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Chapter I

Basic stuff

1 Categories

September 16, 2023

Definition 1.1 (Category). A category C consists of a class of objects ObjC, and
for every pair of objects X, Y of C, a set of morphisms HomC(X, Y ) such that the
following hold:

(i) (Composition of morphisms). For any objects X, Y , Z of C, there’s a function:

HomC(X, Y )× HomC(Y, Z) → HomC(X,Z)

(f, g) 7→ gf

(ii) (Associativity of composition). For f ∈ HomC(X, Y ), g ∈ HomC(Y, Z), h ∈
HomC(Z,W ), we have

h(gf) = (hg)f .

(iii) (Identity morphisms). For any object X of C, we have 1X ∈ HomC(X,X)1

such that for any f ∈ HomC(X, Y ) and for any g ∈ HomC(Y,X), we have

f 1X = f , and

1X g = g.

(iv) (Domains and codomains of morphisms). For any objects X, Y , Z, W of C,
the sets HomC(X, Y ) and HomC(Z,W ) are disjoint unless X = Z and Y = W .

If Obj(C) forms a set, then C is said to be small.

1It’s easily seen that such a morphism is unique for each X, justifying the notation 1X .

1



CHAPTER I. BASIC STUFF 2

Notation. For a category C, we’ll also write “f : X → Y in C” to mean that X, Y
are objects in C and f ∈ HomC(X, Y ).

Remark. What we have defined are actually locally small categories. In general
the hom-sets needn’t be small. However, generally, a small category is one whose
objects as well as morphisms form a set.

Definition 1.2 (Subcategories). A category D is said to be a subcategory of a
category C iff the following hold:

(i) Obj(D) is a subclass of Obj(C).

(ii) HomD(A,B) ⊆ HomC(A,B) for all objects A, B of C.

(iii) The morphism composition in D is inherited from that in C.

If the “⊆” in (ii) is “=”, then D is called a full subcategory of C.

Example 1.3 (Some examples).

(i) (Subcategories of Set). Set, Top, Grp, Rng, Ring, VectK , ModR, their pointed
versions.

(ii) (A category whose objects needn’t be sets). Let R be a relation on a set X which
is reflexive and transitive. Then the elements of X form a category with the set of
morphisms from a to b being {

{(a, b)}, a R b

∅, otherwise

and the morphisms being given by

(b, c)(a, b) = (a, c).

(iii) (A category whose objects are sets but morphisms are not set theoretic functions).
RelHTop.

(iv) (Opposite category). Let C be a category. Then the objects of C form another
category Cop with HomCop(X, Y ) = HomC(Y,X) and composition of f : X → Y
and g : Y → Z in Cop given by the composition of g and f in C.
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2 Monics, epics and isomorphisms

September 17, 2023

Definition 2.1 (Monomorphisms and epimorphisms). Let f : X → Y be a morphism
in a category. Then:

(i) f is called a monomorphism (or monic) iff

fu = fv =⇒ u = v

for any morphisms u, v : Z → X, or equivalently, any morphism Z → Y factors
through f via at most one morphism:

Z Y

X
f

(ii) f is called an epimorphism (or epic) iff

uf = vf =⇒ u = v

for any morphisms u, v : Y → Z, or equivalently, any morphism X → Z factors
through f via at most one morphism:

X Z

Y
f

Notation. We’ll sometimes denote monics by and epics by .

Definition 2.2 (Inverses and isomorphisms). A morphism f : X → Y is called an
isomorphism iff there exists another morphism g : Y → Z such that

gf = 1X , and

fg = 1Y .

Such a morphism is called an inverse of f , and is denoted by f−1.2

2Uniqueness of inverses (an easy fact) justifies this notation.
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Corollary 2.3.

(i) Inverse of an isomorphism is an isomorphism.

(ii) An isomorphism is monic and epic.

(iii) In subcategory C of Set, injective morphisms are monic and sujective morphisms
are epic. Further, if C contains all the identity functions of its objects, then
isomorphisms are bijective.

(iv) Composition of monics (respectively epics) is monic (respectively epic).

(v) (a) gf is monic =⇒ f is monic.
(b) gf is epic =⇒ g is epic.

Example 2.4 (Counters to the converse of (iii)).

(i) (Monic ̸⇒ injective). In the category of “root-able” groups3, Q → Q/Z is monic.

(ii) (Epic ̸⇒ surjective).

(a) In the category of Hausdorff spaces, any inclusion E ↪→ X with E dense in
X, is epic.4

(b) In the category of commutative rings with identities with homomorphisms
preserving identities, the inclusion Z ↪→ Q is epic.5

Proposition 2.5. Monics are injective and epics, surjective in Grp.

