐⇒ it is so in the primed norms, in which case,

∥v∥Dvf(c) = ∥v∥′D′vf(c).

3 Partial derivatives

January 12, 2023

Definition 3.1 (Partial derivatives). Let V , W be normed linear spaces with
bases B and C respectively. Let f : Ω → W where Ω is open in V . Let ẽ ∈ C
and e ∈ B. Let fẽ : Ω → K be the ẽ-component of f . Then for c ∈ Ω, if
existent, we define

∂efẽ(c) := lim
t→0

fẽ(c+ te)− fẽ(c)

t
= ∥e∥Defẽ(c)

(∗)
= Dfẽ(c)(e)

where the starred equality holds6 if fẽ : Ω → K is Fréchet differentiable.

Remark. The basis of W should technically have been incorporated in the
notation.

Partials also can be defined even if V , W have different bases!

Theorem 3.2 (Jacobian). Let V , W be finite-dimensional normed linear
spaces with ordered bases B and C respectively. Let Ω be open in V and
f : Ω → W be differentiable at c ∈ Ω. Then all the partials exist at c, and we
have7 [

Df(c)
]
C←B =

∂1f1(c) · · · ∂nf1(c)
...

...
∂1fm(c) · · · ∂nfm(c)

 .

6Makes sense even!
7fi’s are as in Definition 3.1.
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4 Some results

January 20, 2023

Theorem 4.1 (Differentiability in terms of components). Let V , W be
normed linear spaces with W being finite-dimensional with a basis C. Let
f : Ω → W , where Ω is an open subset of V , decompose into fẽ : Ω → K for
ẽ ∈ C. Then f is differentiable at a point c ∈ Ω ⇐⇒ each fẽ is differentiable
at c, in which case,

Df(c)(v) =
∑
ẽ∈C

Dfẽ(c)(v) ẽ.

Theorem 4.2 (Chain rule). Let U , V , W be normed linear spaces. Let Ω
be open in U and Υ be open in V . Let f : Ω → Υ be differentiable at c ∈ Ω
and g : Υ → W be differentiable at f(c) ∈ Υ. Then g ◦ f is differentiable at
c with

D(g ◦ f)(c) = Dg(f(c)) ◦Df(c).

Corollary 4.3. Let V , W be finite-dimensional normed linear spaces and
f : Ω → Υ be invertible where Ω, Υ are open in V , W respectively. Let f
be differentiable at c ∈ Ω and f−1 be differentiable at f(c) ∈ Υ. Then the
following hold:

(i) dimV = dimW .

(ii) Df(c) : V → W is invertible with (Df(c))−1 = Df−1(f(c)).

Theorem 4.4 (Continuous partials =⇒ differentiability). Let V , W be
finite-dimensional normed linear spaces over R. Let f : Ω → W where Ω is
open in V and let there exist a basis of V in which f is directionally differen-
tiable throughout Ω along all directions, with the directional derivatives being
continuous at a point c ∈ Ω.8 Then f is differentiable at c.

Theorem 4.5 (Mean value for Ω → R). Let V , W be normed linear spaces
with W being one-dimensional over R. Let f : Ω → W (Ω open) be contin-
uous over [x; y] ⊆ Ω with x ̸= y. Let (ẽ) be a basis of W and ∂y−xfẽ exist
throughout (x; y). 9. Then there exists a point ξ ∈ (x; y) such that

f(y)− f(x) = ∂y−xfẽ(ξ).
10

8This is equivalent to demanding the continuity of all the partials at c.
9The continuity on (x; y) doesn’t follow from differentiability on (x; y) for V might be

infinite dimensional.
10If f is differentiable on (x; y), then this can be written as Dfẽ(ξ)(y − x).



CHAPTER I. THE MULTIVARIATE DERIVATIVE 7

Corollary 4.6 (Zero derivative =⇒ constant). Let V , W be normed linear
spaces over R with W being one-dimensional. Let f : Ω → W , where Ω is
open and connected in V , be differentiable throughout with11 Df(x) = 0 for
each x ∈ Ω. Then f is constant over Ω.

Theorem 4.7 (Mean value for Ω → Rn). Let V , W be normed linear spaces
over R with W being finite-dimensional. Let f : Ω → W , where Ω is open in
V , be differentiable on (x; y) and continuous on [x; y] ⊆ Ω. Let u ∈ W and
C be a basis of W . Then there exists a point ξ ∈ (x; y) such that〈

[u]C, [f(y)− f(x)]C
〉
=

〈
[u]C, [Df(ξ)(y − x)]C

〉
where ⟨·, ·⟩ is the Euclidean inner-product on R|C|.

Further, if V is finite-dimensional too with basis B, then∥∥[f(y)− f(x)]C
∥∥
2
≤ M

∥∥[y − x]B
∥∥
2

where ∥·∥2 represents the Euclidean norm on the respective spaces, and12

M := sup
z∈Ω

∥∥[Df(z)]C←B
∥∥

is existent.

