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Chapter I

Quotient topology

Convention. For the rest of the document, unless stated otherwise:

(i) Sets are topological spaces.

(ii) Functions between topological spaces are continuous.

(iii) I = [0, 1].

(iv) Bn, Dn will denote the unit open ball and disc in Rn under the l2-norm.

(v) Sn will denote the unit sphere in Rn+1 under the l2-norm.

(vi) Depending on the context, S1 may also mean the unit circle in C, which is
homeomorphic to the unit circle in R2.

1 Saturations and saturated sets

September 19, 2023

Definition 1.1 (Saturations and saturated sets). Let f : X → Y be a set theoretic
function. Then we define the saturation of an A ⊆ X to be f−1(f(A)).

Further, A is called saturated iff A equals its saturation.

Lemma 1.2 (Characterizing saturations and saturated sets). Let f : X → Y be set
theoretic and A ⊆ X. Then the following hold:

(i) The saturation of A is the smallest saturated set containing A.

(ii) The following are equivalent:

(a) A is the inverse image of some subset of B.
(b) f−1({y}) lies in either A or X \ A, for each y ∈ Y .

1



CHAPTER I. QUOTIENT TOPOLOGY 2

(c) A is saturated.

(iii) If A is saturated, then so is X \ A with f(X \ A) = f(X) \ f(A).

2 Quotient topology

September 19, 2023

Lemma 2.1 (Terminal topologies induced by a function). Let f : X → Y be set
theoretic. Then the following hold:

(i) If X is a topological space, then

{V ⊆ Y : f−1(V ) is open in X}

is the largest topology on Y that makes f continuous.

(ii) If Y is a topological space, then

{f−1(V ) ⊆ X : V is open in Y }

is the smallest topology on X that makes f continuous.

Definition 2.2 (Quotient topology). Given an equivalence relation ∼ on X, the
largest topology on X/∼ that makes the canonical function X → X/∼ continuous
is called the quotient topology on X/∼.

Remark. The map X → X/∼ is the model for quotient maps.

Definition 2.3 (Quotient maps). A continuous surjection p : X → Y such that V
is open in Y whenever p−1(V ) is open in X, is called a quotient map.

Corollary 2.4.

(i) Quotients preserve compactness.

(ii) Composition of quotients is quotient.

Example 2.5 (Restrictions of quotients needn’t be quotient!). Consider the restriction
of the projection R2 → R onto the first coordinate, to the subspace {(0, 0)} ∪ {(x, y) :
y = 1 and x ̸= 0}.
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Example 2.6 (Quotients needn’t preserve local compactness). R with integers identified
together is Hausdorff, but not locally compact.

Lemma 2.7 (Characterizing the “quotientness” condition). Let p : X → Y , not
necessarily continuous, be a surjection. Then the following are equivalent:1

(i) p−1(V ) open =⇒ V open.

(ii) p maps saturated opens to opens.

(iii) p maps saturated closeds to closeds.

(iv) p−1(K) is closed =⇒ K is closed.

Corollary 2.8. A continuous open or closed map2 is quotient.

Example 2.9 (Quotient maps needn’t be open or closed). Consider the restriction of the
projection R2 → R onto the first coordinate, to the subspace {(x, y) : x ≥ 0 or y = 0}.
Then this is a quotient map which is neither closed nor open.

Proposition 2.10 (Universal property of quotient maps). Let p : X → Y be a
quotient map. Let f : X → Z factor through p:

X Z

Y

p

f

g

Then f is continuous ⇐⇒ g is.

Lemma 2.11 ({quotient maps} ↔ {quotient spaces}). Let p : X → Y be quotient.
Let ∼ be the equivalence relation on X induced by f . Then the factor map X/∼ → Y
is a homeomorphism:

X Y

X/∼

p

1Surjectivity of p is needed for “(ii) ⇒ (iii)” and “(iii) ⇒ (iv)”.
2Note that following the conventions, a map is by default continuous.
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3 Products of quotient maps

November 14, 2023

Theorem 3.1 (Whitehead). If p : X → Y is a quotient map and Z is locally compact
Hausdorff, then p× idZ : X × Z → Y × Z is also quotient.