3 Initials, terminals, and zeroes

September 24, 2023

Definition 3.1 (Initial, terminals, and zeroes). An object X in a category C is called

(i) initial iff HomC(X, Y ) is a singleton for each object Y ;

(ii) terminal iff HomC(Y,X) is a singleton for each object Y ; and,

(iii) zero iff it is initial as well as terminal.

3A group G is “root-able” iff G = Gn for every n ∈ Z \ {0}. If G is abelian as well, we call it
divisible, and in the additive notation, the condition reads G = nG. Fact: Any finite “root-able”
group is trivial.

4More general: A continuous function on a Hausdorff codomain is determined by its restriction
on a dense subset of its domain.

5More strongly, any homomorphism I → R from an integral domain I extends uniquely to
Frac(I) → R.
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Corollary 3.2.

(i) Initials (respectively terminals, zeroes) are unique up to unique isomorphisms.

(ii) Any morphism into an initial object is epic and any morphism from a terminal
object is monic.

4 Zero morphisms

September 24, 2023

Definition 4.1 (Left and right zeroes, and zero morphisms). A morphism f in a
category is called a

(i) left zero iff whenever defined, fu = fv for any morphisms u, v;

(ii) right zero iff whenever defined, uf = vf for any morphisms u, v; and,

(iii) zero morphism iff it’s both, a left as well as a right zero.

Remark. “a followed by b” will mean ba and not ab.

Corollary 4.2.

(i) The morphisms associated with initial (terminal) objects are right (left) zeroes.

(ii) If f is a left zero, then fu, whenever defined, is too. Similarly for right zeroes.

(iii) A right zero followed by a left zero is a zero morphism.

(iv) If z is a zero morphism, then vzu, whenever defined is a zero morphism.

(v) If 0 is a zero object, then X → 0 → Y is a zero morphism.

(vi) In a category, there exists at most one family of zero morphisms between each
pair of objects.

Definition 4.3 (A category having compatible zero morphisms). A category is
said to have compatible zero morphisms iff there exists a family of zero morphisms
0X,Y : X → Y for each pair of objects such that for any morphisms X → Y and
Y → Z, the following diagram commutes:

X Y

Y Z

0X,Y

0
X
,Z

0Y,Z
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Corollary 4.4. If a category has a zero object 0, then the morphisms X → 0 → Y
form a compatible family of zero morphisms.

5 Subobjects and quotients

September 24, 2023

Definition 5.1 (Subobjects, quotients and their comparisons). In a category, sub-
objects of an object X are monics with codomain X, and quotients of X are epics
with domain X.

If i1 : Y1 → X and i2 : Y2 → X are subobjects of X, then we write i1 ≤ i2 iff i2
factors through i1:

X

Y1 Y2

i1 i2

Similarly, for quotients q1 : X → Z1 and q : X → Z2 of X, we write q1 ≤ q2 iff q2
factors through :

X

Z1 Z2

q1 q2

Corollary 5.2.

(i) If f : Y → X is a subobject of X and g : Z → Y a subobject of Y , then gf is a
subobject of X. Similarly for quotients.

(ii) The comparisons defined in Definition 5.1 form partial order with the “equality”
replaced with “being isomorphic”.

Definition 5.3 (Images). An image of a morphism f : X → Y is a smallest subobject
of Y through which f factors:

X Y

im f

Y ′

f
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Notation. The arrow im f → Y stands for any image of f , which are all isomorphic,
due to Corollary 5.4.

Corollary 5.4. Images are unique up to unique isomorphisms.

6 (Co)equalizers and (co)products

October 25, 2023

Remark. Whenever the domain and codomain are clear from the context, we’ll
omit the subscript from 0X,Y .

Definition 6.1 ((Co)equalizers and (co)kernels). An equalizer of f, g : X → Y in a
category is a morphism which is terminal among all the morphisms u : A → X such
that fu = gu:

eq(f, g) X Y

A

f

g

u

If the category has zero morphisms, then an equalizer of f and 0X,Y is called a kernel
of f .

Coequalizers and cokernels are defined dually.

Notation. The arrow eq(f, g) → X stands for any equalizer of f , g, which are all
isomorphic due to Corollary 6.2 (ii). Similarly, we use ker(f) → X, Y → coeq(f, g),
and Y → coker(f).

Corollary 6.2.

(i) Equalizers are monic and coequalizers, epic.

(ii) (Co)equalizers are unique up to unique isomorphisms.

(iii) (Characterizing (co)kernels). In a category with zero morphisms, a kernel
ker f → X of f : X → Y is characterized by being the terminal among all
the morphisms u : A → X such that fu = 0:

ker f X Y

A

0

f

u
0
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Dual characterization holds for cokernels.

(iv) Taking kernels of quotients, or cokernels of subobjects, reverses order.

