Contents

Ι	Que	tient topology 1	
	1	Saturations and saturated sets	
	2	Quotient topology	
	3	Products of quotient maps	
	4	Some examples	
		4.1 Quotients of $I \times I$	
		4.2 Cones and suspensions	
		4.3 Wedge products	
	5	Quotients and Hausdorffness	
	6	Projective spaces	
II Homotopy			
	1	Relative homotopies	
	2	Contractible spaces	
	3	Retracts	
	4	The fundamental groupoid	
	5	The fundamental group	
	6	$\pi_1(S^n)$ for $n \ge 2$	
	7	Miscellaneous	
III Covering spaces			
	1	Basic stuff	
	2	Lifting properties	
	3	The action of the fundamental group 19	
	4	$\pi_1(S^1) \cong \mathbb{Z}$ and its consequences	
\mathbf{A}	Thi	ngs used i	
	1	Set theoretic facts	
	2	Topological things	

CONTENTS

	2.1	Disjoint union topology	ii
	2.2	(Weak) local path-connectedness	ii
		Local homeomorphisms	
3	Catego	prical ideas	iii

Chapter I

Quotient topology

Convention. For the rest of the document, unless stated otherwise:

- (i) Sets are topological spaces.
- (ii) Functions between topological spaces are continuous.
- (iii) I = [0, 1].
- (iv) B^n , D^n will denote the unit open ball and disc in \mathbb{R}^n under the l_2 -norm.
- (v) S^n will denote the unit sphere in \mathbb{R}^{n+1} under the l_2 -norm.
- (vi) Depending on the context, S^1 may also mean the unit circle in \mathbb{C} , which is homeomorphic to the unit circle in \mathbb{R}^2 .

1 Saturations and saturated sets

September 19, 2023

Definition 1.1 (Saturations and saturated sets). Let $f: X \to Y$ be a set theoretic function. Then we define the *saturation* of an $A \subseteq X$ to be $f^{-1}(f(A))$.

Further, A is called *saturated* iff A equals its saturation.

Lemma 1.2 (Characterizing saturations and saturated sets). Let $f: X \to Y$ be set theoretic and $A \subseteq X$. Then the following hold:

- (i) The saturation of A is the smallest saturated set containing A.
- (ii) The following are equivalent:
 - (a) A is the inverse image of some subset of B.
 - (b) $f^{-1}(\{y\})$ lies in either A or $X \setminus A$, for each $y \in Y$.

(c) A is saturated.

(iii) If A is saturated, then so is $X \setminus A$ with $f(X \setminus A) = f(X) \setminus f(A)$.

2 Quotient topology

September 19, 2023

Lemma 2.1 (Terminal topologies induced by a function). Let $f: X \to Y$ be set theoretic. Then the following hold:

(i) If X is a topological space, then

$$\{V \subseteq Y : f^{-1}(V) \text{ is open in } X\}$$

is the largest topology on Y that makes f continuous.

(ii) If Y is a topological space, then

 $\{f^{-1}(V) \subseteq X : V \text{ is open in } Y\}$

is the smallest topology on X that makes f continuous.

Definition 2.2 (Quotient topology). Given an equivalence relation \sim on X, the largest topology on X/\sim that makes the canonical function $X \to X/\sim$ continuous is called the quotient topology on X/\sim .

Remark. The map $X \to X/\sim$ is the model for quotient maps.

Definition 2.3 (Quotient maps). A continuous surjection $p: X \to Y$ such that V is open in Y whenever $p^{-1}(V)$ is open in X, is called a quotient map.

Corollary 2.4.

- (i) Quotients preserve compactness.
- (ii) Composition of quotients is quotient.

Example 2.5 (Restrictions of quotients needn't be quotient!). Consider the restriction of the projection $\mathbb{R}^2 \to \mathbb{R}$ onto the first coordinate, to the subspace $\{(0,0)\} \cup \{(x,y) : y = 1 \text{ and } x \neq 0\}$.

Example 2.6 (Quotients needn't preserve local compactness). \mathbb{R} with integers identified together is Hausdorff, but not locally compact.

Lemma 2.7 (Characterizing the "quotientness" condition). Let $p: X \to Y$, not necessarily continuous, be a surjection. Then the following are equivalent:¹

(i) $p^{-1}(V)$ open $\implies V$ open.

(ii) p maps saturated opens to opens.

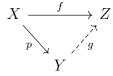
(iii) p maps saturated closeds to closeds.

(iv) $p^{-1}(K)$ is closed $\implies K$ is closed.

Corollary 2.8. A continuous open or closed map^2 is quotient.

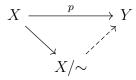
Example 2.9 (Quotient maps needn't be open or closed). Consider the restriction of the projection $\mathbb{R}^2 \to \mathbb{R}$ onto the first coordinate, to the subspace $\{(x, y) : x \ge 0 \text{ or } y = 0\}$. Then this is a quotient map which is neither closed nor open.

Proposition 2.10 (Universal property of quotient maps). Let $p: X \to Y$ be a quotient map. Let $f: X \to Z$ factor through p:



Then f is continuous \iff g is.