Example 3.2 (Necessity of local compactness). Let ∼ be the equivalence relation on R
identifying integers together, and let p : R → R/∼ be the corresponding quotient map.
Then p× idQ : R×Q → (R/∼)×Q is not quotient.

Corollary 3.3. If p : X → Y and q : Z → W are quotient maps with X, W (or Y ,
Z) being locally compact Hausdorff, then p× q is also quotient.

4 Some examples

September 19, 2023

Proposition 4.1 (Circle “wrapped onto itself n times” is circle). Let n ≥ 1. Then S1

under the quotient topology due to the equivalence relation due to f , is homeomorphic
to S1.

Notation. For A ⊆ X, when there’s no chance of confusion,3 we’ll write X/A for
the quotient space obtained by identifying the points A together in X.

Proposition 4.2. Dn/Sn−1 ∼= Sn.

4.1 Quotients of I × I

September 20, 2023

Remark. While defining equivalence relations4, we’ll omit mentioning that the
equal points are related. We’ll also omit mentioning y ∼ x if we have mentioned
x ∼ y.

3For instance, A might be a subgroup of X.
4Actually that a relation is an equivalence relation must be checked after we have defined it in

the first place, but still. . .
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Proposition 4.3 (Constructing spaces out of I × I). Let X := I × I. Define the
following equivalence relations on X:

(i) (x, y) ∼1 (x, y
′) and (0, y) ∼1 (1, y).

(ii) (0, y) ∼2 (1, y).

(iii) (x, 0) ∼3 (x, 1) and (0, y) ∼3 (1, y).

Then we have:

(i) X/∼1
∼= S1.

(ii) X/∼2
∼= S1 × I.

(iii) X/∼3
∼= S1 × S1.

4.2 Cones and suspensions

September 20, 2023

Definition 4.4 (Cones and suspensions). The cone of a space X is X×I with points
of X × {1} identified, whereas the suspension of X is X × I with points of X × {0}
and X × {1} respectively identified.

Proposition 4.5.

(i) Cone of Sn−1 is Dn.

(ii) Suspension of Sn is Sn+1.

4.3 Wedge products

November 12, 2023

Definition 4.6 (Wedge sum of topological spaces). Given pointed spaces (Xα, xα),
we define their wedge product

∨
α(Xα, xα) to be the quotient of

⊔
αXα by identifying

all the (xα, α)’s together.

Proposition 4.7 (Hawaiian earring ≇
∨∞
n=1 (circle)). For n ≥ 1, let Cn be the circle

of radius 1/n in R2 centered at (1/n, 0). Let X :=
⋃
nCn and

H :=
∨
n

(
Cn, (0, 0)

)
.

Then X is compact, whereas the sequence of points (1/n, 0) has no convergent sub-
sequence in H.
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5 Quotients and Hausdorffness

September 19, 2023

Example 5.1 (Quotients don’t preserve Hausdorffness).

(i) For E is dense in X, any nonempty open set in X/E contains E.

(ii) The group quotient R/Q is indiscrete.

(iii) (The real line with two origins). Let X := {(x, y) : y = 0 or y = 1} and define an
equivalence relation on X by (x, 0) ∼ (x, 1) for x ̸= 0. Then we can’t separate
{(0, 0)} and {(0, 1)} via opens in X/ ∼.

Theorem 5.2 (The Hausdorff criterion). Let p : X → Y be closed, continuous and
surjective. Let X be normal5 with singletons closed. Then Y is Hausdorff.

Proposition 5.3 (Comparing with the openness and closedness of the induced re-
lation). Let p : X → Y not necessarily be continuous. Set R := {(x, y) ∈ X × X :
p(x) = p(y)}. Then the following hold:

(i) p is quotient and R is open =⇒ Y is discrete =⇒ p is open.

(ii) p continuous and Y is Hausdorff =⇒ R is closed.

(iii) p open and surjective, and R is closed =⇒ Y is Hausdorff.

