Contents

Ι	The	e multivariate derivative	1
	1	The Fréchet derivative	1
	2	Directional derivatives	3
	3	Partial derivatives	5
	4	Some results	6
	5	Higher partials	7
\mathbf{A}			10
	1	Multi-index notation	10

Chapter I

The multivariate derivative

Convention. Throughout the document, V, W will stand for generic normed linear spaces, and Ω , Υ will denote open subsets of V, W respectively. \mathscr{D} will denote a domain of V.

Convention. A result that involves \mathbb{K} (or that doesn't mention the field to be \mathbb{R} or \mathbb{C} explicitly) will actually stand for two results, one for $\mathbb{K} := \mathbb{R}$, and one for $\mathbb{K} := \mathbb{C}$.

1 The Fréchet derivative

January 10, 2023

Remark. Normed linear spaces will be over \mathbb{K} , and we'll also view them as metric and topological spaces.

Definition 1.1 (Fréchet derivative). Let V, W be normed linear spaces and $f: \Omega \to W$ with Ω being open in V^{1} . Then we say that a linear map² $L: V \to W$ is a (Fréchet) derivative of f at a point $c \in \Omega$ iff for every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$||f(x) - f(c) - L(x - c)|| < \varepsilon ||x - c||$$

¹Note that for a nonzero normed linear space, $\Omega \subseteq \ell(\Omega)$ as singletons are not open.

²Usual definitions require L to be bounded. See Proposition 1.7.

whenever $x \in B_{\delta}(c) \cap \Omega \setminus \{c\}$.

If such an L exists, we say that f is (Fréchet) differentiable at c.

If $f: \Omega \to S$ where $S \subseteq W$, then we say that f is (Fréchet) differentiable at c iff $\iota_{W \leftarrow S} \circ f$ is differentiable at c.

Remark. Note that V, W have to be over a common field: The Fréchet derivative is a linear map.

Hence, whenever a Fréchet derivative (or differentiability) will be mentioned in the hypotheses of a theorem, implicit will be the assumption that the spaces are over a common field.

Corollary 1.2. The Fréchet derivative of a linear map is itself.

Remark. Hence, Fréchet differentiability need not imply continuity for there are unbounded linear operators (only in infinite dimensions though): Consider $V := \bigoplus_{i=1}^{\infty} \mathbb{R}$ over \mathbb{R} with sup norm, and then consider the map $T: V \to \mathbb{R}$ given by

 $e_n \mapsto n$.

Lemma 1.3. Let V, W be normed linear spaces and $T: V \to W$ be linear such that for every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$||Tx|| < \varepsilon ||x||$$

for all $x \in B_{\delta}(0) \setminus \{0\}$. Then T = 0.

Proposition 1.4. There exists at most one Fréchet derivative at any point.

Notation. This allows to denote it by Df(c). In case of $f: \Omega \to S$ where $S \subseteq W$, we'll again use Df(c), but to denote $D(\iota_{W \leftarrow S} \circ f)(c)$.

Remark. Unless stated otherwise, the norm considered on \mathbb{K}^n will the l_2 norm (which can be induced from the Euclidean inner-product).

However, it doesn't matter if we are only interested in Fréchet differentiability as norms in finite dimensions are equivalent so that we can use Proposition 1.6. **Proposition 1.5** (Equivalence with differentiability on \mathbb{R}). Let Ω be open in \mathbb{R} and $f: \Omega \to \mathbb{R}$ with $c \in \Omega$. Then f is differentiable at $c \iff f$ is Fréchet differentiable at c, in which case, we have

$$Df(c): x \mapsto f'(c)x.$$

Proposition 1.6 (Equivalent norms preserve derivative). Let V, W be vector spaces, each equipped with a pair of equivalent norms, unprimed and primed. Let $f: \Omega \to W$ where Ω is open in W. Then f is Fréchet differentiable at $c \in \Omega$ in the unprimed norms \iff it is so in the primed norms, in which case,

$$Df(c) = D'f(c).$$

Remark. Since norms in finite dimensions are equivalent, this means that the Fréchet derivative is independent of the norm for finite-dimensional spaces!