Proposition 6.3 (Quotient topology as a coequalizer in Top). Let X be a topological
space and ∼ an equivalence relation on X and R ⊆ X × X be the corresponding
subset. Consider X/∼ under quotient topology and R under the subspace topology.
Then p : X → X/∼ is a coequalizer of the projections R → X.

7 (Co)products

December 10, 2023

Definition 7.1 ((Co)products). A product of objects Xi’s in a category is an object
P together with morphisms πi : P → Xi’s which is terminal among all families of
morphisms fi : Y → Xi:

Xi

Y P

fi πi

Coproducts are defined dually.

Corollary 7.2. (Co)products are unique up to unique isomorphisms.

8 Abelian categories

October 25, 2023

Definition 8.1 ((Pre-)additive and (pre-)abelian categories). A category C is called:

(i) pre-additive iff the following hold:

(a) C has a zero object 0.
(b) Each HomC(X, Y ) forms an additive abelian group with 0 being the ad-

ditive identity.
(c) Composition of morphisms is bilinear.

(ii) additive iff it is pre-additive and has finite products and coproducts.

(iii) pre-abelian iff it is additive and has kernels and cokernels.

(iv) abelian iff it is pre-abelian, and all monics arise as kernels and epics as cokernels.

Proposition 8.2. In a pre-additive category, the following hold:
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(i) Finite products and coproducts coincide.6

(ii) 1X is a kernel, and 1Y a cokernel of 0X,Y .

(iii) For f : X → Y ,

(a) 0 → X is a kernel of f ⇐⇒ f is monic.
(b) Y → 0 is a cokernel of f ⇐⇒ f is epic.

(iv) A kernel of a cokernel of a kernel is a kernel, and a cokernel of a kernel of a
cokernel is a cokernel.

Corollary 8.3. In an abelian category, a monic is a kernel of any cokernel of itself,
while an epic is a cokernel of any kernel of itself.

Proposition 8.4. In an abelian category, a morphism is an isomorphism ⇐⇒ it
is monic and epic.

Definition 8.5 (Exact sequences). In a pre-additive category, a sequence (finite or
infinite at either end) of morphisms

· · · fi−1−→ Xi−1
fi−→ Xi

fi+1−→ Xi+1 −→ · · ·

is said to be exact at a nonterminal object Xi iff kernels of fi+1 are precisely the
images of fi.

The sequence is called exact iff it is exact at all its nonterminal objects.

Proposition 8.6 (Characterizing exactness). In an abelian category, a sequence of
morphisms

A
f−→ B

g−→ C

is exact ⇐⇒ the following compositions are 0:

A
f−→ B

g−→ C

ker g −→ B −→ coker f

Corollary 8.7 (Using exactness to characterize various things). In an abelian cate-
gory, the exactness of the sequence of the left is equivalent to the property stated at

6Only at the object level.
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the right:

0 −→ X
f−→ Y f is monic

X
f−→ Y −→ 0 f is epic

0 −→ X
f−→ Y −→ 0 f is an isomorphism

0 −→ X
f−→ Y

g−→ Z f is a kernel of g

X
f−→ Y

g−→ Z −→ 0 g is a cokernel of f

0 −→ X
f−→ Y

g−→ Z −→ 0 f is a kernel of g and g a cokernel of f

Theorem 8.8. In an abelian category, any morphism f : X → Y admits unique7

factorizations as follows:

ker(coker f)

ker f X Y coker f

coker(ker f)

f

Proposition 8.9 (im f = ker(coker f)). In an abelian category, a kernel of any
cokernel of f is an image of f .

Corollary 8.10 (Unique factorization). In an abelian category, the commutativity
of solid arrows below implies the existence of the unique dashed arrow which makes
the resulting diagram commute:

Z1

X Y

Z2

Further, the dashed arrow is an isomorphism.

7Once ker f , coker f , coker(ker f) and ker(coker f) have been fixed.
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Proposition 8.11 (Characterizing abelian-ness). Let C be a pre-abelian category.
Then the following hold:

(i) For every f : X → Y , there exists a unique8 f̃ such that the following diagram
commutes:9

ker f X coker(ker f)

coker f Y ker(coker f)

f f̃

(ii) C is abelian ⇐⇒ f̃ is an isomorphism for every f .