(iv) If p is quotient and X is compact Hausdorff, then R is closed ⇐⇒ Y is
Hausdorff.

Example 5.4 (Counters to converses).

(i) (p open ̸⇒ R open; R closed ̸⇒ p closed). Take p to be the projection R2 → R
onto the first coordinate.

(ii) (p closed ̸⇒ R closed). Take p to be the identity map on any non-Hausdorff X.

6 Projective spaces

September 19, 2023

Definition 6.1 (Projective spaces). Let n ≥ 0 and define an equivalence relation on
Sn by x ∼ −x. Then we define RP n to be the quotient space Sn/∼.

5That is, closeds can be separated via opens.
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Proposition 6.2. Each RP n is compact, (path) connected and Hausdorff.

Theorem 6.3 (Different descriptions of RP 2). For n ≥ 1, define the following
equivalence relations:

(i) On Rn \ {0}: x ∼1 λx for λ ̸= 0.

(ii) On Dn: x ∼2 −x for x ∈ Sn−1.

Then the quotient spaces (Rn \ {0})/∼1 and Dn/∼2 are both homeomorphic to RP n.



Chapter II

Homotopy

Convention. Throughout the rest of the document, unless stated otherwise:

(i) For x0 ∈ X, the constant function x 7→ x0 on either X → X or I → X
(depending on the context) will be denoted by cx0 .

(ii) Statements involving K will mean two statements, one for R and one for C.

1 Relative homotopies

September 20, 2023

Definition 1.1 (Relative homotopy). Let f, g : X → Y be continuous and A ⊆ X.
Then a homotopy from f to g relative to A is a continuous map F : X × I → Y such
that the following hold:

(i) F (x, 0) = f(x).

(ii) F (x, 1) = g(x).

(iii) F (a, t) is independent of t for all a ∈ A.

We say f and g are homotopic relative to A iff there exists a homotopy between
them relative to A.

If A = ∅, then we omit “relative to A”.

Definition 1.2 (Nullhomotopic maps). A map is called nullhomotopic iff it is ho-
motopic to some constant map.

8
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Example 1.3 (Straight line homotopy). Let Y be a convex set of a topological vector
space over K. Then any two f, g : X → Y are homotopic relative to the equalizer of f ,
g via F : X × I → Y given by

(x, t) 7→ (1− t) f(x) + t g(x).

Example 1.4 (Homotopies on Sn). Any f, g : X → Sn for which f(x) ̸= −g(x)1 for all
x ∈ X, are homotopic via

(x, t) 7→ (1− t) f(x) + t g(x)

∥(1− t) f(x) + t g(x)∥
.

Thus, for any f : Sn → Sn, the following hold:

(i) If f has no fixed points, then f is homotopic to the antipodal map.

(ii) If f(x) ̸= −x for any x ∈ X, then f is homotopic to the identity map.

Example 1.5 (Motivation for hairy ball).

(i) (Normal vector fields allow to deform id into ap). Let v : Sn → Sn be continuous
with v(x) ⊥ x for each x ∈ Sn. Then

(x, t) 7→ (cos πt)x+ (sin πt) v(x)

defines a homotopy from identity to the antipodal map on Sn.

(ii) (Normal vector fields exist on Sn for n odd). For n odd, the following defines a
continuous vector field Sn → Sn that is normal to Sn at each point:

(x1, x2, . . . , x2n−1, x2n) 7→ (−x2, x1, . . . ,−x2n, x2n−1)

(iii) On Sn for n odd, identity is homotopic to the antipodal map.

Proposition 1.6. For a fixed subspace A of X, “being homotopic relative to A” is
an equivalence relation on the set of all continuous X → Y .

Proposition 1.7 (RelHTop). The pairs (X,A) of spaces X and their subspaces A
form a category wherein the morphisms from (X,A) to (Y,B) are the continuous

1To make it work for complex Sn, we must have f(x) ̸= eiθg(x) for θ ∈ (0, 2π).
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f : X → Y with f(A) ⊆ B, modded out by “being homotopic relative to A”.2 The
composition of [f ]A,B : (X,A) → (Y,B) and [g]B,C : (Y,B) → (Z,C) is given by3

[g]B,C [f ]A,B = [g ◦ f ]A,C.

