Contents

I Basic stuff 1
1 Categories 1
2 Monics, epics and isomorphisms 3
3 Initials, terminals, and zeroes 4
4 Zero morphisms 5
5 Subobjects and quotients 6
6 (Co)equalizers and (co)products 7
7 (Co)products 8
8 Abelian categories 8
9 Functors 11
10 Natural transformations 13
11 Yoneda lemma 14

Chapter I

Basic stuff

1 Categories

September 16, 2023
Definition 1.1 (Category). A category C consists of a class of objects Obj C, and for every pair of objects X, Y of C , a set of morphisms $\operatorname{Hom}_{\mathrm{C}}(X, Y)$ such that the following hold:
(i) (Composition of morphisms). For any objects X, Y, Z of C , there's a function:

$$
\begin{aligned}
\operatorname{Hom}_{\mathrm{C}}(X, Y) \times \operatorname{Hom}_{\mathrm{C}}(Y, Z) & \rightarrow \operatorname{Hom}_{\mathrm{C}}(X, Z) \\
(f, g) & \mapsto g f
\end{aligned}
$$

(ii) (Associativity of composition). For $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y), g \in \operatorname{Hom}_{\mathcal{C}}(Y, Z), h \in$ $\operatorname{Hom}_{\mathrm{C}}(Z, W)$, we have

$$
h(g f)=(h g) f
$$

(iii) (Identity morphisms). For any object X of C , we have $1_{X} \in \operatorname{Hom}_{\mathrm{C}}(X, X)^{1}$ such that for any $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ and for any $g \in \operatorname{Hom}_{\mathcal{C}}(Y, X)$, we have

$$
\begin{aligned}
& f 1_{X}=f, \text { and } \\
& 1_{X} g=g .
\end{aligned}
$$

(iv) (Domains and codomains of morphisms). For any objects X, Y, Z, W of C , the sets $\operatorname{Hom}_{\mathrm{C}}(X, Y)$ and $\operatorname{Hom}_{\mathrm{C}}(Z, W)$ are disjoint unless $X=Z$ and $Y=W$. If $\operatorname{Obj}(\mathrm{C})$ forms a set, then C is said to be small.

[^0]Notation. For a category C, we'll also write " $f: X \rightarrow Y$ in C" to mean that X, Y are objects in C and $f \in \operatorname{Hom}_{\mathrm{C}}(X, Y)$.

Remark. What we have defined are actually locally small categories. In general the hom-sets needn't be small. However, generally, a small category is one whose objects as well as morphisms form a set.

Definition 1.2 (Subcategories). A category D is said to be a subcategory of a category C iff the following hold:
(i) $\operatorname{Obj}(\mathrm{D})$ is a subclass of $\operatorname{Obj}(\mathrm{C})$.
(ii) $\operatorname{Hom}_{\mathrm{D}}(A, B) \subseteq \operatorname{Hom}_{\mathrm{C}}(A, B)$ for all objects A, B of C .
(iii) The morphism composition in D is inherited from that in C .

If the " \subseteq " in (ii) is " $=$ ", then D is called a full subcategory of C .

Example 1.3 (Some examples).
(i) (Subcategories of Set). Set, Top, Grp, Rng, Ring, $\operatorname{Vect}_{K}, \operatorname{Mod}_{R}$, their pointed versions.
(ii) (A category whose objects needn't be sets). Let R be a relation on a set X which is reflexive and transitive. Then the elements of X form a category with the set of morphisms from a to b being

$$
\begin{cases}\{(a, b)\}, & a R b \\ \emptyset, & \text { otherwise }\end{cases}
$$

and the morphisms being given by

$$
(b, c)(a, b)=(a, c) .
$$

(iii) (A category whose objects are sets but morphisms are not set theoretic functions). RelHTop.
(iv) (Opposite category). Let C be a category. Then the objects of C form another category C^{op} with $\operatorname{Hom}_{\mathrm{Cop}}(X, Y)=\operatorname{Hom}_{\mathrm{C}}(Y, X)$ and composition of $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ in C^{op} given by the composition of g and f in C .