Lemma 2.11 ({quotient maps} \leftrightarrow {quotient spaces}). Let $p: X \to Y$ be quotient. Let \sim be the equivalence relation on X induced by f. Then the factor map $X/\sim \to Y$ is a homeomorphism:



¹Surjectivity of p is needed for "(ii) \Rightarrow (iii)" and "(iii) \Rightarrow (iv)".

²Note that following the conventions, a map is by default continuous.

3 Products of quotient maps

November 14, 2023

Theorem 3.1 (Whitehead). If $p: X \to Y$ is a quotient map and Z is locally compact Hausdorff, then $p \times id_Z: X \times Z \to Y \times Z$ is also quotient.

Example 3.2 (Necessity of local compactness). Let \sim be the equivalence relation on \mathbb{R} identifying integers together, and let $p: \mathbb{R} \to \mathbb{R}/\sim$ be the corresponding quotient map. Then $p \times id_{\mathbb{Q}}: \mathbb{R} \times \mathbb{Q} \to (\mathbb{R}/\sim) \times \mathbb{Q}$ is not quotient.

Corollary 3.3. If $p: X \to Y$ and $q: Z \to W$ are quotient maps with X, W (or Y, Z) being locally compact Hausdorff, then $p \times q$ is also quotient.

4 Some examples

September 19, 2023

Proposition 4.1 (Circle "wrapped onto itself *n* times" is circle). Let $n \ge 1$. Then S^1 under the quotient topology due to the equivalence relation due to f, is homeomorphic to S^1 .

Notation. For $A \subseteq X$, when there's no chance of confusion,³ we'll write X/A for the quotient space obtained by identifying the points A together in X.

Proposition 4.2. $D^n/S^{n-1} \cong S^n$.

4.1 Quotients of $I \times I$

September 20, 2023

Remark. While defining equivalence relations⁴, we'll omit mentioning that the equal points are related. We'll also omit mentioning $y \sim x$ if we have mentioned $x \sim y$.

³For instance, A might be a subgroup of X.

⁴Actually that a relation is an equivalence relation must be checked after we have defined it in the first place, but still...

Proposition 4.3 (Constructing spaces out of $I \times I$). Let $X := I \times I$. Define the following equivalence relations on X:

- (i) $(x, y) \sim_1 (x, y')$ and $(0, y) \sim_1 (1, y)$.
- (*ii*) $(0, y) \sim_2 (1, y)$.
- (*iii*) $(x, 0) \sim_3 (x, 1)$ and $(0, y) \sim_3 (1, y)$.

Then we have:

- (i) $X/\sim_1 \cong S^1$.
- (ii) $X/\sim_2 \cong S^1 \times I$.
- (iii) $X/\sim_3 \cong S^1 \times S^1$.

4.2 Cones and suspensions

September 20, 2023

Definition 4.4 (Cones and suspensions). The *cone* of a space X is $X \times I$ with points of $X \times \{1\}$ identified, whereas the *suspension* of X is $X \times I$ with points of $X \times \{0\}$ and $X \times \{1\}$ respectively identified.

Proposition 4.5.

- (i) Cone of S^{n-1} is D^n .
- (ii) Suspension of S^n is S^{n+1} .

4.3 Wedge products

November 12, 2023

Definition 4.6 (Wedge sum of topological spaces). Given pointed spaces (X_{α}, x_{α}) , we define their wedge product $\bigvee_{\alpha}(X_{\alpha}, x_{\alpha})$ to be the quotient of $\bigsqcup_{\alpha} X_{\alpha}$ by identifying all the (x_{α}, α) 's together.

Proposition 4.7 (Hawaiian earring $\cong \bigvee_{n=1}^{\infty}$ (circle)). For $n \ge 1$, let C_n be the circle of radius 1/n in \mathbb{R}^2 centered at (1/n, 0). Let $X := \bigcup_n C_n$ and

$$\mathcal{H} := \bigvee_n \big(C_n, (0,0) \big).$$

Then X is compact, whereas the sequence of points (1/n, 0) has no convergent subsequence in \mathcal{H} .

5 Quotients and Hausdorffness

September 19, 2023

Example 5.1 (Quotients don't preserve Hausdorffness).

- (i) For E is dense in X, any nonempty open set in X/E contains E.
- (ii) The group quotient \mathbb{R}/\mathbb{Q} is indiscrete.
- (iii) (The real line with two origins). Let $X := \{(x, y) : y = 0 \text{ or } y = 1\}$ and define an equivalence relation on X by $(x, 0) \sim (x, 1)$ for $x \neq 0$. Then we can't separate $\{(0, 0)\}$ and $\{(0, 1)\}$ via opens in X / \sim .

Theorem 5.2 (The Hausdorff criterion). Let $p: X \to Y$ be closed, continuous and surjective. Let X be normal⁵ with singletons closed. Then Y is Hausdorff.