In this category, the identity morphism on (X,A) is

[idX ]A,A.

Definition 1.8 (Relative homotopic equivalence). In RelHTop, isomorphisms are
called relative homotopic equivalences, and isomorphic objects are said to be rela-
tively homotopically equivalent or of same relative homotopic type. As before, if the
subspace is empty for both the pairs, then we drop “relatively”.

Remark. Sometimes, we’ll write “f : X → Y is a homotopic equivalence” to mean
that [f ]∅,∅ : (X, ∅) → (Y, ∅) is a homotopy equivalence.

Corollary 1.9 (Alternate way of expressing various things in RelHTop). Let A ⊆ X
and B ⊆ Y . Then the following hold:

(i) For f, g : X → Y with f(A), g(A) ⊆ B, we have [f ]A,B = [g]A,B ⇐⇒ f is
homotopic to g relative to A.

(ii) (X,A) is homotopically equivalent to (Y,B) ⇐⇒ there exist f : X → Y and
g : Y → X such that the following hold:

(a) f(A) ⊆ B and g(B) ⊆ A.
(b) g ◦ f is homotopic to idX relative to A.
(c) f ◦ g is homotopic to idY relative to B.

Proposition 1.10. Let X be (path) connected, and f : X → Y and g : Y → X such
that f ◦ g is homotopic to idY . Then Y is also (path) connected.

Corollary 1.11. Homotopy equivalences preserve (path) connectivity.

2To be completely precise, the morphisms should also contain the information of their domain
and codomain objects.

3The subscript A and B denote the fact that the equivalence relations are different.
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2 Contractible spaces

September 20, 2023

Definition 2.1 ((Relatively) contractible spaces). A space X is called

(i) contractible to x0 ∈ X iff X is homotopically equivalent to {x0}; and,
(ii) contractible relative to x0 ∈ X iff (X, {x0}) is relatively homotopically equiva-

lent to ({x0}, {x0}).
We say that X is contractible (relatively) iff X is contractible (relative) to some

x0 ∈ X.

Corollary 2.2.

(i) Contractibility is preserved under homotopic equivalence.4

(ii) Contractible spaces are path-connected.5

(iii) (Characterizing (relative) contractibility). X is contractible (relative) to x0 ∈
X ⇐⇒ the constant map cx0 is homotopic to idX (relative to {x0}).

(iv) A contractible space is contractible to all of its points.

(v) Cones are contractible.

(vi) If either X or Y is contractible, then any map X → Y is nullhomotopic.

(vii) If X is contractible and Y path-connected, then any two continuous maps X →
Y are homotopic.

(viii) Products and retracts of contractible spaces are contractible.

Proposition 2.3. If X is contractible relative to x0, then X is weakly locally path
connected at x0.

Remark. Proposition 2.3 can’t be strengthened by either of the following ways:

(i) Dropping “relative”: Consider Hatcher’s zigzg space.

(ii) Having “locally path connected”: Consider iterated broom.

Example 2.4 (Comb space can’t be contracted relatively to (0, 1)). Consider the fol-
lowing subspace of R2:

C :=
(
{1/n : n ≥ 1} × I

)
∪
(
I × {0}

)
Then C is not weakly locally path connected at (0, 1) so that it’s not contractible relative
to (0, 1). However, it can be contracted relative to (0, 0).

4This is not true of relative contractibility. Consider comb space of Example 2.4.
5Converse not true! Consider S1. See Corollary 4.2.

https://math.stackexchange.com/q/495856/673223
https://math.stackexchange.com/a/4481916/673223
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3 Retracts

September 20, 2023

Definition 3.1 (((Strong) deformation) retracts). Let A ⊆ X. Then a continuous
r : X → A is called

(i) a retract iff r ◦ ι = idA;

(ii) a deformation retract iff r ◦ ι = idA and ι ◦ r is homotopic to idX ; and,

(iii) a strong deformation retract iff r ◦ ι = idA and ι◦r is homotopic to idX relative
to A.