2 Monics, epics and isomorphisms

September 17, 2023
Definition 2.1 (Monomorphisms and epimorphisms). Let $f: X \rightarrow Y$ be a morphism in a category. Then:
(i) f is called a monomorphism (or monic) iff

$$
f u=f v \Longrightarrow u=v
$$

for any morphisms $u, v: Z \rightarrow X$, or equivalently, any morphism $Z \rightarrow Y$ factors through f via at most one morphism:

(ii) f is called an epimorphism (or epic) iff

$$
u f=v f \Longrightarrow u=v
$$

for any morphisms $u, v: Y \rightarrow Z$, or equivalently, any morphism $X \rightarrow Z$ factors through f via at most one morphism:

Notation. We'll sometimes denote monics by \longrightarrow and epics by \rightarrow.

Definition 2.2 (Inverses and isomorphisms). A morphism $f: X \rightarrow Y$ is called an isomorphism iff there exists another morphism $g: Y \rightarrow Z$ such that

$$
\begin{aligned}
g f & =1_{X}, \text { and } \\
f g & =1_{Y} .
\end{aligned}
$$

Such a morphism is called an inverse of f, and is denoted by $f^{-1} .2$

[^1]
Corollary 2.3.

(i) Inverse of an isomorphism is an isomorphism.
(ii) An isomorphism is monic and epic.
(iii) In subcategory C of Set, injective morphisms are monic and sujective morphisms are epic. Further, if C contains all the identity functions of its objects, then isomorphisms are bijective.
(iv) Composition of monics (respectively epics) is monic (respectively epic).
(v) (a) gf is monic $\Longrightarrow f$ is monic.
(b) $g f$ is epic $\Longrightarrow g$ is epic.

Example 2.4 (Counters to the converse of (iii)).
(i) (Monic \nRightarrow injective). In the category of "root-able" groups ${ }^{3}, \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z}$ is monic.
(ii) (Epic \nRightarrow surjective).
(a) In the category of Hausdorff spaces, any inclusion $E \hookrightarrow X$ with E dense in X, is epic. ${ }^{4}$
(b) In the category of commutative rings with identities with homomorphisms preserving identities, the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is epic. ${ }^{5}$

Proposition 2.5. Monics are injective and epics, surjective in Grp.

3 Initials, terminals, and zeroes

September 24, 2023
Definition 3.1 (Initial, terminals, and zeroes). An object X in a category C is called
(i) initial iff $\operatorname{Hom}_{\mathrm{C}}(X, Y)$ is a singleton for each object Y;
(ii) terminal iff $\operatorname{Hom}_{\mathrm{C}}(Y, X)$ is a singleton for each object Y; and,
(iii) zero iff it is initial as well as terminal.

[^2]
Corollary 3.2.

(i) Initials (respectively terminals, zeroes) are unique up to unique isomorphisms.
(ii) Any morphism into an initial object is epic and any morphism from a terminal object is monic.

4 Zero morphisms

September 24, 2023
Definition 4.1 (Left and right zeroes, and zero morphisms). A morphism f in a category is called a
(i) left zero iff whenever defined, $f u=f v$ for any morphisms u, v;
(ii) right zero iff whenever defined, $u f=v f$ for any morphisms u, v; and,
(iii) zero morphism iff it's both, a left as well as a right zero.

Remark. "a followed by b" will mean ba and not $a b$.

Corollary 4.2 .

(i) The morphisms associated with initial (terminal) objects are right (left) zeroes.
(ii) If f is a left zero, then fu, whenever defined, is too. Similarly for right zeroes.
(iii) A right zero followed by a left zero is a zero morphism.
(iv) If z is a zero morphism, then $v z u$, whenever defined is a zero morphism.
(v) If 0 is a zero object, then $X \rightarrow 0 \rightarrow Y$ is a zero morphism.
(vi) In a category, there exists at most one family of zero morphisms between each pair of objects.

Definition 4.3 (A category having compatible zero morphisms). A category is said to have compatible zero morphisms iff there exists a family of zero morphisms $0_{X, Y}: X \rightarrow Y$ for each pair of objects such that for any morphisms $X \rightarrow Y$ and $Y \rightarrow Z$, the following diagram commutes:

Corollary 4.4. If a category has a zero object 0 , then the morphisms $X \rightarrow 0 \rightarrow Y$ form a compatible family of zero morphisms.