9 Functors

December 10, 2023

Definition 9.1 (Functors). A functor F : C → D is an assignment of objects and
morphisms of C to those in D such that the following hold:

(i) F is compatible with domains and codomains:

A

B

f
F7−→

F (A)

F (B)

F (f)

(ii) F is compatible with composition, i.e., commutativity of the diagram on the
left implies that on the right:

A C

B
f

h

g

F7−→
F (A) F (C)

F (B)

F (f)

F (h)

F (g)

(iii) F is compatible with identities:

A

A

1A

F7−→
F (A)

F (A)

1F (A)

8Once ker f , coker f , coker(ker f) and ker(coker f) have been fixed.
9coker(ker f) is shortened for coker(ker f → X). Similarly for ker(coker f).
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Example 9.2 (Hom-functors). Let A, B be objects of a category C. Then the following
defines the functor HomC(A,−) : C → Set:

X

Y

f 7−→
HomC(A,X)

HomC(A, Y )

HomC(A,f)

where HomC(A, f) is given by α 7→ fα.
We also have the functor HomC(−, B) : Cop → Set given by:10

X

Y

f 7−→
HomC(X,B)

HomC(Y,B)

HomC(f,B)

where HomC(g,B) is given by β 7→ βf .11

Corollary 9.3.

(i) Functors preserve isomorphisms.

(ii) (Composition of functors). Let F : C → D and G : D → E be functors. Then
the following defines their composite functor GF : C → E:

A

B

f
GF7−→

G(F (A))

G(F (B))

G(F (f))

(iii) (Identity functors). For any category C, we have an identity functor 1C:

A

B

f
1C7−→

A

B

f

(iv) (Category of categories). Small categories with functors as morphisms form a
category Cat.

10Note that f : X → Y is in C.
11The composition is taking in C.
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Definition 9.4 (Isomorphism of categories). A functor F : C → D is called an
isomorphism iff there exists another functor G : D → C such that GF = 1C and
FG = 1D.

12

Definition 9.5 (Full, faithful and essentially surjective functors). A functor F : C →
D is called full (respectively faithful) iff for all objects A, B of C, the associated
function HomC(A,B) → HomD(F (A), F (B)) is surjective (respectively injective).

F is called essentially surjective iff for every object X of D, there exists an object
A of C such that F (A) is isomorphic to X.

Lemma 9.6 (Fully faithful functors are conservative). Let F : C → D be fully faithful
and f be a morphism in C. Then f is an isomorphism ⇐⇒ F (f) is an isomorphism.

10 Natural transformations

December 11, 2023

Definition 10.1 (Natural transformations). Let F,G : C → D be functors. Then a
natural transformation η : F ⇒ G is a family of morphisms ηA in D indexed by the
objects A on C such that the following hold:

(i) ηA : F (A) → G(A) in D.

(ii) For any morphism f : A → B in C, the following diagram commutes:

F (A) G(A)

F (B) G(B)

ηA

F (f) G(f)

ηB

If each ηA is an isomorphism, then η is called a natural isomorphism.

Notation. We’ll denote Nat(F,G) to denote the class of all natural transformations
F ⇒ G.

Corollary 10.2.

12Clearly, for small categories, isomorphism of categories is precisely an isomoirphism between
them in Cat.
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(i) (Composition of natural transformations). Let F,G,H : C → D be functors
and η : F ⇒ G and ξ : G ⇒ H be natural transformations. Then the following
defines the composite natural transformation ξη : F ⇒ H:

(ξη)A := ξA ηA

(ii) (Identity natural transformations). Let F : C → D be a functor. Then the
following defines the identity natural transformation 1F : F ⇒ F :

(1F )A := 1F (A)

(iii) (Functor category). Let C be a small category. Then for any category D, the
functors C → D form a category Funct(C,D) with the morphisms being the
natural transformations between them.
Further, a natural isomorphism between functors C → D is precisely an iso-
morphism in Funct(C,D).

Definition 10.3 (Equivalence of categories). A functor F : C → D is called an
equivalence iff there exists another functor G : D → C such that GF is naturally
isomorphic to 1C and FG to 1D.

Theorem 10.4 (Characterizing equivalence). Let F : C → D be a functor. Then F
is an equivalence ⇐⇒ F is fully faithful and essentially surjective.13

11 Yoneda lemma

December 11, 2023

Proposition 11.1 (Yoneda lemma). Let C be a small category.14 Let F : Cop → Set
be a functor and B ∈ Obj(C). Then the function Nat

(
HomC(−, B), F

)
→ F (B)

given by

η 7→ ηB(1B)

is a bijection with the inverse given by

c 7→

{
HomC(X,B) → F (X)

f 7→ F (f)(c)

}
X∈Obj(C)

13“⇐” requires choice for classes.
14For Nat

(
HomC(−, Y ), F

)
to be a set.
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Lemma 11.2 (The canonical functor C → Funct(Cop, Set)). Let C be a small cate-
gory.15 Then the following defines a functor C → Funct(Cop, Set):

A

B

f 7−→
HomC(−, A)

HomC(−, B)

η(f)

where η(f) is the natural transformation given by

η(f)X : HomC(X,A) −→ HomC(X,B)

α 7−→ fα.

Proposition 11.3 (Yoneda theorem). Let C be a small category. Then the canonical
functor C → Funct(Cop, Set) is fully faithful.

15So that we can talk about Funct(Cop,Set).
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