Accordingly, we call A a ((strong) deformation) retract of X.

Corollary 3.2. (Strong) deformation retracts are (relative) homotopy equivalences.

Example 3.3 (Retract needn’t be a homotopy equivalence). A point of a non-path-
connected space is not homotopically equivalent to the space.6

Corollary 3.4 (Retractibility and contractibility to a point). Let x0 ∈ X. Then the
following hold:

(i) {x0} is a retract.7

(ii) {x0} is a deformation retract of X ⇐⇒ X is contractible to x0.

(iii) {x0} is a strong deformation retract of X ⇐⇒ X is contractible relative to
x0.

Example 3.5 (Not every subspace is a retract). {0, 1} is not a retract of I.

Example 3.6 (Retract ̸⇒ deformation retract ̸⇒ strong deformation retract).

(i) A point can’t be a deformation retract of a non-path-connected space.

(ii) {(0, 1)} of comb space is a deformation retract but not strongly.

Example 3.7. Sn is a strong deformation retract of Rn+1 \ {0} via r : x 7→ x/∥x∥.

6See Corollary 3.4.
7Note that the only candidate for the retract map is the constant map X → {x0}.
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4 The fundamental groupoid

September 20, 2023

Notation. We’ll use these notations: Path(X;x, y) and Loop(X;x).

Proposition 4.1 (Operations on paths). For a space X, let α ∈ Path(X;x, y), and
β ∈ Path(X; y, z). Then there exist the following paths:

(i) (Join of α and β). A path α ∗ β ∈ Path(X;x, z) such that

t 7→

{
α(2t), t ∈ [0, 1/2]

β(2t− 1), t ∈ [1/2, 1]
.

(ii) (Inverse of α). A path α−1 ∈ Loop(X; y, x)8 such that

t 7→ α(1− t).

Remark.

(i) Join of paths is not associative.

(ii) α−1 is just α ◦ f where f : I → I is given by t 7→ 1− t.

Definition 4.2 (Path homotopy). A homotopy between two paths in a space, relative
to {0, 1} is called a path homotopy between them. We similarly define path homotopic
paths.

Corollary 4.3. “Being path homotopic” is an equivalence relation on Path(X;x, y)
for all x, y ∈ X.

Lemma 4.4. Let α be a path from x to y in X and f : I → I be continuous with
f(0) = 0 and f(1) = 1. Then α is path homotopic to α ◦ f .

Proposition 4.5 (The fundamental groupoid). The points of a space X form a
category Π(X) with morphisms from x to y being paths from x to y modded out by
“being path homotopic”. The composition of [α] : x→ y and [β] : y → z is given by9

[β] [α] = [α ∗ β].

The identity morphism on x is [cx]. Further, Π(X) forms a groupoid with

[α]−1 = [α−1].
8Of course, the notation α−1 is not great.
9Note that [α] and [β] are classes of different equivalence relations.



CHAPTER II. HOMOTOPY 14

Proposition 4.6 (The functor Top → Gpd10). The following defines a functor Top →
Gpd:

X

Y

f 7−→
Π(X)

Π(Y )

Π(f)

where Π(f) : Π(X) → Π(Y ) is the functor given by

x

y

[α]
Π(f)7−→

f(x)

f(y)

[f◦α] .

5 The fundamental group

September 21, 2023

Definition 5.1 (The fundamental group). The fundamental group π1(X, x) of a
space X at x ∈ X is the group of morphisms associated with the full subcategory of
Π(X) generated by the single object x.

Corollary 5.2 (The functor pTop → Grp). The following defines a functor pTop →
Grp:

(X, x)

(Y, y)

f 7−→
π1(X, x)

π1(Y, y)

f∗

where f∗ is given by
f∗([α]) = [f ◦ α].