5 Subobjects and quotients

September 24, 2023
Definition 5.1 (Subobjects, quotients and their comparisons). In a category, subobjects of an object X are monics with codomain X, and quotients of X are epics with domain X.

If $i_{1}: Y_{1} \rightarrow X$ and $i_{2}: Y_{2} \rightarrow X$ are subobjects of X, then we write $i_{1} \leq i_{2}$ iff i_{2} factors through i_{1} :

Similarly, for quotients $q_{1}: X \rightarrow Z_{1}$ and $q: X \rightarrow Z_{2}$ of X, we write $q_{1} \leq q_{2}$ iff q_{2} factors through :

Corollary 5.2.

(i) If $f: Y \rightarrow X$ is a subobject of X and $g: Z \rightarrow Y$ a subobject of Y, then $g f$ is a subobject of X. Similarly for quotients.
(ii) The comparisons defined in Definition 5.1 form partial order with the "equality" replaced with "being isomorphic".

Definition 5.3 (Images). An image of a morphism $f: X \rightarrow Y$ is a smallest subobject of Y through which f factors:

Notation. The arrow $\operatorname{im} f \rightarrow Y$ stands for any image of f, which are all isomorphic, due to Corollary 5.4.

Corollary 5.4. Images are unique up to unique isomorphisms.

6 (Co)equalizers and (co)products

October 25, 2023
Remark. Whenever the domain and codomain are clear from the context, we'll omit the subscript from $0_{X, Y}$.

Definition 6.1 ((Co)equalizers and (co)kernels). An equalizer of $f, g: X \rightarrow Y$ in a category is a morphism which is terminal among all the morphisms $u: A \rightarrow X$ such that $f u=g u$:

If the category has zero morphisms, then an equalizer of f and $0_{X, Y}$ is called a kernel of f.

Coequalizers and cokernels are defined dually.
Notation. The arrow eq $(f, g) \rightarrow X$ stands for any equalizer of f, g, which are all isomorphic due to Corollary 6.2 (ii). Similarly, we use $\operatorname{ker}(f) \rightarrow X, Y \rightarrow \operatorname{coeq}(f, g)$, and $Y \rightarrow \operatorname{coker}(f)$.

Corollary 6.2.

(i) Equalizers are monic and coequalizers, epic.
(ii) (Co)equalizers are unique up to unique isomorphisms.
(iii) (Characterizing (co)kernels). In a category with zero morphisms, a kernel $\operatorname{ker} f \rightarrow X$ of $f: X \rightarrow Y$ is characterized by being the terminal among all the morphisms $u: A \rightarrow X$ such that $f u=0$:

Dual characterization holds for cokernels.
(iv) Taking kernels of quotients, or cokernels of subobjects, reverses order.

Proposition 6.3 (Quotient topology as a coequalizer in Top). Let X be a topological space and \sim an equivalence relation on X and $R \subseteq X \times X$ be the corresponding subset. Consider X / \sim under quotient topology and R under the subspace topology. Then $p: X \rightarrow X / \sim$ is a coequalizer of the projections $R \rightarrow X$.

7 (Co)products

December 10, 2023
Definition 7.1 ((Co)products). A product of objects X_{i} 's in a category is an object P together with morphisms $\pi_{i}: P \rightarrow X_{i}$'s which is terminal among all families of morphisms $f_{i}: Y \rightarrow X_{i}$:

Coproducts are defined dually.
Corollary 7.2. (Co)products are unique up to unique isomorphisms.

8 Abelian categories

October 25, 2023
Definition 8.1 ((Pre-)additive and (pre-)abelian categories). A category C is called:
(i) pre-additive iff the following hold:
(a) C has a zero object 0 .
(b) Each $\operatorname{Hom}_{\mathrm{C}}(X, Y)$ forms an additive abelian group with 0 being the additive identity.
(c) Composition of morphisms is bilinear.
(ii) additive iff it is pre-additive and has finite products and coproducts.
(iii) pre-abelian iff it is additive and has kernels and cokernels.
(iv) abelian iff it is pre-abelian, and all monics arise as kernels and epics as cokernels.

