Contents

I The multivariate derivative 1
1 The Fréchet derivative 1
2 Directional derivatives 3
3 Partial derivatives 5
4 Some results 6
5 Higher partials 7
A 10
1 Multi-index notation 10

Chapter I

The multivariate derivative

Convention. Throughout the document, V, W will stand for generic normed linear spaces, and Ω, Υ will denote open subsets of V, W respectively. \mathscr{D} will denote a domain of V.

Convention. A result that involves \mathbb{K} (or that doesn't mention the field to be \mathbb{R} or \mathbb{C} explicitly) will actually stand for two results, one for $\mathbb{K}:=\mathbb{R}$, and one for $\mathbb{K}:=\mathbb{C}$.

1 The Fréchet derivative

January 10, 2023
Remark. Normed linear spaces will be over \mathbb{K}, and we'll also view them as metric and topological spaces.

Definition 1.1 (Fréchet derivative). Let V, W be normed linear spaces and $f: \Omega \rightarrow W$ with Ω being open in $V .{ }^{1}$ Then we say that a linear map ${ }^{2}$ $L: V \rightarrow W$ is a (Fréchet) derivative of f at a point $c \in \Omega$ iff for every $\varepsilon>0$, there exists a $\delta>0$ such that

$$
\|f(x)-f(c)-L(x-c)\|<\varepsilon\|x-c\|
$$

[^0]whenever $x \in B_{\delta}(c) \cap \Omega \backslash\{c\}$.
If such an L exists, we say that f is (Fréchet) differentiable at c.
If $f: \Omega \rightarrow S$ where $S \subseteq W$, then we say that f is (Fréchet) differentiable at c iff $\iota_{W \leftarrow S} \circ f$ is differentiable at c.

Remark. Note that V, W have to be over a common field: The Fréchet derivative is a linear map.

Hence, whenever a Fréchet derivative (or differentiability) will be mentioned in the hypotheses of a theorem, implicit will be the assumption that the spaces are over a common field.

Corollary 1.2. The Fréchet derivative of a linear map is itself.

Remark. Hence, Fréchet differentiability need not imply continuity for there are unbounded linear operators (only in infinite dimensions though): Consider $V:=\bigoplus_{i=1}^{\infty} \mathbb{R}$ over \mathbb{R} with sup norm, and then consider the map $T: V \rightarrow \mathbb{R}$ given by

$$
e_{n} \mapsto n .
$$

Lemma 1.3. Let V, W be normed linear spaces and $T: V \rightarrow W$ be linear such that for every $\varepsilon>0$, there exists a $\delta>0$ such that

$$
\|T x\|<\varepsilon\|x\|
$$

for all $x \in B_{\delta}(0) \backslash\{0\}$. Then $T=0$.
Proposition 1.4. There exists at most one Fréchet derivative at any point.

Notation. This allows to denote it by $D f(c)$. In case of $f: \Omega \rightarrow S$ where $S \subseteq W$, we'll again use $D f(c)$, but to denote $D\left(\iota_{W \leftarrow S} \circ f\right)(c)$.

Remark. Unless stated otherwise, the norm considered on \mathbb{K}^{n} will the l_{2} norm (which can be induced from the Euclidean inner-product).

However, it doesn't matter if we are only interested in Fréchet differentiability as norms in finite dimensions are equivalent so that we can use Proposition 1.6.

Proposition 1.5 (Equivalence with differentiability on \mathbb{R}). Let Ω be open in \mathbb{R} and $f: \Omega \rightarrow \mathbb{R}$ with $c \in \Omega$. Then f is differentiable at $c \Longleftrightarrow f$ is Fréchet differentiable at c, in which case, we have

$$
D f(c): x \mapsto f^{\prime}(c) x
$$

Proposition 1.6 (Equivalent norms preserve derivative). Let V, W be vector spaces, each equipped with a pair of equivalent norms, unprimed and primed. Let $f: \Omega \rightarrow W$ where Ω is open in W. Then f is Fréchet differentiable at $c \in \Omega$ in the unprimed norms \Longleftrightarrow it is so in the primed norms, in which case,

$$
D f(c)=D^{\prime} f(c) .
$$

Remark. Since norms in finite dimensions are equivalent, this means that the Fréchet derivative is independent of the norm for finite-dimensional spaces!

Proposition 1.7. A function with a bounded Fréchet derivative at a point is continuous at that point.

Remark. Since linear maps from finite-dimensional domains are bounded, we don't need to worry about boundedness of the Fréchet derivative in finitedimensional domains.