Proposition 5.3 (Comparing with the openness and closedness of the induced relation). Let $p: X \to Y$ not necessarily be continuous. Set $R := \{(x, y) \in X \times X : p(x) = p(y)\}$. Then the following hold:

- (i) p is quotient and R is open \implies Y is discrete \implies p is open.
- (ii) p continuous and Y is Hausdorff \implies R is closed.
- (iii) p open and surjective, and R is closed \implies Y is Hausdorff.
- (iv) If p is quotient and X is compact Hausdorff, then R is closed \iff Y is Hausdorff.

Example 5.4 (Counters to converses).

- (i) (p open $\Rightarrow R$ open; R closed $\Rightarrow p$ closed). Take p to be the projection $\mathbb{R}^2 \to \mathbb{R}$ onto the first coordinate.
- (ii) (p closed $\Rightarrow R$ closed). Take p to be the identity map on any non-Hausdorff X.

6 Projective spaces

September 19, 2023

Definition 6.1 (Projective spaces). Let $n \ge 0$ and define an equivalence relation on S^n by $x \sim -x$. Then we define $\mathbb{R}P^n$ to be the quotient space S^n/\sim .

⁵That is, closeds can be separated via opens.

Proposition 6.2. Each $\mathbb{R}P^n$ is compact, (path) connected and Hausdorff.

Theorem 6.3 (Different descriptions of $\mathbb{R}P^2$). For $n \geq 1$, define the following equivalence relations:

- (i) On $\mathbb{R}^n \setminus \{0\}$: $x \sim_1 \lambda x$ for $\lambda \neq 0$.
- (ii) On D^n : $x \sim_2 -x$ for $x \in S^{n-1}$.

Then the quotient spaces $(\mathbb{R}^n \setminus \{0\})/\sim_1$ and D^n/\sim_2 are both homeomorphic to $\mathbb{R}P^n$.

Chapter II

Homotopy

Convention. Throughout the rest of the document, unless stated otherwise:

- (i) For $x_0 \in X$, the constant function $x \mapsto x_0$ on either $X \to X$ or $I \to X$ (depending on the context) will be denoted by c_{x_0} .
- (ii) Statements involving \mathbb{K} will mean two statements, one for \mathbb{R} and one for \mathbb{C} .

1 Relative homotopies

September 20, 2023

Definition 1.1 (Relative homotopy). Let $f, g: X \to Y$ be continuous and $A \subseteq X$. Then a homotopy from f to g relative to A is a continuous map $F: X \times I \to Y$ such that the following hold:

- (i) F(x,0) = f(x).
- (ii) F(x, 1) = g(x).
- (iii) F(a,t) is independent of t for all $a \in A$.

We say f and g are homotopic relative to A iff there exists a homotopy between them relative to A.

If $A = \emptyset$, then we omit "relative to A".

Definition 1.2 (Nullhomotopic maps). A map is called nullhomotopic iff it is homotopic to some constant map.

Example 1.3 (Straight line homotopy). Let Y be a convex set of a topological vector space over \mathbb{K} . Then any two $f, g: X \to Y$ are homotopic relative to the equalizer of f, g via $F: X \times I \to Y$ given by

$$(x,t) \mapsto (1-t) f(x) + t g(x).$$

Example 1.4 (Homotopies on S^n). Any $f, g: X \to S^n$ for which $f(x) \neq -g(x)^1$ for all $x \in X$, are homotopic via

$$(x,t) \mapsto \frac{(1-t)f(x) + tg(x)}{\|(1-t)f(x) + tg(x)\|}$$

Thus, for any $f: S^n \to S^n$, the following hold:

- (i) If f has no fixed points, then f is homotopic to the antipodal map.
- (ii) If $f(x) \neq -x$ for any $x \in X$, then f is homotopic to the identity map.

Example 1.5 (Motivation for hairy ball).

(i) (Normal vector fields allow to deform id into ap). Let $v: S^n \to S^n$ be continuous with $v(x) \perp x$ for each $x \in S^n$. Then

$$(x,t) \mapsto (\cos \pi t) x + (\sin \pi t) v(x)$$

defines a homotopy from identity to the antipodal map on S^n .

(ii) (Normal vector fields exist on S^n for n odd). For n odd, the following defines a continuous vector field $S^n \to S^n$ that is normal to S^n at each point:

$$(x_1, x_2, \dots, x_{2n-1}, x_{2n}) \mapsto (-x_2, x_1, \dots, -x_{2n}, x_{2n-1})$$

(iii) On S^n for n odd, identity is homotopic to the antipodal map.

Proposition 1.6. For a fixed subspace A of X, "being homotopic relative to A" is an equivalence relation on the set of all continuous $X \to Y$.

Proposition 1.7 (RelHTop). The pairs (X, A) of spaces X and their subspaces A form a category wherein the morphisms from (X, A) to (Y, B) are the continuous

¹To make it work for complex S^n , we must have $f(x) \neq e^{i\theta}g(x)$ for $\theta \in (0, 2\pi)$.