Proposition 8.2. In a pre-additive category, the following hold:
(i) Finite products and coproducts coincide. ${ }^{6}$
(ii) 1_{X} is a kernel, and 1_{Y} a cokernel of $0_{X, Y}$.
(iii) For $f: X \rightarrow Y$,
(a) $0 \rightarrow X$ is a kernel of $f \Longleftrightarrow f$ is monic.
(b) $Y \rightarrow 0$ is a cokernel of $f \Longleftrightarrow f$ is epic.
(iv) A kernel of a cokernel of a kernel is a kernel, and a cokernel of a kernel of a cokernel is a cokernel.

Corollary 8.3. In an abelian category, a monic is a kernel of any cokernel of itself, while an epic is a cokernel of any kernel of itself.

Proposition 8.4. In an abelian category, a morphism is an isomorphism \Longleftrightarrow it is monic and epic.

Definition 8.5 (Exact sequences). In a pre-additive category, a sequence (finite or infinite at either end) of morphisms

$$
\cdots \xrightarrow{f_{i-1}} X_{i-1} \xrightarrow{f_{i}} X_{i} \xrightarrow{f_{i+1}} X_{i+1} \longrightarrow \cdots
$$

is said to be exact at a nonterminal object X_{i} iff kernels of f_{i+1} are precisely the images of f_{i}.

The sequence is called exact iff it is exact at all its nonterminal objects.
Proposition 8.6 (Characterizing exactness). In an abelian category, a sequence of morphisms

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

is exact \Longleftrightarrow the following compositions are 0 :

$$
\begin{aligned}
& A \xrightarrow{f} B \xrightarrow{g} C \\
& \operatorname{ker} g \longrightarrow \\
& \text { coker } f
\end{aligned}
$$

Corollary 8.7 (Using exactness to characterize various things). In an abelian category, the exactness of the sequence of the left is equivalent to the property stated at

[^3]the right:
\[

$$
\begin{aligned}
& 0 \longrightarrow X \xrightarrow{f} Y \quad f \text { is monic } \\
& X \xrightarrow{f} Y \longrightarrow 0 \quad f \text { is epic } \\
& 0 \longrightarrow X \xrightarrow{f} Y \longrightarrow 0 \quad f \text { is an isomorphism } \\
& 0 \longrightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \quad f \text { is a kernel of } g \\
& X \xrightarrow{f} Y \xrightarrow{g} Z \longrightarrow 0 \quad g \text { is a cokernel of } f \\
& 0 \longrightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \longrightarrow 0 \quad f \text { is a kernel of } g \text { and } g \text { a cokernel of } f
\end{aligned}
$$
\]

Theorem 8.8. In an abelian category, any morphism $f: X \rightarrow Y$ admits unique ${ }^{7}$ factorizations as follows:

Proposition $8.9(\operatorname{im} f=\operatorname{ker}(\operatorname{coker} f))$. In an abelian category, a kernel of any cokernel of f is an image of f.

Corollary 8.10 (Unique factorization). In an abelian category, the commutativity of solid arrows below implies the existence of the unique dashed arrow which makes the resulting diagram commute:

Further, the dashed arrow is an isomorphism.

[^4]Proposition 8.11 (Characterizing abelian-ness). Let C be a pre-abelian category. Then the following hold:
(i) For every $f: X \rightarrow Y$, there exists a unique ${ }^{8} \tilde{f}$ such that the following diagram commutes: ${ }^{9}$

(ii) C is abelian $\Longleftrightarrow \tilde{f}$ is an isomorphism for every f.

9 Functors

December 10, 2023
Definition 9.1 (Functors). A functor $F: C \rightarrow D$ is an assignment of objects and morphisms of C to those in D such that the following hold:
(i) F is compatible with domains and codomains:

(ii) F is compatible with composition, i.e., commutativity of the diagram on the left implies that on the right:

(iii) F is compatible with identities:

[^5]Example 9.2 (Hom-functors). Let A, B be objects of a category C . Then the following defines the functor $\operatorname{Hom}_{\mathrm{C}}(A,-): \mathrm{C} \rightarrow$ Set:

where $\operatorname{Hom}_{\mathcal{C}}(A, f)$ is given by $\alpha \mapsto f \alpha$.
We also have the functor $\operatorname{Hom}_{\mathrm{C}}(-, B): \mathrm{C}^{\mathrm{op}} \rightarrow$ Set given by: ${ }^{10}$

where $\operatorname{Hom}_{\mathrm{C}}(g, B)$ is given by $\beta \mapsto \beta f .{ }^{11}$

Corollary 9.3.