Proposition 1.7. A function with a bounded Fréchet derivative at a point is continuous at that point.

Remark. Since linear maps from finite-dimensional domains are bounded, we don't need to worry about boundedness of the Fréchet derivative in finite-dimensional domains.

2 Directional derivatives

January 10, 2023

Definition 2.1 (Directional derivatives). Let V, W be normed linear spaces and $f: \Omega \to W$ where Ω is open in V. Let $c \in \Omega$ and $v \in V \setminus \{0\}$. Take an $\varepsilon > 0$ such that $c + tv \in \Omega$ for each $t \in (-\varepsilon, \varepsilon)$. Then, if existent, we define³

$$D_v f(c) := \lim_{t \to 0} \frac{f(c+tv) - f(c)}{t \|v\|}.$$

If this exists, then we say that f is differentiable along v and call $D_v f(c)$ its derivative.

Again we define things for $f: \Omega \to S$ for $S \subseteq W$, as before.

³On the right-hand-side, the function is on $(-\varepsilon, \varepsilon) \setminus \{0\} \to W$. Note that 0 is a limit point of $(-\varepsilon, \varepsilon) \setminus \{0\}$.

Remark. The above limit won't depend on ε , and hence we don't mention it on the left-hand-side.

Also, here, unlike for the Fréchet derivative, V and W can be over different fields!

Corollary 2.2 (Directional derivatives are blind to magnitude). Let V, W be normed linear spaces and $f: \Omega \to W$ where Ω is open in V. Let f be differentiable at a point $c \in \Omega$ along a nonzero v. Then f is also differentiable at c along λv for any nonzero scalar λ with

$$D_v f(c) = D_{\lambda v} f(c).$$

Proposition 2.3 (Fréchet differentiable \implies differentiable along all directions). Let V, W be normed linear spaces and $f: \Omega \rightarrow W$, with Ω open in V, be Fréchet differentiable at $c \in \Omega$. Then f is differentiable along any $v \in V \setminus \{0\}$, and

$$D_v f(c) = \frac{(Df(c))(v)}{\|v\|}.$$

Example 2.4 (The function needn't be differentiable even if all the directional derivatives exist!). Consider $f : \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) := \begin{cases} \frac{x^2y}{x^4+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Then f is differentiable along all directions at (0,0) but not even continuous at (0,0), let alone differentiable!⁴

Example 2.5 (The function needn't be differentiable even if the derivatives along all the directions come from some L!). Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$(x,y) \mapsto \begin{cases} \frac{x^3y}{x^4+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Then for all $v \in \mathbb{R}^2 \setminus \{(0,0)\}$, we have⁵

$$D_v f(0,0) = 0$$
$$= 0v$$

and still f is not differentiable at (0,0), let alone 0 being its Fréchet derivative.

⁴Differentiability \implies continuity in finite-dimensions.

⁵The 0 here is the zero map.

Proposition 2.6 (Scaling of directional derivatives under equivalent norms). Continuing Proposition 1.6, f is differentiable at c along a nonzero v in the unprimed norms \iff it is so in the primed norms, in which case,

$$||v|| D_v f(c) = ||v||' D'_v f(c).$$

3 Partial derivatives

January 12, 2023

Definition 3.1 (Partial derivatives). Let V, W be normed linear spaces with bases \mathcal{B} and \mathcal{C} respectively. Let $f: \Omega \to W$ where Ω is open in V. Let $\tilde{e} \in \mathcal{C}$ and $e \in \mathcal{B}$. Let $f_{\tilde{e}}: \Omega \to \mathbb{K}$ be the \tilde{e} -component of f. Then for $c \in \Omega$, if existent, we define

$$\partial_e f_{\tilde{e}}(c) := \lim_{t \to 0} \frac{f_{\tilde{e}}(c+te) - f_{\tilde{e}}(c)}{t}$$
$$= \|e\| D_e f_{\tilde{e}}(c)$$
$$\stackrel{(*)}{=} Df_{\tilde{e}}(c)(e)$$

where the starred equality holds⁶ if $f_{\tilde{e}} \colon \Omega \to \mathbb{K}$ is Fréchet differentiable.