 $f: X \to Y$ with $f(A) \subseteq B$, modded out by "being homotopic relative to A".² The composition of $[f]_{A,B}: (X, A) \to (Y, B)$ and $[g]_{B,C}: (Y, B) \to (Z, C)$ is given by³

$$[g]_{B,C} [f]_{A,B} = [g \circ f]_{A,C}$$

In this category, the identity morphism on (X, A) is

 $[\operatorname{id}_X]_{A,A}.$

Definition 1.8 (Relative homotopic equivalence). In RelHTop, isomorphisms are called *relative homotopic equivalences*, and isomorphic objects are said to be *relatively homotopically equivalent* or of *same relative homotopic type*. As before, if the subspace is empty for both the pairs, then we drop "relatively".

Remark. Sometimes, we'll write " $f: X \to Y$ is a homotopic equivalence" to mean that $[f]_{\emptyset,\emptyset}: (X,\emptyset) \to (Y,\emptyset)$ is a homotopy equivalence.

Corollary 1.9 (Alternate way of expressing various things in RelHTop). Let $A \subseteq X$ and $B \subseteq Y$. Then the following hold:

- (i) For $f, g: X \to Y$ with $f(A), g(A) \subseteq B$, we have $[f]_{A,B} = [g]_{A,B} \iff f$ is homotopic to g relative to A.
- (ii) (X, A) is homotopically equivalent to $(Y, B) \iff$ there exist $f: X \to Y$ and $g: Y \to X$ such that the following hold:
 - (a) $f(A) \subseteq B$ and $g(B) \subseteq A$.
 - (b) $g \circ f$ is homotopic to id_X relative to A.
 - (c) $f \circ g$ is homotopic to id_Y relative to B.

Proposition 1.10. Let X be (path) connected, and $f: X \to Y$ and $g: Y \to X$ such that $f \circ g$ is homotopic to id_Y . Then Y is also (path) connected.

Corollary 1.11. Homotopy equivalences preserve (path) connectivity.

 $^{^{2}}$ To be completely precise, the morphisms should also contain the information of their domain and codomain objects.

³The subscript A and B denote the fact that the equivalence relations are different.

2 Contractible spaces

September 20, 2023

Definition 2.1 ((Relatively) contractible spaces). A space X is called

- (i) contractible to $x_0 \in X$ iff X is homotopically equivalent to $\{x_0\}$; and,
- (ii) contractible relative to $x_0 \in X$ iff $(X, \{x_0\})$ is relatively homotopically equivalent to $(\{x_0\}, \{x_0\})$.

We say that X is *contractible (relatively)* iff X is contractible (relative) to some $x_0 \in X$.

Corollary 2.2.

- *(i)* Contractibility is preserved under homotopic equivalence.⁴
- (ii) Contractible spaces are path-connected.⁵
- (iii) (Characterizing (relative) contractibility). X is contractible (relative) to $x_0 \in X \iff$ the constant map c_{x_0} is homotopic to id_X (relative to $\{x_0\}$).
- (iv) A contractible space is contractible to all of its points.
- (v) Cones are contractible.
- (vi) If either X or Y is contractible, then any map $X \to Y$ is nullhomotopic.
- (vii) If X is contractible and Y path-connected, then any two continuous maps $X \rightarrow Y$ are homotopic.
- (viii) Products and retracts of contractible spaces are contractible.

Proposition 2.3. If X is contractible relative to x_0 , then X is weakly locally path connected at x_0 .

Remark. Proposition 2.3 can't be strengthened by either of the following ways:

- (i) Dropping "relative": Consider Hatcher's zigzg space.
- (ii) Having "locally path connected": Consider iterated broom.

Example 2.4 (Comb space can't be contracted relatively to (0,1)). Consider the following subspace of \mathbb{R}^2 :

$$\mathcal{C} := \left(\overline{\{1/n : n \ge 1\} \times I}\right) \cup \left(I \times \{0\}\right)$$

Then C is not weakly locally path connected at (0, 1) so that it's not contractible relative to (0, 1). However, it can be contracted relative to (0, 0).

⁴This is not true of relative contractibility. Consider comb space of Example 2.4.

⁵Converse not true! Consider S^1 . See Corollary 4.2.

3 Retracts

September 20, 2023

Definition 3.1 (((Strong) deformation) retracts). Let $A \subseteq X$. Then a continuous $r: X \to A$ is called

- (i) a *retract* iff $r \circ \iota = id_A$;
- (ii) a deformation retract iff $r \circ \iota = id_A$ and $\iota \circ r$ is homotopic to id_X ; and,
- (iii) a strong deformation retract iff $r \circ \iota = id_A$ and $\iota \circ r$ is homotopic to id_X relative to A.

Accordingly, we call A a ((strong) deformation) retract of X.

Corollary 3.2. (Strong) deformation retracts are (relative) homotopy equivalences.

Example 3.3 (Retract needn't be a homotopy equivalence). A point of a non-pathconnected space is not homotopically equivalent to the space.⁶

Corollary 3.4 (Retractibility and contractibility to a point). Let $x_0 \in X$. Then the following hold:

- (i) $\{x_0\}$ is a retract.⁷
- (ii) $\{x_0\}$ is a deformation retract of $X \iff X$ is contractible to x_0 .
- (iii) $\{x_0\}$ is a strong deformation retract of $X \iff X$ is contractible relative to x_0 .