(i) Functors preserve isomorphisms.
(ii) (Composition of functors). Let $F: \mathrm{C} \rightarrow \mathrm{D}$ and $G: \mathrm{D} \rightarrow \mathrm{E}$ be functors. Then the following defines their composite functor $G F: \mathrm{C} \rightarrow \mathrm{E}$:

(iii) (Identity functors). For any category C , we have an identity functor 1_{C} :

(iv) (Category of categories). Small categories with functors as morphisms form a category Cat.

[^6]Definition 9.4 (Isomorphism of categories). A functor $F: C \rightarrow D$ is called an isomorphism iff there exists another functor $G: \mathrm{D} \rightarrow \mathrm{C}$ such that $G F=1_{\mathrm{C}}$ and $F G=1_{D} .{ }^{12}$

Definition 9.5 (Full, faithful and essentially surjective functors). A functor $F: C \rightarrow$ D is called full (respectively faithful) iff for all objects A, B of C , the associated function $\operatorname{Hom}_{\mathrm{C}}(A, B) \rightarrow \operatorname{Hom}_{\mathrm{D}}(F(A), F(B))$ is surjective (respectively injective).
F is called essentially surjective iff for every object X of D , there exists an object A of C such that $F(A)$ is isomorphic to X.

Lemma 9.6 (Fully faithful functors are conservative). Let $F: \mathrm{C} \rightarrow \mathrm{D}$ be fully faithful and f be a morphism in C . Then f is an isomorphism $\Longleftrightarrow F(f)$ is an isomorphism.

10 Natural transformations

December 11, 2023
Definition 10.1 (Natural transformations). Let $F, G: \mathrm{C} \rightarrow \mathrm{D}$ be functors. Then a natural transformation $\eta: F \Rightarrow G$ is a family of morphisms η_{A} in D indexed by the objects A on C such that the following hold:
(i) $\eta_{A}: F(A) \rightarrow G(A)$ in D .
(ii) For any morphism $f: A \rightarrow B$ in C , the following diagram commutes:

If each η_{A} is an isomorphism, then η is called a natural isomorphism.

Notation. We'll denote $\operatorname{Nat}(F, G)$ to denote the class of all natural transformations $F \Rightarrow G$.

Corollary 10.2.

[^7](i) (Composition of natural transformations). Let $F, G, H: \mathrm{C} \rightarrow \mathrm{D}$ be functors and $\eta: F \Rightarrow G$ and $\xi: G \Rightarrow H$ be natural transformations. Then the following defines the composite natural transformation $\xi \eta: F \Rightarrow H$:
$$
(\xi \eta)_{A}:=\xi_{A} \eta_{A}
$$
(ii) (Identity natural transformations). Let $F: \mathrm{C} \rightarrow \mathrm{D}$ be a functor. Then the following defines the identity natural transformation $1_{F}: F \Rightarrow F$:
$$
\left(1_{F}\right)_{A}:=1_{F(A)}
$$
(iii) (Functor category). Let C be a small category. Then for any category D , the functors $\mathrm{C} \rightarrow \mathrm{D}$ form a category Funct(C, D) with the morphisms being the natural transformations between them.
Further, a natural isomorphism between functors $\mathrm{C} \rightarrow \mathrm{D}$ is precisely an isomorphism in Funct(C, D).

Definition 10.3 (Equivalence of categories). A functor $F: \mathrm{C} \rightarrow \mathrm{D}$ is called an equivalence iff there exists another functor $G: \mathrm{D} \rightarrow \mathrm{C}$ such that $G F$ is naturally isomorphic to 1_{C} and $F G$ to 1_{D}.