Remark. The basis of W should technically have been incorporated in the notation.

Partials also can be defined even if V, W have different bases!

Theorem 3.2 (Jacobian). Let V, W be finite-dimensional normed linear spaces with ordered bases \mathcal{B} and \mathcal{C} respectively. Let Ω be open in V and $f: \Omega \to W$ be differentiable at $c \in \Omega$. Then all the partials exist at c, and we have⁷

$$\left[Df(c)\right]_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} \partial_1 f_1(c) & \cdots & \partial_n f_1(c) \\ \vdots & & \vdots \\ \partial_1 f_m(c) & \cdots & \partial_n f_m(c) \end{bmatrix}$$

⁶Makes sense even!

 $^{^{7}}f_{i}$'s are as in Definition 3.1.

4 Some results

January 20, 2023

Theorem 4.1 (Differentiability in terms of components). Let V, W be normed linear spaces with W being finite-dimensional with a basis C. Let $f: \Omega \to W$, where Ω is an open subset of V, decompose into $f_{\tilde{e}}: \Omega \to \mathbb{K}$ for $\tilde{e} \in C$. Then f is differentiable at a point $c \in \Omega \iff each f_{\tilde{e}}$ is differentiable at c, in which case,

$$Df(c)(v) = \sum_{\tilde{e} \in \mathcal{C}} Df_{\tilde{e}}(c)(v) \tilde{e}.$$

Theorem 4.2 (Chain rule). Let U, V, W be normed linear spaces. Let Ω be open in U and Υ be open in V. Let $f: \Omega \to \Upsilon$ be differentiable at $c \in \Omega$ and $g: \Upsilon \to W$ be differentiable at $f(c) \in \Upsilon$. Then $g \circ f$ is differentiable at c with

$$D(g \circ f)(c) = Dg(f(c)) \circ Df(c).$$

Corollary 4.3. Let V, W be finite-dimensional normed linear spaces and $f: \Omega \to \Upsilon$ be invertible where Ω, Υ are open in V, W respectively. Let f be differentiable at $c \in \Omega$ and f^{-1} be differentiable at $f(c) \in \Upsilon$. Then the following hold:

- (i) $\dim V = \dim W$.
- (ii) $Df(c): V \to W$ is invertible with $(Df(c))^{-1} = Df^{-1}(f(c))$.

Theorem 4.4 (Continuous partials \implies differentiability). Let V, W be finite-dimensional normed linear spaces over \mathbb{R} . Let $f: \Omega \to W$ where Ω is open in V and let there exist a basis of V in which f is directionally differentiable throughout Ω along all directions, with the directional derivatives being continuous at a point $c \in \Omega$.⁸ Then f is differentiable at c.

Theorem 4.5 (Mean value for $\Omega \to \mathbb{R}$). Let V, W be normed linear spaces with W being one-dimensional over \mathbb{R} . Let $f: \Omega \to W$ (Ω open) be continuous over $[x; y] \subseteq \Omega$ with $x \neq y$. Let (\tilde{e}) be a basis of W and $\partial_{y-x}f_{\tilde{e}}$ exist throughout (x; y).⁹. Then there exists a point $\xi \in (x; y)$ such that

$$f(y) - f(x) = \partial_{y-x} f_{\tilde{e}}(\xi).^{10}$$

⁸This is equivalent to demanding the continuity of all the partials at c.

⁹The continuity on (x; y) doesn't follow from differentiability on (x; y) for V might be infinite dimensional.

¹⁰If f is differentiable on (x; y), then this can be written as $Df_{\tilde{e}}(\xi)(y-x)$.

Corollary 4.6 (Zero derivative \implies constant). Let V, W be normed linear spaces over \mathbb{R} with W being one-dimensional. Let $f: \Omega \to W$, where Ω is open and connected in V, be differentiable throughout with¹¹ Df(x) = 0 for each $x \in \Omega$. Then f is constant over Ω .