Proposition 5.3 (The functor Π(X) → Grp). For a fixed space X, the following
defines a functor Π(X) → Grp:

x

y

[γ] 7−→
π1(X, x)

π1(X, y)

ϕ[γ]

10Gpd is the full subcategory of Cat comprising of groupoids.
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where ϕ[γ] is given by
ϕ[γ]([α]) = [γ] [α] [γ]−1.

Further, π1(X, x) is abelian ⇐⇒ for all points y we have

ϕ[γ1] = ϕ[γ2]

for all [γ1], [γ2] : x→ y.

Corollary 5.4. If γ ∈ Path(X;x, y), then π1(X, x) ∼= π2(X, y) via ϕ[γ]. Thus,
π1(X, x) is independent of x if X is path connected.

Notation. Thus, we’ll use π1(X) for path-connected X when we just want to focus
on π1(X, x) up to group isomorphisms.

Proposition 5.5. Let f, g : X → Y be homotopic via H and x0 ∈ X. Define
γ ∈ Path(Y ; f(x0), g(x0)) by t 7→ H(x0, t). Then the following diagram commutes:

π1(X, x0)

π1(Y, f(x0)) π1(Y, g(x0))

f∗ g∗

ϕ[γ]

Corollary 5.6 (Fundamental groups are preserved under homotopy equivalence).
Let f : X → Y be a homotopic equivalence11 and x ∈ X. Then π1(X, x) ∼= π1(Y, f(x)).

Corollary 5.7. The fundamental group of a contractible space is trivial.

6 π1(S
n) for n ≥ 2

November 14, 2023

Remark. We’ll compute π1(S
1) in Corollary 4.2 of Chapter III.

Definition 6.1 (Simply connected spaces). A space X is said to be simply connected
iff it is path-connected with π1(X) = 0.

11See remark.
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Proposition 6.2 (A version of van Kampen). If X can be written as a union of two
simply connected open subspaces whose intersection is nonempty and path-connected,
then X is simply connected.

Proposition 6.3 (Stereographic projections). Let n ≥ 1. Then the functions f : Sn\
{en+1} → Rn and g : Rn → Sn \ {en+1} given by

f(x1, . . . , xn+1) :=
( x1
1− xn+1

, . . . ,
xn

1− xn+1

)
g(y1, . . . , yn) :=

( 2y1
1 + ∥y∥2

, . . . ,
2yn

1 + ∥y∥2
,
−1 + ∥y∥2

1 + ∥y∥2
)

define homeomorphisms which are inverses of each other.

Corollary 6.4.

(i) Sn is simply connected for n ≥ 2.

(ii) Any non-surjective map X → Sn is nullhomotopic.

7 Miscellaneous

November 9, 2023

Proposition 7.1 (Borsuk-Ulam versions). For n ≥ 1, the following are equivalent:

(i) Every continuous map Sn → Rn has an antipodal pair on which f agrees.

(ii) Every continuous antipode-preserving map Sn → Rn vanishes somewhere.

(iii) There is no continuous antipode-preserving map Sn → Sn−1.

(iv) If n+ 1 closed sets cover Sn, then one of them contains an antipodal pair.

Prove (iv)⇒(i)!

Corollary 7.2. Borsuk-Ulam holds for n = 1.



Chapter III

Covering spaces

1 Basic stuff

November 8, 2023

Definition 1.1 (Evenly covered). Let p : X̃ → X be continuous. Then a subset Y
of X is said to be evenly covered by p iff p−1(Y ) is a disjoint union of open sets, each
homeomorphic to Y via p’s respective restrictions.

Corollary 1.2.

(i) Open subsets which are subsets of evenly covered sets are evenly covered.

(ii) If the whole space X is evenly by p : X̃ → X, then X̃ ∼= X × F where F is a
discrete space.1

Definition 1.3 (Covering projections). A map p : X̃ → X is called a covering pro-
jection of the base space X by the covering space X̃ iff each point in X has an evenly
covered open neighborhood.

Corollary 1.4.

(i) Homeomorphisms are covering projections.

(ii) Covering projections are open.

(iii) Injective covering projections are homeomorphisms.

(iv) For a discrete space F , the projection X × F → X is a covering projection.