Theorem 10.4 (Characterizing equivalence). Let $F: C \rightarrow \mathrm{D}$ be a functor. Then F is an equivalence $\Longleftrightarrow F$ is fully faithful and essentially surjective. ${ }^{13}$

11 Yoneda lemma

December 11, 2023
Proposition 11.1 (Yoneda lemma). Let C be a small category. ${ }^{14}$ Let F : $\mathrm{C}^{\mathrm{op}} \rightarrow$ Set be a functor and $B \in \operatorname{Obj}(\mathrm{C})$. Then the function $\operatorname{Nat}\left(\operatorname{Hom}_{\mathrm{C}}(-, B), F\right) \rightarrow F(B)$ given by

$$
\eta \mapsto \eta_{B}\left(1_{B}\right)
$$

is a bijection with the inverse given by

$$
c \mapsto\left\{\begin{aligned}
\operatorname{Hom}_{\mathrm{C}}(X, B) & \rightarrow F(X) \\
f & \mapsto F(f)(c)
\end{aligned}\right\}_{X \in \mathrm{Obj}(\mathrm{C})}
$$

[^8]Lemma 11.2 (The canonical functor $\mathrm{C} \rightarrow \operatorname{Funct}\left(\mathrm{C}^{\mathrm{op}}\right.$, Set)). Let C be a small category. ${ }^{15}$ Then the following defines a functor $\mathrm{C} \rightarrow$ Funct(C^{op}, Set):

where $\eta(f)$ is the natural transformation given by

$$
\begin{aligned}
\eta(f)_{X}: \operatorname{Hom}_{\mathrm{C}}(X, A) & \longrightarrow \operatorname{Hom}_{\mathrm{C}}(X, B) \\
\alpha & \longmapsto f \alpha .
\end{aligned}
$$

Proposition 11.3 (Yoneda theorem). Let C be a small category. Then the canonical functor $\mathrm{C} \rightarrow$ Funct(C^{op}, Set) is fully faithful.

[^9]
[^0]: ${ }^{1}$ It's easily seen that such a morphism is unique for each X, justifying the notation 1_{X}.

[^1]: ${ }^{2}$ Uniqueness of inverses (an easy fact) justifies this notation.

[^2]: ${ }^{3}$ A group G is "root-able" iff $G=G^{n}$ for every $n \in \mathbb{Z} \backslash\{0\}$. If G is abelian as well, we call it divisible, and in the additive notation, the condition reads $G=n G$. Fact: Any finite "root-able" group is trivial.
 ${ }^{4}$ More general: A continuous function on a Hausdorff codomain is determined by its restriction on a dense subset of its domain.
 ${ }^{5}$ More strongly, any homomorphism $I \rightarrow R$ from an integral domain I extends uniquely to $\operatorname{Frac}(I) \rightarrow R$.

[^3]: ${ }^{6}$ Only at the object level.

[^4]: ${ }^{7}$ Once $\operatorname{ker} f, \operatorname{coker} f, \operatorname{coker}(\operatorname{ker} f)$ and $\operatorname{ker}(\operatorname{coker} f)$ have been fixed.

[^5]: ${ }^{8}$ Once $\operatorname{ker} f, \operatorname{coker} f, \operatorname{coker}(\operatorname{ker} f)$ and $\operatorname{ker}(\operatorname{coker} f)$ have been fixed.
 ${ }^{9} \operatorname{coker}(\operatorname{ker} f)$ is shortened for $\operatorname{coker}(\operatorname{ker} f \rightarrow X)$. Similarly for $\operatorname{ker}(\operatorname{coker} f)$.

[^6]: ${ }^{10}$ Note that $f: X \rightarrow Y$ is in C.
 ${ }^{11}$ The composition is taking in C .

[^7]: ${ }^{12}$ Clearly, for small categories, isomorphism of categories is precisely an isomoirphism between them in Cat.

[^8]: ${ }^{13}$ " \Leftarrow " requires choice for classes.
 ${ }^{14}$ For $\operatorname{Nat}\left(\operatorname{Hom}_{\mathrm{C}}(-, Y), F\right)$ to be a set.

[^9]: ${ }^{15}$ So that we can talk about Funct(C^{op}, Set).