Theorem 4.7 (Mean value for $\Omega \to \mathbb{R}^n$). Let V, W be normed linear spaces over \mathbb{R} with W being finite-dimensional. Let $f: \Omega \to W$, where Ω is open in V, be differentiable on (x; y) and continuous on $[x; y] \subseteq \Omega$. Let $u \in W$ and C be a basis of W. Then there exists a point $\xi \in (x; y)$ such that

$$\left\langle [u]_{\mathcal{C}}, [f(y) - f(x)]_{\mathcal{C}} \right\rangle = \left\langle [u]_{\mathcal{C}}, [Df(\xi)(y - x)]_{\mathcal{C}} \right\rangle$$

where $\langle \cdot, \cdot \rangle$ is the Euclidean inner-product on $\mathbb{R}^{|\mathcal{C}|}$.

Further, if V is finite-dimensional too with basis \mathcal{B} , then

$$\left\| [f(y) - f(x)]_{\mathcal{C}} \right\|_2 \le M \left\| [y - x]_{\mathcal{B}} \right\|_2$$

where $\|\cdot\|_2$ represents the Euclidean norm on the respective spaces, and¹²

$$M := \sup_{z \in \Omega} \left\| [Df(z)]_{\mathcal{C} \leftarrow \mathcal{B}} \right\|$$

is existent.

5 Higher partials

January 25, 2023

Definition 5.1 (Higher partials). Let V, W be normed linear spaces and $f: \Omega \to W$ where Ω is open in V. Let \mathcal{B} and \mathcal{C} be bases of V and W respectively. Then we define higher partials inductively as follows:

Let $\tilde{e} \in \mathcal{C}$ and $f_{\tilde{e}} \colon \Omega \to \mathbb{K}$ be f's \tilde{e} -component with respect to basis \mathcal{C} . Firstly, we define

$$\partial_{()}f_{\tilde{e}} := f_{\tilde{e}}.$$

Now, suppose $\partial_{e_1,\ldots,e_n} f_{\tilde{e}} \colon \mathscr{U} \to \mathbb{K}$ has been defined for $e_1,\ldots,e_n \in \mathcal{B}$ where \mathscr{U} is open in V. Then, for another $e \in \mathcal{B}$, we define

$$\partial_{e,e_1,\ldots,e_n} f_{\tilde{e}} \colon \mathscr{V} \to \mathbb{K}$$

¹¹0 here is the zero function $V \to W$.

 $^{^{12}}$ The norms of the matrices are taken with \mathbb{R}^k 's under the Euclidean norm.

where \mathscr{V} is the interior of the set of all the points c in \mathscr{U} wherever $\partial_e(\partial_{e_1,\ldots,e_n}f_{\tilde{e}})_{(1)}(c)$ exists,¹³ and we define

$$\partial_{e,e_1,\ldots,e_n} f_{\tilde{e}}(c) := \partial_e (\partial_{e_1,\ldots,e_n} f_{\tilde{e}})_{(1)}(c)$$

for $c \in \mathcal{V}$.

Remark. This leads to a notational collision for the case of $\partial_e f_{\tilde{e}}$ which we have defined before (in Definition 3.1). But it's mild.

Definition 5.2 (Differentiability classes (with respect to bases)). Let V, W be normed linear spaces and $f: \Omega \to W$ where Ω is open in V. Let \mathcal{B} and \mathcal{C} be bases of V and W respectively. Then we say that f is of differentiability class C^n for $n \geq 0$ iff for any $e_1, \ldots, e_n \in \mathcal{B}$ and any $\tilde{e} \in \mathcal{C}$, the following hold:

- (i) The domain of $\partial_{e_1,\ldots,e_n} f_{\tilde{e}}$ is whole of Ω .
- (ii) $\partial_{e_1,\ldots,e_n} f_{\tilde{e}}$ is continuous throughout Ω .

Remark. Note that the differentiability classes have to be talked of in the context of chosen bases!