5 Higher partials

January 25, 2023

Definition 5.1 (Higher partials). Let V , W be normed linear spaces and
f : Ω → W where Ω is open in V . Let B and C be bases of V and W
respectively. Then we define higher partials inductively as follows:

Let ẽ ∈ C and fẽ : Ω → K be f ’s ẽ-component with respect to basis C.
Firstly, we define

∂()fẽ := fẽ.

Now, suppose ∂e1,...,enfẽ : U → K has been defined for e1, . . . , en ∈ B where
U is open in V . Then, for another e ∈ B, we define

∂e,e1,...,enfẽ : V → K
110 here is the zero function V → W .
12The norms of the matrices are taken with Rk’s under the Euclidean norm.
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where V is the interior of the the set of all the points c in U wherever
∂e(∂e1,...,enfẽ)(1)(c) exists,

13 and we define

∂e,e1,...,enfẽ(c) := ∂e(∂e1,...,enfẽ)(1)(c)

for c ∈ V.

Remark. This leads to a notational collision for the case of ∂efẽ which we
have defined before (in Definition 3.1). But it’s mild.

Definition 5.2 (Differentiability classes (with respect to bases)). Let V , W
be normed linear spaces and f : Ω → W where Ω is open in V . Let B and C
be bases of V and W respectively. Then we say that f is of differentiability
class Cn for n ≥ 0 iff for any e1, . . . , en ∈ B and any ẽ ∈ C, the following
hold:

(i) The domain of ∂e1,...,enfẽ is whole of Ω.

(ii) ∂e1,...,enfẽ is continuous throughout Ω.

Remark. Note that the differentiability classes have to be talked of in the
context of chosen bases!

Lemma 5.3. Let V , W be normed linear spaces and f : Ω → W (Ω open)
be Cn (n ≥ 0) in the respective bases B, C. Let e1, . . . , ek ∈ B for 0 ≤ k ≤ n.
Then, for any 0 ≤ l ≤ k and any ẽ ∈ C, the following hold:

(i) ∂k,...,1fẽ is Cn−k in bases B and (1).

(ii) ∂k,...,l+1(∂l,...,1fẽ)(1) = ∂k,...,1fẽ.

Theorem 5.4 (Clairaut). Let V be a normed linear space with a basis B. Let
f : Ω → R where Ω is open in V . Let e1, e2 ∈ V be distinct. Let the domains
of14 ∂1f(1), ∂2f(1), ∂1,2f(1) and ∂2,1f(1) be whole of Ω with ∂1,2f(1) and ∂2,1f(1)
being continuous at c ∈ Ω. Then

∂1,2f(1)(c) = ∂2,1f(1)(c).

13The subscript (1) denotes the fact that we are taking the usual basis for the normed
linear space K, namely the singleton containing 1.

14See Footnote 13.
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Proposition 5.5 (Generalized Clairaut). Let V be a normed linear space
with W being over R and f : Ω → R (Ω open) be Cn (n ≥ 0) in the respective
bases B, (1). Then for any e1, . . . , ek ∈ B for 0 ≤ k ≤ n, we have

∂1,...,kf(1) = ∂σ(1),...,σ(k)f(1)

for any permutation σ ∈ Sk.

Theorem 5.6 (Taylor). Let V be a normed linear space over R and f : Ω →
R, with Ω open in V , be Cn+1 (n ≥ 0) in bases (e1, . . . , em) and (1). Let
[x; y] ⊆ Ω with x ̸= y. Then there exists a ξ ∈ (x; y) such that

f(y) =
∑
|α|≤n

1

α!
∂αf(1)(x)(y − x)α +

∑
|α|=n+1

1

α!
∂αf(1)(ξ)(y − x)α

where α ranges over Nm.15

15The usual multi-index notation is used. See Appendix 1.



Appendix A

1 Multi-index notation

January 27, 2023

Definition 1.1 (Multi-index factorials and partials). Let n ≥ 0 and α ∈ Nn.
Then we define

α! := α1! · · ·αn!, and

|α| := α1 + · · ·+ αn.

For x ∈ Xn where X is a set where a product (with identity) is defined,
we define

xα := xα1
1 · · ·xαn

n .

Also, for a multivariate K-valued function f with the domain being finite-
dimensional with a basis (e1, . . . , en), we define

∂αf(1) := ∂ 1,...,1︸︷︷︸
α1 times

,..., n,...,n︸︷︷︸
αn times

f(1).

Lemma 1.2 (Multinomial expansion). Let R be a commutative ring with
identity and x ∈ Rn, n ≥ 0. Then for k ≥ 0, we have

(x1 + · · ·+ xn)
k =

∑
|α|=k

k!

α!
xα

where α ∈ Nn.

10


	The multivariate derivative
	The Fréchet derivative
	Directional derivatives
	Partial derivatives
	Some results
	Higher partials

	
	Multi-index notation