(v) Any fibre of a covering projection is discrete.

(vi) Covering projections are local homeomorphisms.

1Compare with (iv) of Corollary 1.4.

17
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(vii) Restrictions of covering projections to saturated sets are covering projections.

(viii) Finite product of covering projections is a covering projection.

Proposition 1.5 (Some covering projections). The following are covering projec-
tions:

(i) R → S1 given by t 7→ ei2πt.

(ii) S1 → S1 given by z 7→ zn for any n ≥ 1.

(iii) C → C \ {0} given by z 7→ ez.

Example 1.6. The restriction of t 7→ ei2πt to (0, 2) is not a covering projection but
nevertheless a local homeomorphism.

2 Lifting properties

November 9, 2023

Proposition 2.1 (A sufficient condition for covering-lifts to be unique). Let f : Y →
X where Y is connected. Then any two lifts of f through a covering of X that agree
on some point in Y are the same.

Theorem 2.2 (Homotopy-lifting property of coverings). Let F : Y × I → X a ho-
motopy. Then any lift of y 7→ F (y, 0) through a covering of X extends uniquely to a
lift of F .

Y X̃

Y × {0}

Y × I X
F

Corollary 2.3 (Paths and homotopies between them can be lifted through cover-
ings). Let p : X̃ → X be a covering. Then the following hold:

(i) Let α be a path in X starting at x0. Then for any x̃0 ∈ p−1({x0}), there exists
a unique path in X̃ starting at x̃0 that lifts α.

(ii) Let F : I × I → X be a homotopy. Set x0 := F (0, 0) and let x̃0 ∈ p−1({x0}).
Then there exists a unique homotopy F̃ in X̃ with F̃ (0, 0) = x̃0, lifting F .
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Notation. This allows to denote the lift in (i) by α∼
x̃ (when the covering projection

being talked of is clear from the context).

Proposition 2.4 (Monodromy). Let p : X̃ → X be a covering and α̃, β̃ be paths in
X starting at the same point. Then α̃ is path homotopic to β̃ ⇐⇒ p ◦ α̃ is path
homotopic to p ◦ β̃.

Corollary 2.5. Homomorphisms between fundamental groups induced by covering
projections are injective.

3 The action of the fundamental group

Novemvber 14, 2023

Lemma 3.1 (Lifts of joins and inverses). Let p : X̃ → X be a covering projection
and α ∈ Path(X;x, y), β ∈ Path(X; y, z). Let x̃ ∈ p−1({x}). Set ỹ := α∼

x̃ (1). Then
the following hold:

(i) ỹ ∈ p−1({y}).
(ii) (α ∗ β)∼x̃ = α∼

x̃ ∗ β∼
ỹ .

(iii) (α−1)∼ỹ = (α∼
x̃ )

−1.

Corollary 3.2 (The functor Π(X) → Set). Let p : X̃ → X be a covering projection.
Then the following defines a functor Π(X) → Set:

x

y

[α] 7−→
p−1({x})

p−1({y})

ψ[α]

where ψ[α] is given by
ψ[α](x̃) = α∼

x̃ (1).

Corollary 3.3. For a covering projection, the fibres of path-connected points have
the same cardinality.

Corollary 3.4 (The action of π1(X, x) on p
−1({x})). Let p : X̃ → X be a covering

projection and x ∈ X. Then π1(X, x) acts on p
−1({x}) via

[α] x̃ = α∼
x̃ (1).

Further, the following hold:
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(i) Stab(x̃) = p∗
(
π1(X̃, x̃)

)
.

(ii) If X̃ is path-connected and x̃ ∈ p−1({x}), then the following hold:

(a) The action is transitive.
(b)

∣∣p−1({x})
∣∣ = [

π1(X, x) : p∗
(
π1(X̃, x̃)

)]
.

(c) p is a homeomorphism ⇐⇒ p∗ : π1(X̃, x̃) → π1(X, x) is surjective.