Example 3.5 (Not every subspace is a retract). $\{0,1\}$ is not a retract of *I*.

Example 3.6 (Retract \Rightarrow deformation retract \Rightarrow strong deformation retract).

- (i) A point can't be a deformation retract of a non-path-connected space.
- (ii) $\{(0,1)\}$ of comb space is a deformation retract but not strongly.

Example 3.7. S^n is a strong deformation retract of $\mathbb{R}^{n+1} \setminus \{0\}$ via $r: x \mapsto x/||x||$.

⁶See Corollary 3.4.

⁷Note that the only candidate for the retract map is the constant map $X \to \{x_0\}$.

4 The fundamental groupoid

September 20, 2023

Notation. We'll use these notations: Path(X; x, y) and Loop(X; x).

Proposition 4.1 (Operations on paths). For a space X, let $\alpha \in Path(X; x, y)$, and $\beta \in Path(X; y, z)$. Then there exist the following paths:

(i) (Join of α and β). A path $\alpha * \beta \in Path(X; x, z)$ such that

$$t \mapsto \begin{cases} \alpha(2t), & t \in [0, 1/2] \\ \beta(2t-1), & t \in [1/2, 1] \end{cases}$$

(ii) (Inverse of α). A path $\alpha^{-1} \in \text{Loop}(X; y, x)^8$ such that

$$t \mapsto \alpha(1-t).$$

Remark.

- (i) Join of paths is not associative.
- (ii) α^{-1} is just $\alpha \circ f$ where $f: I \to I$ is given by $t \mapsto 1 t$.

Definition 4.2 (Path homotopy). A homotopy between two paths in a space, relative to $\{0, 1\}$ is called a *path homotopy* between them. We similarly define *path homotopic* paths.

Corollary 4.3. "Being path homotopic" is an equivalence relation on Path(X; x, y) for all $x, y \in X$.

Lemma 4.4. Let α be a path from x to y in X and $f: I \rightarrow I$ be continuous with f(0) = 0 and f(1) = 1. Then α is path homotopic to $\alpha \circ f$.

Proposition 4.5 (The fundamental groupoid). The points of a space X form a category $\Pi(X)$ with morphisms from x to y being paths from x to y modded out by "being path homotopic". The composition of $[\alpha]: x \to y$ and $[\beta]: y \to z$ is given by

$$[\beta] [\alpha] = [\alpha * \beta].$$

The identity morphism on x is $[c_x]$. Further, $\Pi(X)$ forms a groupoid with

$$[\alpha]^{-1} = [\alpha^{-1}].$$

⁸Of course, the notation α^{-1} is not great.

⁹Note that $[\alpha]$ and $[\beta]$ are classes of *different* equivalence relations.

Proposition 4.6 (The functor $\mathsf{Top} \to \mathsf{Gpd}^{10}$). *The following defines a functor* $\mathsf{Top} \to \mathsf{Gpd}$:

$$\begin{array}{ccc} X & \Pi(X) \\ f \downarrow & \longmapsto & \downarrow^{\Pi(f)} \\ Y & \Pi(Y) \end{array}$$

where $\Pi(f) \colon \Pi(X) \to \Pi(Y)$ is the functor given by

$$\begin{array}{ccc} x & f(x) \\ [\alpha] \downarrow & \stackrel{\Pi(f)}{\longmapsto} & \downarrow^{[f \circ \alpha]} \\ y & f(y) \end{array}$$

5 The fundamental group

September 21, 2023

Definition 5.1 (The fundamental group). The fundamental group $\pi_1(X, x)$ of a space X at $x \in X$ is the group of morphisms associated with the full subcategory of $\Pi(X)$ generated by the single object x.

Corollary 5.2 (The functor $pTop \rightarrow Grp$). The following defines a functor $pTop \rightarrow Grp$:

$$\begin{array}{ccc} (X,x) & & \pi_1(X,x) \\ f \downarrow & \longmapsto & \downarrow_{f_*} \\ (Y,y) & & \pi_1(Y,y) \end{array}$$

where f_* is given by

$$f_*([\alpha]) = [f \circ \alpha].$$

Proposition 5.3 (The functor $\Pi(X) \to \mathsf{Grp}$). For a fixed space X, the following defines a functor $\Pi(X) \to \mathsf{Grp}$:

$$\begin{array}{cccc} x & & \pi_1(X,x) \\ & & & & & \\ \gamma \downarrow & & & & & \\ y & & & & & \\ y & & & & \pi_1(X,y) \end{array}$$

 $^{^{10}\}mathsf{Gpd}$ is the full subcategory of Cat comprising of groupoids.

where $\phi_{[\gamma]}$ is given by

$$\phi_{[\gamma]}([\alpha]) = [\gamma] [\alpha] [\gamma]^{-1}.$$

Further, $\pi_1(X, x)$ is abelian \iff for all points y we have

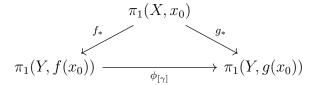
$$\phi_{[\gamma_1]} = \phi_{[\gamma_2]}$$

for all $[\gamma_1], [\gamma_2]: x \to y$.