Lemma 5.3. Let V, W be normed linear spaces and $f: \Omega \to W$ (Ω open) be C^n ($n \ge 0$) in the respective bases \mathcal{B} , \mathcal{C} . Let $e_1, \ldots, e_k \in \mathcal{B}$ for $0 \le k \le n$. Then, for any $0 \le l \le k$ and any $\tilde{e} \in \mathcal{C}$, the following hold:

- (i) $\partial_{k,\dots,1} f_{\tilde{e}}$ is C^{n-k} in bases \mathcal{B} and (1).
- (*ii*) $\partial_{k,\ldots,l+1}(\partial_{l,\ldots,1}f_{\tilde{e}})_{(1)} = \partial_{k,\ldots,1}f_{\tilde{e}}.$

Theorem 5.4 (Clairaut). Let V be a normed linear space with a basis \mathcal{B} . Let $f: \Omega \to \mathbb{R}$ where Ω is open in V. Let $e_1, e_2 \in V$ be distinct. Let the domains $of^{14} \partial_1 f_{(1)}, \partial_2 f_{(1)}, \partial_{1,2} f_{(1)}$ and $\partial_{2,1} f_{(1)}$ be whole of Ω with $\partial_{1,2} f_{(1)}$ and $\partial_{2,1} f_{(1)}$ being continuous at $c \in \Omega$. Then

$$\partial_{1,2} f_{(1)}(c) = \partial_{2,1} f_{(1)}(c).$$

¹³The subscript (1) denotes the fact that we are taking the usual basis for the normed linear space \mathbb{K} , namely the singleton containing 1.

¹⁴See Footnote 13.

Proposition 5.5 (Generalized Clairaut). Let V be a normed linear space with W being over \mathbb{R} and $f: \Omega \to \mathbb{R}$ (Ω open) be C^n ($n \ge 0$) in the respective bases \mathcal{B} , (1). Then for any $e_1, \ldots, e_k \in \mathcal{B}$ for $0 \le k \le n$, we have

$$\partial_{1,\dots,k}f_{(1)} = \partial_{\sigma(1),\dots,\sigma(k)}f_{(1)}$$

for any permutation $\sigma \in S_k$.

Theorem 5.6 (Taylor). Let V be a normed linear space over \mathbb{R} and $f: \Omega \to \mathbb{R}$, with Ω open in V, be C^{n+1} $(n \ge 0)$ in bases (e_1, \ldots, e_m) and (1). Let $[x; y] \subseteq \Omega$ with $x \ne y$. Then there exists a $\xi \in (x; y)$ such that

$$f(y) = \sum_{|\alpha| \le n} \frac{1}{\alpha!} \partial^{\alpha} f_{(1)}(x)(y-x)^{\alpha} + \sum_{|\alpha|=n+1} \frac{1}{\alpha!} \partial^{\alpha} f_{(1)}(\xi)(y-x)^{\alpha}$$

where α ranges over \mathbb{N}^m .¹⁵

Appendix A

1 Multi-index notation

January 27, 2023

Definition 1.1 (Multi-index factorials and partials). Let $n \ge 0$ and $\alpha \in \mathbb{N}^n$. Then we define

$$\alpha! := \alpha_1! \cdots \alpha_n!$$
, and
 $\alpha| := \alpha_1 + \cdots + \alpha_n.$

For $x \in X^n$ where X is a set where a product (with identity) is defined, we define

$$x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}.$$

Also, for a multivariate \mathbb{K} -valued function f with the domain being finitedimensional with a basis (e_1, \ldots, e_n) , we define

$$\partial^{\alpha} f_{(1)} := \partial_{\underbrace{1,\dots,1}_{\alpha_1 \text{ times}},\dots,\underbrace{n,\dots,n}_{\alpha_n \text{ times}}} f_{(1)}.$$

Lemma 1.2 (Multinomial expansion). Let R be a commutative ring with identity and $x \in \mathbb{R}^n$, $n \ge 0$. Then for $k \ge 0$, we have

$$(x_1 + \dots + x_n)^k = \sum_{|\alpha|=k} \frac{k!}{\alpha!} x^{\alpha}$$

where $\alpha \in \mathbb{N}^n$.