2 Directional derivatives

January 10, 2023
Definition 2.1 (Directional derivatives). Let V, W be normed linear spaces and $f: \Omega \rightarrow W$ where Ω is open in V. Let $c \in \Omega$ and $v \in V \backslash\{0\}$. Take an $\varepsilon>0$ such that $c+t v \in \Omega$ for each $t \in(-\varepsilon, \varepsilon)$. Then, if existent, we define ${ }^{3}$

$$
D_{v} f(c):=\lim _{t \rightarrow 0} \frac{f(c+t v)-f(c)}{t\|v\|}
$$

If this exists, then we say that f is differentiable along v and call $D_{v} f(c)$ its derivative.

Again we define things for $f: \Omega \rightarrow S$ for $S \subseteq W$, as before.

[^1]Remark. The above limit won't depend on ε, and hence we don't mention it on the left-hand-side.

Also, here, unlike for the Fréchet derivative, V and W can be over different fields!

Corollary 2.2 (Directional derivatives are blind to magnitude). Let V, W be normed linear spaces and $f: \Omega \rightarrow W$ where Ω is open in V. Let f be differentiable at a point $c \in \Omega$ along a nonzero v. Then f is also differentiable at c along λv for any nonzero scalar λ with

$$
D_{v} f(c)=D_{\lambda v} f(c)
$$

Proposition 2.3 (Fréchet differentiable \Longrightarrow differentiable along all directions). Let V, W be normed linear spaces and $f: \Omega \rightarrow W$, with Ω open in V, be Fréchet differentiable at $c \in \Omega$. Then f is differentiable along any $v \in V \backslash\{0\}$, and

$$
D_{v} f(c)=\frac{(D f(c))(v)}{\|v\|}
$$

Example 2.4 (The function needn't be differentiable even if all the directional derivatives exist!). Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y):= \begin{cases}\frac{x^{2} y}{x^{4}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Then f is differentiable along all directions at $(0,0)$ but not even continuous at $(0,0)$, let alone differentiable! ${ }^{4}$

Example 2.5 (The function needn't be differentiable even if the derivatives along all the directions come from some $L!$). Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
(x, y) \mapsto \begin{cases}\frac{x^{3} y}{x^{4}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Then for all $v \in \mathbb{R}^{2} \backslash\{(0,0)\}$, we have ${ }^{5}$

$$
\begin{aligned}
D_{v} f(0,0) & =0 \\
& =0 v
\end{aligned}
$$

and still f is not differentiable at $(0,0)$, let alone 0 being its Fréchet derivative.

[^2]Proposition 2.6 (Scaling of directional derivatives under equivalent norms). Continuing Proposition 1.6, f is differentiable at c along a nonzero v in the unprimed norms \Longleftrightarrow it is so in the primed norms, in which case,

$$
\|v\| D_{v} f(c)=\|v\|^{\prime} D_{v}^{\prime} f(c)
$$

3 Partial derivatives

January 12, 2023
Definition 3.1 (Partial derivatives). Let V, W be normed linear spaces with bases \mathcal{B} and \mathcal{C} respectively. Let $f: \Omega \rightarrow W$ where Ω is open in V. Let $\tilde{e} \in \mathcal{C}$ and $e \in \mathcal{B}$. Let $f_{\tilde{e}}: \Omega \rightarrow \mathbb{K}$ be the \tilde{e}-component of f. Then for $c \in \Omega$, if existent, we define

$$
\begin{aligned}
\partial_{e} f_{\tilde{e}}(c) & :=\lim _{t \rightarrow 0} \frac{f_{\tilde{e}}(c+t e)-f_{\tilde{e}}(c)}{t} \\
& =\|e\| D_{e} f_{\tilde{e}}(c) \\
& \stackrel{(*)}{=} D f_{\tilde{e}}(c)(e)
\end{aligned}
$$

where the starred equality holds ${ }^{6}$ if $f_{\tilde{e}}: \Omega \rightarrow \mathbb{K}$ is Fréchet differentiable.

Remark. The basis of W should technically have been incorporated in the notation.

Partials also can be defined even if V, W have different bases!