Corollary 5.4. If $\gamma \in \text{Path}(X; x, y)$, then $\pi_1(X, x) \cong \pi_2(X, y)$ via $\phi_{[\gamma]}$. Thus, $\pi_1(X, x)$ is independent of x if X is path connected.

Notation. Thus, we'll use $\pi_1(X)$ for path-connected X when we just want to focus on $\pi_1(X, x)$ up to group isomorphisms.

Proposition 5.5. Let $f, g: X \to Y$ be homotopic via H and $x_0 \in X$. Define $\gamma \in \text{Path}(Y; f(x_0), g(x_0))$ by $t \mapsto H(x_0, t)$. Then the following diagram commutes:



Corollary 5.6 (Fundamental groups are preserved under homotopy equivalence). Let $f: X \to Y$ be a homotopic equivalence¹¹ and $x \in X$. Then $\pi_1(X, x) \cong \pi_1(Y, f(x))$.

Corollary 5.7. The fundamental group of a contractible space is trivial.

$6 \quad \pi_1(S^n) \text{ for } n \geq 2$

November 14, 2023

Remark. We'll compute $\pi_1(S^1)$ in Corollary 4.2 of Chapter III.

Definition 6.1 (Simply connected spaces). A space X is said to be simply connected iff it is path-connected with $\pi_1(X) = 0$.

¹¹See remark.

Proposition 6.2 (A version of van Kampen). If X can be written as a union of two simply connected open subspaces whose intersection is nonempty and path-connected, then X is simply connected.

Proposition 6.3 (Stereographic projections). Let $n \ge 1$. Then the functions $f: S^n \setminus \{e_{n+1}\} \to \mathbb{R}^n$ and $g: \mathbb{R}^n \to S^n \setminus \{e_{n+1}\}$ given by

$$f(x_1, \dots, x_{n+1}) := \left(\frac{x_1}{1 - x_{n+1}}, \dots, \frac{x_n}{1 - x_{n+1}}\right)$$
$$g(y_1, \dots, y_n) := \left(\frac{2y_1}{1 + \|y\|^2}, \dots, \frac{2y_n}{1 + \|y\|^2}, \frac{-1 + \|y\|^2}{1 + \|y\|^2}\right)$$

define homeomorphisms which are inverses of each other.

Corollary 6.4.

- (i) S^n is simply connected for $n \ge 2$.
- (ii) Any non-surjective map $X \to S^n$ is nullhomotopic.

7 Miscellaneous

November 9, 2023

Proposition 7.1 (Borsuk-Ulam versions). For $n \ge 1$, the following are equivalent:

(i) Every continuous map $S^n \to \mathbb{R}^n$ has an antipodal pair on which f agrees.

(ii) Every continuous antipode-preserving map $S^n \to \mathbb{R}^n$ vanishes somewhere.

(iii) There is no continuous antipode-preserving map $S^n \to S^{n-1}$.

(iv) If n + 1 closed sets cover S^n , then one of them contains an antipodal pair. Prove (iv) \Rightarrow (i)!

Corollary 7.2. Borsuk-Ulam holds for n = 1.

Chapter III

Covering spaces

1 Basic stuff

November 8, 2023

Definition 1.1 (Evenly covered). Let $p: \tilde{X} \to X$ be continuous. Then a subset Y of X is said to be evenly covered by p iff $p^{-1}(Y)$ is a disjoint union of open sets, each homeomorphic to Y via p's respective restrictions.

Corollary 1.2.

- (i) Open subsets which are subsets of evenly covered sets are evenly covered.
- (ii) If the whole space X is evenly by $p: \tilde{X} \to X$, then $\tilde{X} \cong X \times F$ where F is a discrete space.¹

Definition 1.3 (Covering projections). A map $p: \tilde{X} \to X$ is called a *covering projection* of the *base space* X by the *covering space* \tilde{X} iff each point in X has an evenly covered open neighborhood.

Corollary 1.4.

- (i) Homeomorphisms are covering projections.
- (*ii*) Covering projections are open.
- (iii) Injective covering projections are homeomorphisms.
- (iv) For a discrete space F, the projection $X \times F \to X$ is a covering projection.
- (v) Any fibre of a covering projection is discrete.
- (vi) Covering projections are local homeomorphisms.

¹Compare with (iv) of Corollary 1.4.

(vii) Restrictions of covering projections to saturated sets are covering projections.

(viii) Finite product of covering projections is a covering projection.

Proposition 1.5 (Some covering projections). *The following are covering projections:*

- (i) $\mathbb{R} \to S^1$ given by $t \mapsto e^{i2\pi t}$.
- (ii) $S^1 \to S^1$ given by $z \mapsto z^n$ for any $n \ge 1$.
- (iii) $\mathbb{C} \to \mathbb{C} \setminus \{0\}$ given by $z \mapsto e^z$.