4 π1(S
1) ∼= Z and its consequences

November 9, 2023

Lemma 4.1. Let p : R → S1 be given by t 7→ ei2πt. Let α ∈ Path(S1;x, y) and
x̃1, x̃2 ∈ p−1({x}). Then

α∼
x̃2

= Tx̃2−x̃1 ◦ α∼
x̃1

where Tx̃2−x̃1 denotes translation by x̃2 − x̃1.

Corollary 4.2 (π1(S
1) ∼= Z). Let p : R → S1 be given by t 7→ ei2πt. Then the

following defines a group isomorphism π1(S
1, 1) → Z:

[α] 7→ [α] 0

= α∼
0 (1)

Corollary 4.3. R2 is not homeomorphic to Rn for n ̸= 2.

Proposition 4.4. Borsuk-Ulam (Proposition 7.1) holds for n = 2.

Proposition 4.5 (Brower for n = 2). Any continuous function D2 → D2 has a fixed
point.

Remark. Brower for n = 1 follows from the intermediate value theorem.
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Things used

1 Set theoretic facts

September 19, 2023

Proposition 1.1 (Surjections are epic in Set). Let f : X → Y and g : X → Z be set
theoretic functions with f surjective. Let ∼f , ∼g be the equivalence relations induced
on X due to f , g. Then the following hold:

(i) There exists at most one h : Y → Z making the following diagram commute:

X Z

Y

g

f h

(ii) The following are equivalent:

(a) There exists h : Y → Z making the diagram commute.
(b) Each [x]∼f

⊆ [x]∼g .

(iii) Let h : Y → Z such that the diagram commutes. Then the following hold:

(a) rangeh = range g.
(b) h is injective ⇐⇒ ∼f and ∼g coincide.

Lemma 1.2. Let f : X → Y be a set theoretic function, A ⊆ X and b ∈ Y . Then

b ∈ f(A) ⇐⇒ f−1({b}) ∩ A ̸= ∅.

i
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2 Topological things

September 20, 2023

2.1 Disjoint union topology

September 20, 2023

Proposition 2.1 (Disjoint union topology). Given spaces Xi’s, the following defines
a topology on X :=

⋃
· α X̃α where X̃α := Xα × {α}:1

{U ⊆ X : each U ∩ X̃α is open in X̃α}

Notation. This space is denoted by
⊔
αXα.

Proposition 2.2 (Disjoint union topology generalizes the subspace topology on
disjoint open sets). Let Uα be disjoint open subsets of X and V ⊆

⋃
· α Uα. Then the

following hold:

(i) V is open in
⋃
· α Uα ⇐⇒ each V ∩ Uα is open in Uα.

(ii)
⋃
· α Uα ∼=

⊔
α Uα.

Proposition 2.3. If each Xα
∼= Yα, then

⊔
αXα

∼=
⊔
α Yα.

Corollary 2.4. Let X be a space and Λ be an indexing set, considered under the
discrete topology. Then

⊔
α∈ΛX and X × Λ have the same topology.2

2.2 (Weak) local path-connectedness

November 12, 2023

Definition 2.5 ((Weakly) locally path connected). A space X with a point p ∈ X
is called

(i) weakly locally path connected at p iff each open neighborhood of p contains a
path connected neighborhood of p; and,

(ii) locally path connected at p iff each open neighborhood of p contains a path
connected open neighborhood of p.

X is called (weakly) locally path connected iff it is so at each point in it.

1Note that there is only one topology possible on {α}, so that the (product) topologies X̃α’s are
uniquely determined.

2Note that they are equal as sets in the first place.
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2.3 Local homeomorphisms

November 12, 2023

Definition 2.6 (Local homeomorphisms). A continuous f : X → Y is called a lo-
cal homeomorphism iff each point in X has an open neighborhood on which f ’s
restriction is a homeomorphism.

Corollary 2.7. Restrictions of local homeomorphisms are local homeomorphisms.

3 Categorical ideas

November 12, 2023

Definition 3.1 (Lifts). In a category, let p : E → B and f : X → B be morphisms.
Then a p-lift of f is any morphism f̃ : X → E making the following diagram com-
mute:

E

Y B

p

f

f̃
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