Theorem 3.2 (Jacobian). Let V, W be finite-dimensional normed linear spaces with ordered bases \mathcal{B} and \mathcal{C} respectively. Let Ω be open in V and $f: \Omega \rightarrow W$ be differentiable at $c \in \Omega$. Then all the partials exist at c, and we have ${ }^{7}$

$$
[D f(c)]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ccc}
\partial_{1} f_{1}(c) & \cdots & \partial_{n} f_{1}(c) \\
\vdots & & \vdots \\
\partial_{1} f_{m}(c) & \cdots & \partial_{n} f_{m}(c)
\end{array}\right]
$$

[^3]
4 Some results

January 20, 2023
Theorem 4.1 (Differentiability in terms of components). Let V, W be normed linear spaces with W being finite-dimensional with a basis \mathcal{C}. Let $f: \Omega \rightarrow W$, where Ω is an open subset of V, decompose into $f_{\tilde{e}}: \Omega \rightarrow \mathbb{K}$ for $\tilde{e} \in \mathcal{C}$. Then f is differentiable at a point $c \in \Omega \Longleftrightarrow$ each $f_{\tilde{e}}$ is differentiable at c, in which case,

$$
D f(c)(v)=\sum_{\tilde{e} \in \mathcal{C}} D f_{\tilde{e}}(c)(v) \tilde{e}
$$

Theorem 4.2 (Chain rule). Let U, V, W be normed linear spaces. Let Ω be open in U and Υ be open in V. Let $f: \Omega \rightarrow \Upsilon$ be differentiable at $c \in \Omega$ and $g: \Upsilon \rightarrow W$ be differentiable at $f(c) \in \Upsilon$. Then $g \circ f$ is differentiable at c with

$$
D(g \circ f)(c)=D g(f(c)) \circ D f(c)
$$

Corollary 4.3. Let V, W be finite-dimensional normed linear spaces and $f: \Omega \rightarrow \Upsilon$ be invertible where Ω, Υ are open in V, W respectively. Let f be differentiable at $c \in \Omega$ and f^{-1} be differentiable at $f(c) \in \Upsilon$. Then the following hold:
(i) $\operatorname{dim} V=\operatorname{dim} W$.
(ii) $D f(c): V \rightarrow W$ is invertible with $(D f(c))^{-1}=D f^{-1}(f(c))$.

Theorem 4.4 (Continuous partials \Longrightarrow differentiability). Let V, W be finite-dimensional normed linear spaces over \mathbb{R}. Let $f: \Omega \rightarrow W$ where Ω is open in V and let there exist a basis of V in which f is directionally differentiable throughout Ω along all directions, with the directional derivatives being continuous at a point $c \in \Omega .{ }^{8}$ Then f is differentiable at c.

Theorem 4.5 (Mean value for $\Omega \rightarrow \mathbb{R}$). Let V, W be normed linear spaces with W being one-dimensional over \mathbb{R}. Let $f: \Omega \rightarrow W$ (Ω open) be continuous over $[x ; y] \subseteq \Omega$ with $x \neq y$. Let (\tilde{e}) be a basis of W and $\partial_{y-x} f_{\tilde{e}}$ exist throughout $(x ; y) .{ }^{9}$. Then there exists a point $\xi \in(x ; y)$ such that

$$
f(y)-f(x)=\partial_{y-x} f_{\tilde{e}}(\xi) \cdot{ }^{10}
$$

[^4]Corollary 4.6 (Zero derivative \Longrightarrow constant). Let V, W be normed linear spaces over \mathbb{R} with W being one-dimensional. Let $f: \Omega \rightarrow W$, where Ω is open and connected in V, be differentiable throughout with ${ }^{11} D f(x)=0$ for each $x \in \Omega$. Then f is constant over Ω.

Theorem 4.7 (Mean value for $\Omega \rightarrow \mathbb{R}^{n}$). Let V, W be normed linear spaces over \mathbb{R} with W being finite-dimensional. Let $f: \Omega \rightarrow W$, where Ω is open in V, be differentiable on $(x ; y)$ and continuous on $[x ; y] \subseteq \Omega$. Let $u \in W$ and \mathcal{C} be a basis of W. Then there exists a point $\xi \in(x ; y)$ such that

$$
\left\langle[u]_{\mathcal{C}},[f(y)-f(x)]_{\mathcal{C}}\right\rangle=\left\langle[u]_{\mathcal{C}},[D f(\xi)(y-x)]_{\mathcal{C}}\right\rangle
$$

where $\langle\cdot, \cdot\rangle$ is the Euclidean inner-product on $\mathbb{R}^{|\mathcal{C}|}$.
Further, if V is finite-dimensional too with basis \mathcal{B}, then

$$
\left\|[f(y)-f(x)]_{\mathcal{C}}\right\|_{2} \leq M\left\|[y-x]_{\mathcal{B}}\right\|_{2}
$$

where $\|\cdot\|_{2}$ represents the Euclidean norm on the respective spaces, and ${ }^{12}$

$$
M:=\sup _{z \in \Omega}\left\|[D f(z)]_{\mathcal{C} \leftarrow \mathcal{B}}\right\|
$$

is existent.

5 Higher partials

January 25, 2023
Definition 5.1 (Higher partials). Let V, W be normed linear spaces and $f: \Omega \rightarrow W$ where Ω is open in V. Let \mathcal{B} and \mathcal{C} be bases of V and W respectively. Then we define higher partials inductively as follows:

Let $\tilde{e} \in \mathcal{C}$ and $f_{\tilde{e}}: \Omega \rightarrow \mathbb{K}$ be f^{\prime} 's \tilde{e}-component with respect to basis \mathcal{C}. Firstly, we define

$$
\partial_{()} f_{\tilde{e}}:=f_{\tilde{e}}
$$

Now, suppose $\partial_{e_{1}, \ldots, e_{n}} f_{\tilde{e}}: \mathscr{U} \rightarrow \mathbb{K}$ has been defined for $e_{1}, \ldots, e_{n} \in \mathcal{B}$ where \mathscr{U} is open in V. Then, for another $e \in \mathcal{B}$, we define

$$
\partial_{e, e_{1}, \ldots, e_{n}} f_{\tilde{e}}: \mathscr{V} \rightarrow \mathbb{K}
$$

[^5]where \mathscr{V} is the interior of the the set of all the points c in \mathscr{U} wherever $\partial_{e}\left(\partial_{e_{1}, \ldots, e_{n}} f_{\tilde{e}}\right)_{(1)}(c)$ exists, ${ }^{13}$ and we define
$$
\partial_{e, e_{1}, \ldots, e_{n}} f_{\tilde{e}}(c):=\partial_{e}\left(\partial_{e_{1}, \ldots, e_{n}} f_{\tilde{e}}\right)_{(1)}(c)
$$
for $c \in \mathscr{V}$.

Remark. This leads to a notational collision for the case of $\partial_{e} f_{\tilde{e}}$ which we have defined before (in Definition 3.1). But it's mild.

Definition 5.2 (Differentiability classes (with respect to bases)). Let V, W be normed linear spaces and $f: \Omega \rightarrow W$ where Ω is open in V. Let \mathcal{B} and \mathcal{C} be bases of V and W respectively. Then we say that f is of differentiability class C^{n} for $n \geq 0$ iff for any $e_{1}, \ldots, e_{n} \in \mathcal{B}$ and any $\tilde{e} \in \mathcal{C}$, the following hold:
(i) The domain of $\partial_{e_{1}, \ldots, e_{n}} f_{\tilde{e}}$ is whole of Ω.
(ii) $\partial_{e_{1}, \ldots, e_{n}} f_{\tilde{e}}$ is continuous throughout Ω.

Remark. Note that the differentiability classes have to be talked of in the

 context of chosen bases!Lemma 5.3. Let V, W be normed linear spaces and $f: \Omega \rightarrow W$ (Ω open) be $C^{n}(n \geq 0)$ in the respective bases \mathcal{B}, \mathcal{C}. Let $e_{1}, \ldots, e_{k} \in \mathcal{B}$ for $0 \leq k \leq n$. Then, for any $0 \leq l \leq k$ and any $\tilde{e} \in \mathcal{C}$, the following hold:
(i) $\partial_{k, \ldots, 1} f_{\tilde{e}}$ is C^{n-k} in bases \mathcal{B} and (1).
(ii) $\partial_{k, \ldots, l+1}\left(\partial_{l, \ldots, 1} f_{\tilde{e}}\right)_{(1)}=\partial_{k, \ldots, 1} f_{\tilde{e}}$.

Theorem 5.4 (Clairaut). Let V be a normed linear space with a basis \mathcal{B}. Let $f: \Omega \rightarrow \mathbb{R}$ where Ω is open in V. Let $e_{1}, e_{2} \in V$ be distinct. Let the domains of ${ }^{14} \partial_{1} f_{(1)}, \partial_{2} f_{(1)}, \partial_{1,2} f_{(1)}$ and $\partial_{2,1} f_{(1)}$ be whole of Ω with $\partial_{1,2} f_{(1)}$ and $\partial_{2,1} f_{(1)}$ being continuous at $c \in \Omega$. Then

$$
\partial_{1,2} f_{(1)}(c)=\partial_{2,1} f_{(1)}(c)
$$

[^6]Proposition 5.5 (Generalized Clairaut). Let V be a normed linear space with W being over \mathbb{R} and $f: \Omega \rightarrow \mathbb{R}$ (Ω open) be $C^{n}(n \geq 0$) in the respective bases \mathcal{B}, (1). Then for any $e_{1}, \ldots, e_{k} \in \mathcal{B}$ for $0 \leq k \leq n$, we have

$$
\partial_{1, \ldots, k} f_{(1)}=\partial_{\sigma(1), \ldots, \sigma(k)} f_{(1)}
$$

for any permutation $\sigma \in S_{k}$.
Theorem 5.6 (Taylor). Let V be a normed linear space over \mathbb{R} and $f: \Omega \rightarrow$ \mathbb{R}, with Ω open in V, be $C^{n+1}(n \geq 0)$ in bases $\left(e_{1}, \ldots, e_{m}\right)$ and (1). Let $[x ; y] \subseteq \Omega$ with $x \neq y$. Then there exists a $\xi \in(x ; y)$ such that

$$
f(y)=\sum_{|\alpha| \leq n} \frac{1}{\alpha!} \partial^{\alpha} f_{(1)}(x)(y-x)^{\alpha}+\sum_{|\alpha|=n+1} \frac{1}{\alpha!} \partial^{\alpha} f_{(1)}(\xi)(y-x)^{\alpha}
$$

where α ranges over $\mathbb{N}^{m} .{ }^{15}$

[^7]
Appendix A

1 Multi-index notation

January 27, 2023
Definition 1.1 (Multi-index factorials and partials). Let $n \geq 0$ and $\alpha \in \mathbb{N}^{n}$. Then we define

$$
\begin{aligned}
\alpha! & :=\alpha_{1}!\cdots \alpha_{n}!, \text { and } \\
|\alpha| & :=\alpha_{1}+\cdots+\alpha_{n} .
\end{aligned}
$$

For $x \in X^{n}$ where X is a set where a product (with identity) is defined, we define

$$
x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} .
$$

Also, for a multivariate \mathbb{K}-valued function f with the domain being finitedimensional with a basis $\left(e_{1}, \ldots, e_{n}\right)$, we define

$$
\partial^{\alpha} f_{(1)}:=\partial_{\alpha_{1} \text { times }}^{1, \ldots, 1}, \ldots, \underbrace{n, \ldots, n}_{\alpha_{n} \text { times }} f_{(1)} .
$$

Lemma 1.2 (Multinomial expansion). Let R be a commutative ring with identity and $x \in R^{n}, n \geq 0$. Then for $k \geq 0$, we have

$$
\left(x_{1}+\cdots+x_{n}\right)^{k}=\sum_{|\alpha|=k} \frac{k!}{\alpha!} x^{\alpha}
$$

where $\alpha \in \mathbb{N}^{n}$.

[^0]: ${ }^{1}$ Note that for a nonzero normed linear space, $\Omega \subseteq \ell(\Omega)$ as singletons are not open.
 ${ }^{2}$ Usual definitions require L to be bounded. See Proposition 1.7.

[^1]: ${ }^{3}$ On the right-hand-side, the function is on $(-\varepsilon, \varepsilon) \backslash\{0\} \rightarrow W$. Note that 0 is a limit point of $(-\varepsilon, \varepsilon) \backslash\{0\}$.

[^2]: ${ }^{4}$ Differentiability \Longrightarrow continuity in finite-dimensions.
 ${ }^{5}$ The 0 here is the zero map.

[^3]: ${ }^{6}$ Makes sense even!
 ${ }^{7} f_{i}$'s are as in Definition 3.1.

[^4]: ${ }^{8}$ This is equivalent to demanding the continuity of all the partials at c.
 ${ }^{9}$ The continuity on $(x ; y)$ doesn't follow from differentiability on $(x ; y)$ for V might be infinite dimensional.
 ${ }^{10}$ If f is differentiable on $(x ; y)$, then this can be written as $D f_{\tilde{e}}(\xi)(y-x)$.

[^5]: ${ }^{11} 0$ here is the zero function $V \rightarrow W$.
 ${ }^{12}$ The norms of the matrices are taken with \mathbb{R}^{k} 's under the Euclidean norm.

[^6]: ${ }^{13}$ The subscript (1) denotes the fact that we are taking the usual basis for the normed linear space \mathbb{K}, namely the singleton containing 1.
 ${ }^{14}$ See Footnote 13.

[^7]: ${ }^{15}$ The usual multi-index notation is used. See Appendix 1.