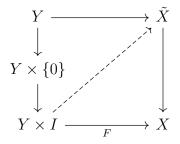
Example 1.6. The restriction of $t \mapsto e^{i2\pi t}$ to (0,2) is not a covering projection but nevertheless a local homeomorphism.

2 Lifting properties

November 9, 2023

Proposition 2.1 (A sufficient condition for covering-lifts to be unique). Let $f: Y \to X$ where Y is connected. Then any two lifts of f through a covering of X that agree on some point in Y are the same.

Theorem 2.2 (Homotopy-lifting property of coverings). Let $F: Y \times I \to X$ a homotopy. Then any lift of $y \mapsto F(y, 0)$ through a covering of X extends uniquely to a lift of F.



Corollary 2.3 (Paths and homotopies between them can be lifted through coverings). Let $p: \tilde{X} \to X$ be a covering. Then the following hold:

- (i) Let α be a path in X starting at x_0 . Then for any $\tilde{x}_0 \in p^{-1}(\{x_0\})$, there exists a unique path in \tilde{X} starting at \tilde{x}_0 that lifts α .
- (ii) Let $F: I \times I \to X$ be a homotopy. Set $x_0 := F(0,0)$ and let $\tilde{x}_0 \in p^{-1}(\{x_0\})$. Then there exists a unique homotopy \tilde{F} in \tilde{X} with $\tilde{F}(0,0) = \tilde{x}_0$, lifting F.

Notation. This allows to denote the lift in (i) by $\alpha_{\tilde{x}}^{\sim}$ (when the covering projection being talked of is clear from the context).

Proposition 2.4 (Monodromy). Let $p: \tilde{X} \to X$ be a covering and $\tilde{\alpha}$, $\tilde{\beta}$ be paths in X starting at the same point. Then $\tilde{\alpha}$ is path homotopic to $\tilde{\beta} \iff p \circ \tilde{\alpha}$ is path homotopic to $p \circ \tilde{\beta}$.

Corollary 2.5. Homomorphisms between fundamental groups induced by covering projections are injective.

3 The action of the fundamental group

Novemvber 14, 2023

Lemma 3.1 (Lifts of joins and inverses). Let $p: \tilde{X} \to X$ be a covering projection and $\alpha \in \text{Path}(X; x, y), \beta \in \text{Path}(X; y, z)$. Let $\tilde{x} \in p^{-1}(\{x\})$. Set $\tilde{y} := \alpha_{\tilde{x}}^{\sim}(1)$. Then the following hold:

- (i) $\tilde{y} \in p^{-1}(\{y\}).$
- (*ii*) $(\alpha * \beta)_{\tilde{x}}^{\sim} = \alpha_{\tilde{x}}^{\sim} * \beta_{\tilde{y}}^{\sim}$.
- (*iii*) $(\alpha^{-1})_{\tilde{y}}^{\sim} = (\alpha_{\tilde{x}}^{\sim})^{-1}.$

Corollary 3.2 (The functor $\Pi(X) \to \mathsf{Set}$). Let $p: \tilde{X} \to X$ be a covering projection. Then the following defines a functor $\Pi(X) \to \mathsf{Set}$:

$$\begin{array}{ccc} x & p^{-1}(\{x\}) \\ & & & \downarrow^{\psi_{[\alpha]}} \\ y & & & \downarrow^{\psi_{[\alpha]}} \\ y & & p^{-1}(\{y\}) \end{array}$$

where $\psi_{[\alpha]}$ is given by

$$\psi_{[\alpha]}(\tilde{x}) = \alpha_{\tilde{x}}^{\sim}(1).$$

Corollary 3.3. For a covering projection, the fibres of path-connected points have the same cardinality.

Corollary 3.4 (The action of $\pi_1(X, x)$ on $p^{-1}(\{x\})$). Let $p: \tilde{X} \to X$ be a covering projection and $x \in X$. Then $\pi_1(X, x)$ acts on $p^{-1}(\{x\})$ via

$$[\alpha]\,\tilde{x} = \alpha_{\tilde{x}}^{\sim}(1).$$

Further, the following hold:

- (i) $\operatorname{Stab}(\tilde{x}) = p_*(\pi_1(\tilde{X}, \tilde{x})).$
- (ii) If \tilde{X} is path-connected and $\tilde{x} \in p^{-1}(\{x\})$, then the following hold:
 - (a) The action is transitive.
 - (b) $|p^{-1}(\{x\})| = [\pi_1(X, x) : p_*(\pi_1(\tilde{X}, \tilde{x}))].$
 - (c) p is a homeomorphism $\iff p_* \colon \pi_1(\tilde{X}, \tilde{x}) \to \pi_1(X, x)$ is surjective.

$4 \quad \pi_1(S^1)\cong \mathbb{Z} ext{ and its consequences}$

November 9, 2023

Lemma 4.1. Let $p: \mathbb{R} \to S^1$ be given by $t \mapsto e^{i2\pi t}$. Let $\alpha \in \text{Path}(S^1; x, y)$ and $\tilde{x}_1, \tilde{x}_2 \in p^{-1}(\{x\})$. Then

$$\alpha_{\tilde{x}_2}^{\sim} = T_{\tilde{x}_2 - \tilde{x}_1} \circ \alpha_{\tilde{x}_1}^{\sim}$$

where $T_{\tilde{x}_2-\tilde{x}_1}$ denotes translation by $\tilde{x}_2-\tilde{x}_1$.

Corollary 4.2 $(\pi_1(S^1) \cong \mathbb{Z})$. Let $p: \mathbb{R} \to S^1$ be given by $t \mapsto e^{i2\pi t}$. Then the following defines a group isomorphism $\pi_1(S^1, 1) \to \mathbb{Z}$:

$$\begin{aligned} [\alpha] \mapsto [\alpha] \, 0 \\ = \alpha_0^{\sim}(1) \end{aligned}$$

Corollary 4.3. \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for $n \neq 2$.

Proposition 4.4. Borsuk-Ulam (Proposition 7.1) holds for n = 2.

Proposition 4.5 (Brower for n = 2). Any continuous function $D^2 \rightarrow D^2$ has a fixed point.

Remark. Brower for n = 1 follows from the intermediate value theorem.

Appendix A

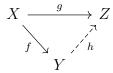
Things used

1 Set theoretic facts

September 19, 2023

Proposition 1.1 (Surjections are epic in Set). Let $f: X \to Y$ and $g: X \to Z$ be set theoretic functions with f surjective. Let \sim_f, \sim_g be the equivalence relations induced on X due to f, g. Then the following hold:

(i) There exists at most one $h: Y \to Z$ making the following diagram commute:



- *(ii)* The following are equivalent:
 - (a) There exists $h: Y \to Z$ making the diagram commute.
 - (b) Each $[x]_{\sim_f} \subseteq [x]_{\sim_g}$.
- (iii) Let $h: Y \to Z$ such that the diagram commutes. Then the following hold:
 - (a) range $h = \operatorname{range} q$.
 - (b) h is injective $\iff \sim_f and \sim_g coincide.$

Lemma 1.2. Let $f: X \to Y$ be a set theoretic function, $A \subseteq X$ and $b \in Y$. Then

$$b \in f(A) \iff f^{-1}(\{b\}) \cap A \neq \emptyset.$$

2 Topological things

September 20, 2023

2.1 Disjoint union topology

September 20, 2023

Proposition 2.1 (Disjoint union topology). Given spaces X_i 's, the following defines a topology on $X := \bigcup_{\alpha} \tilde{X}_{\alpha}$ where $\tilde{X}_{\alpha} := X_{\alpha} \times \{\alpha\}$:¹

 $\{U \subseteq X : each \ U \cap \tilde{X}_{\alpha} \text{ is open in } \tilde{X}_{\alpha}\}$

Notation. This space is denoted by $\bigsqcup_{\alpha} X_{\alpha}$.

Proposition 2.2 (Disjoint union topology generalizes the subspace topology on disjoint open sets). Let U_{α} be disjoint open subsets of X and $V \subseteq \bigcup_{\alpha} U_{\alpha}$. Then the following hold:

- (i) V is open in $\bigcup_{\alpha} U_{\alpha} \iff each \ V \cap U_{\alpha}$ is open in U_{α} .
- (*ii*) $\bigcup_{\alpha} U_{\alpha} \cong \bigsqcup_{\alpha} U_{\alpha}$.

Proposition 2.3. If each $X_{\alpha} \cong Y_{\alpha}$, then $\bigsqcup_{\alpha} X_{\alpha} \cong \bigsqcup_{\alpha} Y_{\alpha}$.

Corollary 2.4. Let X be a space and Λ be an indexing set, considered under the discrete topology. Then $\bigsqcup_{\alpha \in \Lambda} X$ and $X \times \Lambda$ have the same topology.²

2.2 (Weak) local path-connectedness

November 12, 2023

Definition 2.5 ((Weakly) locally path connected). A space X with a point $p \in X$ is called

- (i) weakly locally path connected at p iff each open neighborhood of p contains a path connected neighborhood of p; and,
- (ii) locally path connected at p iff each open neighborhood of p contains a path connected open neighborhood of p.

X is called *(weakly) locally path connected* iff it is so at each point in it.

¹Note that there is only one topology possible on $\{\alpha\}$, so that the (product) topologies \tilde{X}_{α} 's are uniquely determined.

²Note that they are equal as sets in the first place.

2.3 Local homeomorphisms

November 12, 2023

Definition 2.6 (Local homeomorphisms). A continuous $f: X \to Y$ is called a local homeomorphism iff each point in X has an open neighborhood on which f's restriction is a homeomorphism.

Corollary 2.7. Restrictions of local homeomorphisms are local homeomorphisms.

3 Categorical ideas

November 12, 2023

Definition 3.1 (Lifts). In a category, let $p: E \to B$ and $f: X \to B$ be morphisms. Then a *p*-lift of f is any morphism $\tilde{f}: X \to E$ making the following diagram commute:

