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Chapter I

Commutative rings with identity

1 Exercising Zorn’s lemma

January 12, 2023

Theorem 1.1 (Maximal ideals). Let A be a ring with identity and a be a proper
ideal. Then there exists a maximal ideal m that contains a.

Corollary 1.2. Any ring A is the disjoint union of the sets A∗ (the units of A) and1
⋃

MaxSpecA.

Theorem 1.3 (Prime ideals). Let A be a commutative ring, ∅ 6= S ⊆ A be multi-
plicative, and a be an ideal such that a ∩ S = ∅. Then a is contained in some prime
ideal that lies outside S.

Theorem 1.4 (Minimal prime ideals). Let A be a ring, p be a prime ideal and S ⊆ p.
Then there exists a minimal prime ideal q such that X ⊆ q ⊆ p.

2 Simple facts

January 29, 2023

Convention. Throughout the rest of the document (except of appendices), unless
stated otherwise, A will denote a commutative ring with unity, and Fraktur letters
will denote the ideals. “A 6= 0” will mean that A is a nonzero ring.

1See Definition 3.2.

1



CHAPTER I. COMMUTATIVE RINGS WITH IDENTITY 2

Proposition 2.1. Primes are irreducible in an integral domain.

Proposition 2.2. Maximal ideals are prime.

Proposition 2.3 (Characterizing fields). For A 6= 0, the following are equivalent:

(i) A is a field.

(ii) The only ideals of A are (0) and (1).

(iii) Any homomorphism from A that maps 1 to some nonzero is injective.

Proposition 2.4. For ideals p and m, the following hold:

(i) p is prime ⇐⇒ A/p is an integral domain.

(ii) m is maximal ⇐⇒ A/m is a field.

3 The different radicals

January 12, 2023

Remark. Most of the results included will use AC, and we’ll not bother to explicitly
state when it is used.

Definition 3.1 (Nilradical). We define

NilA := {nilpotents in A}.

Definition 3.2 (Spectra of a ring). We define2

SpecA := {prime ideals of A}, and

MaxSpecA := {maximal ideals of A}.

Proposition 3.3. For3 A 6= 0, we have

NilA =
⋂

SpecA =
⋂

{minimal prime ideals}.

Proposition 3.4. If A 6= 0 has no nonzero zero divisors or nilpotents, then there
exist more than one minimal prime ideals.

2When “spectrum” is used, we usually see SpecA under the Zariski topology.
3A 6= 0 ensures that SpecA,MaxSpecA 6= ∅.
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Definition 3.5 (The Jacobson radical). For A 6= 0, we define

JacA :=
⋂

MaxSpecA.

Proposition 3.6 (Characterizing Jacobson). Let A 6= 0. Then

JacA = {x ∈ A : 1− xy is a unit for all y ∈ A}.

Definition 3.7 (Radical of an ideal). For an ideal a, we define

Rad a := {x ∈ A : xn ∈ a for some n ≥ 1}.

Proposition 3.8. For any ring homomorphism, we have

Rad(ker φ) = φ−1
(

Nil(φ(A))
)

Corollary 3.9. For a proper ideal a, we have

Rad a =
⋂

{p ∈ SpecA : p ⊇ a}.

Proposition 3.10.

Rad(Rad a) = Rad a

Rad(a · b) = Rad(a ∩ b) = Rad a ∩ Rad b

Rad(a+ b) = Rad(Rad a+ Rad b)

Rad(pn) = p for prime p and n ≥ 1

Proposition 3.11 (Characterizing locality). The following are equivalent:

(i) A is local.

(ii) A \ A∗ is an ideal.

(iii) 1 +m ⊆ A∗ for some maximal m.

(iv) {a, 1− a} contains a unit for every a ∈ A.

Definition 3.12 (Coprime). Ideals a and b are called coprime or comaximal iff
a+ b = (1).

Proposition 3.13 (Chinese remainder). Let a1, . . . an (n ≥ 1) be ideals of A and
define φ : A→

∏

iA/ai by

a 7→ (a+ a1, . . . , a+ an).

Now, the following hold:

(i) φ is surjective ⇐⇒ ai’s are pairwise coprime.

(ii) φ is injective ⇐⇒
⋂

i ai = (0).

(iii) ai’s are pairwise coprime =⇒
⋂

i ai = ⊙iai.
4

4This is a generalization of the last part of Proposition 1.4.
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Proposition 3.14. Let p1, . . . , pn be prime (n ≥ 1) with a ⊆
⋃

i pi. Then a ⊆ some
pi.

Proposition 3.15. Let p ⊇
⋂n
i=1 ai (n ≥ 1) be prime. Then p ⊇ some ai.

Further, the above also holds with ⊇ replaced with =.

Proposition 3.16 (Idempotents decompose the rings). Let A be a commutative ring
with identity and a ∈ A. Then the following are equivalent:

(i) a is idempotent.

(ii) 1− a is idempotent.

(iii) A = aA⊕ (1− a)A.5

5See Definition 1.6.



Chapter II

Modules

1 Basics

February 17, 2023

Definition 1.1 (Modules, submodules, module homomorphisms). See Definition 1.1.
Submodules are defined obviously. Homomorphisms between two modules over a
common ring are defined in the obvious sense.

Remark. To emphasize that the algebraic object is an A-module, we’ll use use
“A-module homomorphism” or “A-linear homomorphism”.

Example 1.2.

(i) Any abelian group is a Z-module.

(ii) A is an A-module.

(iii) Submodules of a ring are precisely its ideals.

Lemma 1.3 (Choices for scalar multiplications). Let M be an abelian group and R
be any ring. Then there exists a one-to-one correspondence:

{

scalar multiplications A×M →M

that make M an A-module

}

←→

{

ring homomorphisms

A→ End(M)

}

Proposition 1.4 (Submodules and homomorphisms).

(i) Characterization of submodules (when the ring has identity).

5



CHAPTER II. MODULES 6

(ii) Transitivity of “being a submodule”.

(iii) Sums and intersections of submodules are submodules.

(iv) ker and im of homomorphisms are submodules.

(v) The injection of a submodule into the parent submodule is a homomorphism.

(vi) Submodules preserved in both directions under homomorphisms.

(vii) For a homomorphism, injectivity ⇐⇒ ker = 0.

Convention. Throughout the document (except in the appendices), M and N will
stand for generic A-modules.

Proposition 1.5 (Quotient of modules). Let N be a submodule of M . Then the
quotient group M/N forms an A-module under the following well-defined operations:

m1 +m2 = m1 +m2

am = am

Proposition 1.6. We have the analogues of correspondence and all the three iso-
morphism theorems.

Definition 1.7 (Independence, spans, bases, free modules). Defined in the obvious
way.

Modules that have a basis are called free.

Proposition 1.8 (Characterizing spanning and independent sets). Let S ⊆ M .
Define φ : A[S] →M via1

(as) 7→
∑

s

as s.

Then the following hold:

(i) φ is a homomorphism.

(ii) S is independent ⇐⇒ φ is injective.

(iii) S spans M ⇐⇒ φ is surjective.

Definition 1.9 (Direct sums and direct products). Given A-modules {Mλ}λ∈Λ, the
sets

⊕λ∈ΛMλ and
∏

λ∈Λ

Mλ

(defined usually) form A-modules via pointwise operations.2

1Since direct sum, φ is well-defined.
2Note that the former is a submodule of the latter.
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Proposition 1.10 (The universal property of direct sums and direct products). Let
Mλ’s be A-modules for λ ∈ Λ. Then the following universal properties respectively
characterize3

(

⊕λAλ, (ιλ)
)

and
(
∏

λAλ, (πλ)
)

up to (unique) isomorphisms:

(i) Given any A-module N and homomorphisms φλ : Mλ → N , there exists a
unique homomorphism ψ : ⊕λMλ → N such that each φλ factors through4 ιλ:

Mλ N

⊕λ′Mλ′

φλ

ιλ ψ

(ii) Given any A-module N and homomorphisms φλ : N → Mλ, there exists a
unique homomorphism ψ : N →

∏

λMλ such that each φλ factors through πλ:

N Mλ

∏

λ′ Mλ′

φλ

ψ πλ

Notation. Sometimes, the unique functions ψ’s above are denoted by ⊕λφλ and
∏

λ φλ.

Definition 1.11 (Ideal times a module). We define5

a ·M :=
∑

i∈N

aM .

Lemma 1.12. For any a ∈ A, we have

aM = (a) ·M .

Definition 1.13 ((N : L) and annihilators). For submodules N , L of M , we define

(N : L) := {a ∈ A : N ⊇ aL}.

We define
Ann(M) := (0 :M).

3ιλ is the injection Aλ →֒ ⊕λAλ, and πλ is the projection
∏

λ
Aλ ։ Aλ.

4That is, the diagram commutes.
5Note how a · b =

∑

i∈N
ab.
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Proposition 1.14 (A-module as an A/a-module). Let a ⊆ Ann(M). ThenM forms
an A/a with the following well-defined scalar multiplication:

am = am.

Lemma 1.15. A/a as the “ring over itself” module is the same as the module con-
structed by these steps:

A over A −→ A/a over A −→ A/a over A/a.

2 Cayley-Hamilton and Nakayama

February 17, 2023

Theorem 2.1 (Generalized Cayley-Hamilton). Let {m1, . . . , mk} generate the M
(k ≥ 1). Let φ : M →M be a homomorphism and P ∈ Ak×k such that

φ(mj) =

k
∑

i=1

Pi,jmi.

Let χ ∈ A[x] be the characteristic polynomial of P . Then

χ(φ) = 0.

Corollary 2.2. Let M be generated by k ≥ 0 elements and φ : M → M be a homo-
morphism such that φ(M) ⊆ a ·M . Then there exist a0, . . . , ak−1 ∈ a such that

φk + ak−1 φ
k−1 + · · ·+ a0 I = 0.

Theorem 2.3 (Nakayama’s lemma). Let M be finitely generated.

Version I Let a ·M =M . Then there exists an a ∈ A such that

a ≡ 1A (mod a) and aM = 0.

Version II a ⊆ Jac(A) and a ·M =M =⇒ M = 0.

Version III Let a ⊆ Jac(A) and N be a submodule of M such that a ·M +N = M . Then
N =M .6

Proposition 2.4 (Pulling a spanning set from the quotient vector space to the
module). Let m be maximal in A. Then the following hold:

(i) M/(m ·M) is a vector space over A/m.

(ii) If (A,m) is local and finitely many mi’s (mi ∈M) span the vector spaceM/(m·
M) (over A/m), then mi’s span M (over A).

6Version II becomes a special case of Version III by putting N = 0.
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3 Tensor products of modules

February 20, 2023

Definition 3.1 (Multilinear maps). Let {Mλ} and N be A-modules. Then a set
theoretic function f :

∏

λMλ → N is called A-multilinear iff for each λ0 and each
(mλ6=λ0) ∈

∏

λ6=λ0
Mλ, the induced function Mλ0 → N given by

m̃ 7→ f
(

m̃, λ=λ0
mλ, λ6=λ0

)

is a homomorphism.

Convention. We’ll use calligraphic font for multilinear maps.

Definition 3.2 (Tensor products). Let {Mλ} be A-modules. Then an A-module T
together with a multilinear map i :

∏

λMλ → T , denoted (T, i) is called a tensor
product of Mλ’s iff the following universal property holds:

Any multilinear map f :
∏

λMλ → N (N any A-module) factors through i via
a unique homomorphism φ : T → N .

∏

λMλ N

T

f

i φ

Remark. Generally, just T is called the tensor product.

Proposition 3.3. Any two tensor products of a family of modules are unique up to
a unique isomorphism.7

Notation. This allows us to denote the (module of the) tensor product (up to (the
unique) isomorphism) by ⊗iMi.

7More precisely, given (T1, i1) and (T2, i2), there exists a unique isomorphism T1 → T2.
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Lemma 3.4 (Existence of tensor products). Let {Mλ} be A-modules. Let P be the
submodule of A[

∏
λ
Mλ] generated by the following elements:

e
(

n1, λ=λ0
mλ, λ6=λ0

)

+ e
(

n2, λ=λ0
mλ, λ6=λ0

)

− e
(

n1+n2, λ=λ0
mλ, λ6=λ0

)

a e
(

n, λ=λ0
mλ, λ6=λ0

)

− e
(

an, λ=λ0
mλ, λ6=λ0

)

Here, (mλ) ∈
∏

λ6=λ0
Mλ; n, n1, n2 ∈Mλ0; and, a ∈ A.

Write T := A[
∏

λ
Mλ] and let i :

∏

λMλ → T be given by8

(mλ) 7→ e(mλ).

Then (T, i) is a tensor product of Mλ’s.

Definition 3.5 (Simple tensors). For a given tensor product (T, i) of modulesMλ’s,
we set

⊗λmλ := i((mλ)).

Remark. Strictly speaking, i must’ve been mentioned in the notation.

Remark. Sometimes, when modules can be seen as being over several rings, we
might specify the ring A over which the tensor product is being taken by writing ⊗A.

Corollary 3.6. (i) m ⊗ n = 0 =⇒ every bilinear map on M × N vanishes at
(m,n).

(ii) M ⊗N = 0 =⇒ the only bilinear map on M ×N are zero maps.9

(iii) If G is an abelian group with each element having finite order, then G⊗ZQ = 0.

Proposition 3.7. The tensor product is generated by simple tensors.

Remark. Not all tensors are simple: Consider e⊗ e+ f ⊗ f ∈M ⊗M where {e, f}
form a basis of M .

Proposition 3.8 (Being a basis is preserved by ⊗ ). If {mi}’s and {nj}’s respec-
tively form bases for M and N , Then {mi ⊗ nj}’s form a basis for M ×N .

8Note that we are using two notations for the same thing: e� and e�.
9Maps, not map (since codomain can vary).
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Corollary 3.9. Over A, we have

Am ⊗ An ∼= Am×n.

Proposition 3.10. We have

A/a⊗A/b ∼= A/(a+ b)

with an isomorphism given by
a⊗ b 7→ ab.

Proposition 3.11. The kernel of the homomorphism A 7→ A/a⊗ A/b given by

a 7→ a(1⊗ 1)

is a+ b.

Remark. Contrast this with the kernel a ∩ b of the map A→ A/a×A/b given by
a 7→ (a, a) = a(1, 1).

Proposition 3.12 ( ⊗ as a covariant bifunctor ModA × ModA → ModA). Let
f : M → M ′ and g : N → N ′ be homomorphisms. Then the function f : M × N →
M ′ ⊗N ′ defined by

(m,n) 7→ f(m)⊗ g(n)

is bilinear and we define f ⊗ g to be the unique homomorphism through which f

factors:

M ×N M ′ ⊗N ′

M ⊗N

f

i f⊗g

f ⊗ g is characterized by 10

(f ⊗ g)(m⊗ n) = f(m)⊗ g(n)

Further, if we also have homomorphisms f ′ : M ′ → M ′′ and g′ : N ′ → N ′′, then
we have that

(f ′ ◦ f)⊗ (g′ ◦ g) = (f ′ ⊗ g′) ◦ (f ⊗ g).

10Note that ⊗ is different in the tensor products on the left- and right-hand-sides.
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Diagrammatically, the commutativity of the left-hand-side implies the commutativity
of the right-hand-side:

M N

M ′ N ′

M ′′ N ′′

f

f̃

g

g̃

f ′ g′

⊗
7−−−−−−−−→

M ⊗N

M ′ ⊗N ′

M ′′ ⊗N ′′

f⊗g

f̃⊗g̃

f ′⊗g′

Corollary 3.13. If M ∼=M ′ and N ∼= N ′, then M ⊗N ∼=M ′ ⊗N ′.

Proposition 3.14 (Canonical isomorphisms).

M ⊗N ∼= N ⊗M m⊗ n↔ n⊗m

(M ⊗N)⊗ P ∼=M ⊗N ⊗ P (m⊗ n)⊗ p↔ m⊗ n⊗ p
∼=M ⊗ (N ⊗ P ) ↔ m⊗ (n⊗ p)

(⊕λEλ)⊗M ∼= ⊕λ(Eλ ⊗M) (eλ)⊗m↔ (eλ ⊗m)

A⊗M ∼=M a⊗m↔ am

Corollary 3.15. It follows that if A is an integral domain, then

Frac(A)⊗A Frac(A) ∼= Frac(A).

Proposition 3.16 (M ⊗ (a free module)). Let F be a free A-module with a basis
{fi}. Then

M ⊗ F ∼= ⊕iM ,11

and each t ∈M ⊗ F can uniquely be written as

t =
∑

i

mi ⊗ fi.

11This just says that for any set B, we have M ⊗ A[B] ∼= M [B], which is a generalization of the
last part of Proposition 3.14.
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Proposition 3.17. For k ≥ 0, we have12

A[x]⊗k ∼= A[x1, . . . , xk]

with

p1(x)⊗ · · · ⊗ pk(x)↔ p1(x1) · · ·pk(xk).

4 Exact and split sequences

February 22, 2023

Definition 4.1 (Exact and short sequences). A sequence (finite or infinite) of mod-
ules joined by homomorphisms

· · · −−−→ Mi−1
φi−−−→ Mi

φi+1

−−−→ Mi+1 −−−→ · · ·

is called exact at Mi iff we have

im(φi) = ker(φi+1).

The whole sequence is called exact iff it is exact at all the (non-terminal) modules.
A sequence of the form

0 −→ M ′ φ
−→M

ψ
−→M ′′ → 0

is called a short sequence.

Corollary 4.2.

(i) 0 −→ M ′ φ
−→M is exact ⇐⇒ φ is injective.

(ii) M
ψ
−→ M ′′ −→ 0 is exact ⇐⇒ ψ is surjective.

Corollary 4.3 (Two ways to generate exact sequences).

(i) If φ : M → N is injective, then

0 −→M
φ
−→ N −→ N/ imφ −→ 0

is exact.

12Note that the tensor product of an empty family of modules is the zero module.
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(ii) If ψ : M → N is surjective, then

0 −→ kerψ −→M
ψ
−→ N −→ 0

is exact.

Theorem 4.4 (Splitting of an injective sequence). Let the sequence

0 −→M ′ f
−→M

f ′

−→M ′′

be exact. Let f̃ : M ′′ → M be a homomorphism such that f ′ ◦ f̃ = IdM ′′. Then, in
the diagram13

0 M ′ M M ′′ 0

M ′ ⊕M ′′

f f ′

f̃

f⊕f̃ π
M′′

the following hold:

(i) f ′ is surjective.

(ii) The dashed arrows commute.

(iii) f ⊕ f̃ is an isomorphism.

Theorem 4.5 (Splitting of a surjective sequence). Let the sequence

M ′ f
−→ M

f ′

−→M ′′ −→ 0

be exact. Let f̃ : M → M ′ be a homomorphism such that f̃ ◦ f = IdM ′. Then, in the
diagram14

0 M ′ M M ′′ 0

M ′ ×M ′′

f

ι
M′

f ′

f̃

f̃×f ′

the following hold:

(i) f is injective.

13The diagram is not commutative for f̃ ◦ πM ′′ 6= f ⊕ f̃ in general.
14Again, the diagram is non-commutative in general.
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(ii) The dashed arrows commute.

(iii) f̃ × f ′ is an isomorphism.

Lemma 4.6 (“Converse” to Theorems 4.4 and 4.5). Write N :=M ′×M ′′ =M ′⊗M ′′

and let the following diagram commute with M ∼= N :

M ′ M M ′′

N

f

ι
M′

f ′

∼

π
M′′

Then there exist homomorphisms f̃ : M → M ′ and f̃ ′ : M ′′ → M such that f̃ ◦ f =
IdM ′ and f̃ ′ ◦ f ′ = IdM ′′.

5 The Hom functors

February 21, 2023

Remark. For us, Hom will mean HomModA
and hence we’ll omit the subscript.

Remark. Note that if M,N ∈ ModA, then Hom(M,N) ∈ ModA as well. This is
not true of general categories.

Proposition 5.1 (Hom( , ) as a covariant functor ModopA ×ModA → ModA). Let
f : M ′ →M and g : N → N ′ be homomorphisms. Then

Hom(f, g) : φ 7→ g ◦ φ ◦ f

defines a homomorphism Hom(M,N)→ Hom(M ′, N ′).
Further, if we also have homomorphisms f ′ : M ′′ →M ′ and g′ : N ′ → N ′′, then

Hom(f ◦ f ′, g′ ◦ g) = Hom(f ′, g′) ◦Hom(f, g).

Diagrammatically, the commutativity of the left-hand-side implies the commutativity
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of the right-hand-side:

M N

M ′ N ′

M ′′ N ′′

g

g̃

f

g′f ′

f̃

Hom( , )
7−−−−−−−−→

Hom(M,N)

Hom(M ′, N ′)

Hom(M ′′, N ′′)

Hom(f,g)

Hom(f̃ ,g̃)

Hom(f ′,g′)

Proposition 5.2 (Hom(M, ) on ModA → ModA as a covariant left-exact functor).
Fix a module M . Let g : N ′ → N be a homomorphism. Then we have a homomor-
phism Hom(M,N ′)→ Hom(M,N) given by

Hom(M, g) : φ 7→ g ◦ φ.

Further, if we also have a homomorphism g′ : N → N ′′, then we have

Hom(M, g′ ◦ g) = Hom(M, g′) ◦ Hom(M, g).

Diagrammatically, the commutativity of the left-hand-side implies that of the right-
hand-side:

N ′

N

N ′′

g

g̃

g′

Hom(M, )
7−−−−−−−−→

Hom(M,N ′)

Hom(M,N)

Hom(M,N ′′)

Hom(M,g)

Hom(M,g̃)

Hom(M,g′)

Further, the following are equivalent:15

(i) 0→ N ′ → N → N ′′ is exact.

(ii) 0→ Hom(M,N ′)→ Hom(M,N)→ Hom(M,N ′′) is exact.

15This required AC.
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Proposition 5.3 (Hom( , N) on ModA → ModA as a contravariant left-exact16

functor). Fix a module N . Let f : M ′ → M be a homomorphism. Then we have a
homomorphism Hom(M,N)→ Hom(M ′, N) given by

Hom(f,N) : φ 7→ φ ◦ f .

Further, if we also have a homomorphism f ′ : M → M ′′, then we have

Hom(f ′ ◦ f,N) = Hom(N, f) ◦ Hom(N, f ′).

Diagrammatically, the commutativity of the left-hand-side implies that of the right-
hand-side:

M ′

M

M ′′

f

f̃

f ′

Hom( ,N)
7−−−−−−−−→

Hom(M ′, N)

Hom(M,N)

Hom(M ′′, N)

Hom(f,N)

Hom(f ′,N)

Hom(f̃ ,N)

Further, the following are equivalent:

(i) M ′ →M → M ′′ → 0 is exact.

(ii) Hom(M ′, N)← Hom(M,N)← Hom(M ′′, N)← 0 is exact.

6 The ⊗ N functor

Notation. We’ll denote by Bil(M ×N,P ) the set of all bilinear maps M ×N → P .
This in turn also forms an A-module under pointwise operations.

Proposition 6.1. We have

Hom(M,Hom(N,P )) ∼= Bil(M ×N,P ) ∼= Hom(M ⊗N,P ).

16Yea, calling it “left-exact” here is confusing.
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Lemma 6.2 (Exactness of isomorphic sequences). Consider the following:

M ′ M M ′′

N ′ N N ′′

f

∼

f ′

∼ ∼

Let dashed arrows be the induced homomorphisms. Then the exactness at M is
equivalent to exactness at N .

Proposition 6.3 ( ⊗N is a right-exact covariant functor on ModA → ModA). Let

M ′ f
−→M

f ′

−→ M ′′ → 0 be exact. Then

M ′ ⊗N
f⊗IdN−−−−−−→M ⊗N

f ′⊗IdN−−−−−−→M ′′ ⊗N −−−−−−→ 0

is exact as well.17

7 Projective and injective modules

February 21, 2023

Definition 7.1 (Projective and injective modules). We callM projective iff Hom(M, )
is exact, i.e., it preserves short exact sequences. We call N injective iff Hom( , N)
is exact.

Corollary 7.2.

(i) M is projective ⇐⇒ every M → N ′′ factors through each surjection N ։ N ′′:

N N ′′ 0

M

(ii) N is injective ⇐⇒ every M ′ → N factors through each injection M ′ →֒ M :

0 M ′ M

N
17That ⊗N is a covariant functor follows straight away from Proposition 3.12.
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Definition 7.3 (Splitting of surjective and injective homomorphisms). The exact
sequence L→M → 0 is said to split iff there exists a commutative diagram like so:

L M 0

M

IdM

Similarly, an exact sequence 0 → N → L is said to split iff there exists a com-
mutative diagram of the following kind:

0 N L

N

IdN

Corollary 7.4.

(i) If M is projective, then each exact L→M → 0 splits.

(ii) If N is injective, then each exact 0→ N → L splits.

Corollary 7.5. Let N be a submodule of M such that either N is injective or M/N
is projective. Then

M ∼= N ⊕M/N .

Example 7.6. Z (over Z) is not injective and Q/Z (over Z) is not projective.

Lemma 7.7. Free modules are projective.18

Theorem 7.8 (Characterizing projective modules). M is projective ⇐⇒ it is the
direct summand of a free module.

Lemma 7.9. A free module over an integral domain can’t have nonzero torsion
elements.

Corollary 7.10. In particular, if G is an abelian group with a non-zero torsion
element, then G as a Z-module is not projective.

Corollary 7.11. ⊕λMλ is projective ⇐⇒ each Mλ is projective.

18This is one of the results that uses AC.



CHAPTER II. MODULES 20

8 Flat modules

February 22, 2023

Definition 8.1 (Flat modules). N is said to be flat iff ⊗N is exact.

Proposition 8.2. ⊕λMλ is flat ⇐⇒ each Mλ is flat.



Chapter III

Noether, Zariski, and Hilbert

1 On Noetherian-ness

April 22, 2023

Lemma 1.1 (Chain condition). For a poset Σ, the following are equivalent:

(i) Σ satisfies the ascending chain condition.

(ii) Every nonempty subset of Σ has a maximal element.

Corollary 1.2. A is Noetherian ⇐⇒ A is Noetherian as an A-module.

Proposition 1.3.

(i) A is Noetherian ⇐⇒ each ideal of A is finitely generated.

(ii) M is Noetherian ⇐⇒ each submodule is finitely generated.

Corollary 1.4. Submodules of Noetherian modules are Noetherian.

Remark. Subrings of Noetherian subrings needn’t be Noetherian (although their
ideals will be, as A-modules). For instance K[x1, x2, . . .] a non-Noetherian subring
of the field K(x1, x2, . . .), where K is a field.

Theorem 1.5 (Exactness and Noetherian-ness).

(i) Let M ′, M ′′ be Noetherian and the composition M ′ →M →M ′′ be zero. Then
M is Noetherian as well.

(ii) Let M be Noetherian, and 0→M ′ →M (respectively M →M ′′ → 0) be exact.
Then M ′ (respectively M ′′) is Noetherian as well.

21
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Corollary 1.6.

(i) Submodules and quotients of Noetherian modules are Noetherian.

(ii) Let N be a Noetherian submodule of M with M/N also Noetherian. Then M
is Noetherian as well.

(iii) Homomorphic image of a Noetherian module is Noetherian.

(iv) If M , N are Noetherian, then M ⊕N is Noetherian as well.

(v) If A is Noetherian, then A/a is Noetherian (as a ring) as well.

(vi) If A is Noetherian and M over A is finitely generated, then M is Noetherian
as well.

Theorem 1.7 (Hilbert’s basis1 theorem). If A is Noetherian, then A[x] is Noetherian
as well.

2 On algebras

April 24, 2023

Convention. Throughout the rest of the document, we’ll also reserve B, C for
commutative rings with identity.

Definition 2.1 (Algebra). B together with a nice ring homomorphism φ : A → B
is called an A-algebra.

Remark.

(i) We’ll work with this definition rather than the more general Definition 1.4.

(ii) If clear from the context, we’ll just write B as the A-algebra, omitting φ.

(iii) The A-algebra B above also is an A-module with the scalar multiplication given
by (a, b) 7→ φ(a) b. When we call an A-algebra an A-module, this is the module
that we’ll mean, unless stated otherwise.

Corollary 2.2. A is a Z-algebra via the nice homomorphism n 7→ n1A.

1The set of generators of an ideal was earlier called a “basis” of the ideal.
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Definition 2.3 (Algebra homomorphisms). Let B, C be A-algebras. Then an A-
algebra homomorphism from B to C is a nice ring homomorphism B → C such that
the following diagram commutes:

A

B C

Proposition 2.4 (Alternate definition of algebra homomorphisms). Let B, C be A-
algebras. Then a nice ring homomorphism B → C is an A-algebra homomorphism
⇐⇒ it is an A-module homomorphism.

Proposition 2.5 (Finitely generated algebras). Let B be an A-algebra via φ : A→
B. Then the following are equivalent:

(i) There exists a b ∈ Bn such that the evaluation A[x1, . . . , xn]→ B at b via φ is
surjective.

(ii) There exists a surjective A-algebra homomorphism A[x1, . . . , xn]→ B.2

Definition 2.6 (Finitely generated algebras). An A-algebra satisfying either of the
(equivalent) conditions in Proposition 2.5 is called a finitely generated A-algebra.

Lemma 2.7. Homomorphic image of a Noetherian ring is Noetherian.

Proposition 2.8. A finitely generated algebra over a Noetherian ring is Noetherian
as a ring.

3 Towards the Nullstellensatz3

April 24, 2023

Theorem 3.1 (Artin-Tate). Let nice ring homomorphisms

A
φ
−→ B

ψ
−→ C

be given such that

(i) ψ is injective;

2Note that A[x1, . . . , xn] is an A-algebra via the usual inclusion.
3In German, null is zero, stellen is place, and satz is sentence.
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(ii) C is finitely generated as B-module (via ψ); and,

(iii) C is finitely generated also as A-algebra (via ψ ◦ φ).

Then B is finitely generated as A-algebra (via φ).

Convention. Let’s reserve k, E, F , K to denote generic fields in the remainder of
this document.

Theorem 3.2 (Zariski’s lemma). Let φ : k → E be a field extension such that E is
finitely generated as k-algebra. Then φ is an algebraic extension of finite degree.

Corollary 3.3 (Field theory version of the Nullstellensatz). Let A be a finitely
generated k-algebra and m be maximal in A. Then A/m is an algebraic extension of
k of finite degree.

Definition 3.4 (The sets Z(T ) and I(X)). Let n ≥ 0. Then for any T ⊆ k[x1, . . . , xn],
we define

Z(T ) := {common zeroes of the polynomials in T}

and for any X ⊆ kn, we define

I(X) := {polynomials that vanish on X}.

Result 3.5 (The Zariski topology). Let n ≥ 0 and set A := k[x1, . . . , xn]. Then the
following hold:

(i) Z(A) = ∅.

(ii) Z(0) = kn.

(iii) Z(a ∩ b) = Z(a · b) = Z(a) ∪ Z(b) for ideals a, b of A.

(iv) Z
(
∑

i ai
)

=
⋂

i Z(ai).

Consequently, Z(a)’s for ideals a of A form closed sets of a topology on kn.
For n = 1 and k algebraically closed, we recover the cofinite topology.

Proposition 3.6 (The weak Nullstellensatz). Let k be algebraically closed. Then
the following equivalent statements hold:

(i) For any n ≥ 0, we have that

MaxSpec(F [x1, . . . , xn]) =
{

(x1 − α1, . . . , xn − αn) : αi ∈ k
}

.
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(ii) For any ideal a of k[x1, . . . , xn] for n ≥ 0, we have that

Z(a) = ∅ ⇐⇒ a = A.

Theorem 3.7 (The strong Nullstellensatz). Let k be algebraically closed and a be
an ideal of k[xa, . . . , xn] for n ≥ 0. Then

I(Z(a)) = Rad(a).



Chapter IV

Rings and modules of fractions

Convention. Throughout this chapter, S will denote a multiplicative subset of A
containing 1A.

1 Rings of fractions

1.1 Definition and construction

April 26, 2023

Definition 1.1 (Rings of fractions). A commutative ring with identity R together
with a homomorphism i : A → R with i(S) ⊆ R∗ is called a ring of fractions of A
with respect to S iff any homomorphism f : A→ B with f(S) ⊆ B∗ factors uniquely
through R via i:

A B

R

f

i

Remark. As with tensor products, we’ll usually mean just the ring R when we say
a ring of fractions.

Proposition 1.2 (Properties derivable directly from the universal property). Let
(R, i) be a ring of fractions of A with respect to S. Then the following hold:

26
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(i) Any other ring of fractions of A with respect to S is isomorphic to R via a
unique isomorphism.1

(ii) The fractions generate the whole of R, i.e.,

R = {i(a) i(s)−1 : a ∈ A, s ∈ S}.

(iii) For a, b ∈ A and s, t, u ∈ S,

(at− bs)u = 0 =⇒ i(a) i(s)−1 = i(b) i(t)−1.

Remark. (i) allows us to denote (“up to unique isomorphisms”) a generic ring of
fractions of A with respect to S, using S−1A and iSA.

(ii) allows us to denote the elements of S−1A by a/s.

Proposition 1.3 (Existence of S−1A). The following is an equivalence relation on
A× S:

(a, s) ∼ (b, t) iff (at− bs)u = 0 for some u ∈ S

Denoting the set of equivalence classes by R and the equivalence classes as a/s :=
[(a, s)], we have addition and multiplication on R that satisfy

a/s+ b/t = (at + bs)/(st), and

(a/s) (b/s) = (ab)/(st).

Then R together with the map i : A→ R given by

a 7→ a/1A

forms a ring of fractions of A with respect to S.

Remark. i is not in general injective.

Proposition 1.4 (A property derived via the construction). If (R, i) is a ring of
fractions of A with respect to S, then for a ∈ A, we have

i(a) = 0 =⇒ as = 0 for some s ∈ S.

Proposition 1.5 (“Converse” of the derived properties). Let i : A→ R be a homo-
morphism such that the following hold:

(i) i(A) ⊆ R∗.

(ii) i(a) = 0 =⇒ as = 0 for some s ∈ S.

(iii) R = {i(a) i(s)−1 : a ∈ A, s ∈ S}.

Then (R, i) is a ring of fractions of A with respect to S.
1See Footnote 7.
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1.2 Properties of S−1
A

April 28, 2023

Theorem 1.6 (Aa ∼= A[1/a]). Let a ∈ A. Set Aa := {a
0, a1, . . .}−1A. Then

Aa ∼= A[x]/(ax− 1A).

Proposition 1.7 (Extension and contraction of ideals). Let a be an ideal of A, and
b be an ideal of S−1A. Then we define the following:

ae := (iSA(a))

bc := (iSA)
−1(b)

We also define
S−1a := {a/s : a ∈ a, s ∈ S}.

Remark. Of course, these notations are not robust, but we’ll rely on context.

Proposition 1.8. Let a be an ideal of A and b an ideal of S−1A. Then the following
hold:

S−1a = ae

(bc)e = b

(ae)c =
⋃

s∈S

(a : {s})

Proposition 1.9. For an ideal a of A, we have

S−1a = S−1A ⇐⇒ a ∩ S 6= ∅.

Lemma 1.10. Inverse images of prime ideals under ring homomorphisms are prime.2

Proposition 1.11. We have the following correspondence given by extension and
contraction:

Spec(S−1A) ←→ {p ∈ Spec(A) : p ∩ S = ∅}

2True for general rings.
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Proposition 1.12. Let a, b be ideals of A. Then the following hold:

S−1(a+ b) = (S−1a) + (S−1b)

S−1(a ∩ b) = (S−1a) ∩ (S−1b)

S−1(a · b) = (S−1a) · (S−1b)

S−1(Rad a) = Rad(S−1a)

S−1(Nil a) = Nil(S−1a)

Proposition 1.13 (Localization). Let p be a prime ideal of A. The the ring of
fractions Ap := (A \ p)−1A is a local ring with the maximal ideal being pe.

2 Modules of fractions

April 28, 2023

Remark. We’ll not define the modules of fractions categorically, rather, we will
work with an explicit construction.

Proposition 2.1 (When can M be an S−1A-module as well?). If for each scalar
s ∈ S, the endomorphism µs : m 7→ sm is a bijection, then M forms an S−1A-module
with the scalar multiplication satisfying

(a/s)m = a(m/s)

where m/s denotes the pre-image of m under µs.

Proposition 2.2 (Constructing S−1M). The following defines an equivalence rela-
tion on M × S:

(m, s) ∼ (n, t) iff u(tm− sn) = 0 for some u ∈ S

Denoting the equivalence classes [(m, s)] by m/t, the set S−1M of these equivalence
classes forms an S−1A module with addition and scalar multiplication satisfying the
following:

m/s + n/t = (tm+ sn)/(st)

(a/s) (m/t) = (am)/(st)

Proposition 2.3. S−1 : ModA → ModS−1A is a covariant exact functor.
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2.1 Local properties

April 28, 2023

Notation. For a prime ideal p, we’ll use �p := (A \ p)−1
�.

Proposition 2.4 (“Zeroness”). The following are equivalent:

(i) M = 0.

(ii) Mp = 0 for all prime ideals p.

(iii) Mm = 0 for all maximal ideals m of A.

Proposition 2.5 (Surjectivity or injectivity of A-module homomorphisms). Let
φ : M → N be an A-module homomorphism. Then the following are equivalent:

(i) φ : M → N is injective.

(ii) φp : Mp → Np is injective for all prime ideals p.

(iii) φm : Mm → Nm is injective for all maximal ideals m of A.

The above also holds if “injective” is replaced by “surjective” throughout.



Appendix A

Algebras and polynomials

1 Modules and algebras

January 9, 2023

Definition 1.1 (R-modules). Let R be a ring. Then a (left-)module over R is an
abelian additive group M along with a scalar multiplication R×M →M such that
the following hold:

(i) (r + s)m = rm+ sm.

(ii) r(m+ n) = rm+ rn.

(iii) (rs)m = r(sm).

(iv) If R has an identity, then 1Rm = m.

Remark. Unless stated otherwise, a module will be a left-module.

Definition 1.2 (R-algebras). An R-algebra A is an R-module over a ring R along
with a bilinear multiplication on × on M , i.e., the following hold:

(i) a× (b+ c) = a× b+ a× c;

(ii) (a+ b)× c = a× c+ b× c; and,

(iii) (ra)× (sb) = (rs)(a× b).

A is said to be associative, commutative, or to have an identity according to the
operation ×.

Definition 1.3 (Nice homomorphisms). A ring homomorphism R→ S is said to be
nice iff the image of the identity of R, if existent, is the identity in S.

i
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Definition 1.4 (Homomorphism algebras). A nice ring homomorphism R → S is
called an algebra iff the image of R is central in S.

We call it commutative or to be having an identity according to the ring S.

Theorem 1.5 (Interplay of Definitions 1.2 and 1.4).

(i) Let R be a ring with identity and A be an associative R-algebra with identity.
Then the map R→ A given by

r 7→ r1A

is an algebra with identity.

(ii) Let φ : R → S be a nice ring homomorphism. Then the scalar multiplication
R× S → S defined by

(r, s) 7→ φ(r)s.

makes S an R-module, which is further an associative R-algebra if φ(R) is
central in S.

Proposition 1.6. Rings form Z-algebras.

Definition 1.7 (Module homomorphisms). Let M , N be modules over a ring R.
Then a function φ : M → N is called an R-linear map iff the following hold:

(i) φ(m1 +m2) = φ(m1) + φ(m2).

(ii) φ(rm) = rφ(m).

Proposition 1.8 (Algebra of endomorphisms). Let M be an R-module and define

L(M) := {linear R-maps on M}.

Then we can define the following operations on L(M):

(φ+ ψ)(m) := φ(m) + ψ(m)

(φψ)(m) := φ(ψ(m))

Under these operations, L(M) forms a ring with identity.
Further, if R is commutative, then we can also define R× L(M)→ L(M) via

(rφ)(m) := rφ(m),

and under these operations L(M) forms an associative R-algebra with identity.
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2 Polynomial rings

January 9, 2023

Definition 2.1 (Multi-index notation). Let n ∈ N. Then on the set Nn, we define
the following:

(α + β)i := αi + βi

0i := 0

(nα)i := nαi

Proposition 2.2 (“Infinite-polynomial” rings with commuting indeterminates). Let
R be a ring and n ∈ N. The the addition and multiplication on RNn

defined by

(f + g)α := fα + gα, and

(fg)α :=
∑

µ+ν=α

fµ gν

make RNn

a ring which is commutative (respectively, has identity) ⇐⇒ R is com-
mutative (respectively, has identity).

Notation. For monomials: We set1

(axα)β :=

{

a, β = α

0, β 6= α
.

Remark. Only when R has identity can we view axα as a (more precisely, ax0)
times the monomial xα (which is 1Rx

α).

Proposition 2.3 (Algebra of monomials). In RNn

, the following hold:

axα + bxα = (a+ b)xα

(axα)(bxβ) = ab xα+β

Proposition 2.4 (R →֒ RNn

). Let R be a ring and n ∈ N. Then φ : R → RNn

defined by

(φ(a))α :=

{

a, α = 0

0, α 6= 0
.

is a nice embedding, rendering RNn

an R-module too. If R is commutative, then φ
becomes a commutative algebra.

1We shouldn’t use Kronecker delta since R needn’t have identity.
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Proposition 2.5 (Sufficient to study RNn

’s). Let R be a ring and m,n ∈ N. Then
as rings,

(RNm

)N
n ∼= RNm+n

.

In particular, the function ψ : RNn+1

→ (RNn

)N given by2

(ψ(f)i)α := f(α,i)

is a ring isomorphism.

Corollary 2.6 (RNn

’s nest). Let R be a ring, then we have the following embeddings:

R →֒ RN →֒ RN2

→֒ · · ·

Proposition 2.7 ((Finite-)polynomial rings with commuting coefficients). Let R be
a ring and n ∈ N. Then

P(R, n) :=
{

p ∈ RNn

: p−1(R \ {0}) is finite
}

is a subring of RNn

which is commutative (respectively, has identity) ⇐⇒ R is
commutative (respectively, has identity).

Also, we have that

P(R, n) =
{

∑

α∈S

aα x
α : S ⊆ Nn is finite and α : S → R

}

.

Proposition 2.8. Analogues of Propositions 2.4 and 2.5 hold: φ can be restricted
to be on R→ P(R, n), and ψ to be on P(R, n+ 1)→ P(P(R, n), 1).

Under ψ, we have

∑

|α|≤k

aα x
α 7→

k
∑

i=0

(

∑

|β|≤k−i

a(β,i)x
β
)

xin+1.

We also have analogue of Corollary 2.6.

Lemma 2.9. Let R, S be rings. Then f : P(R, 1) → S is a homomorphism ⇐⇒
the following hold:

(i) φ(0) = 0.

(ii) φ(p+ axi) = φ(p) + φ(axi).

2α ∈ Nn, i ∈ N and (α, i) ∈ Nn+1.
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(iii) φ(axi bxj) = φ(axi)φ(bxj).

Proposition 2.10 (Evaluations of polynomials). Let φ : R → S be a function be-
tween rings with φ(0R) = 0S. Let s ∈ Sn for n ≥ 0. Then there exists a unique
function P(R, n)→ S such that3

∑

|α|≤k

aαx
α 7→

∑

|α|≤k

φ(aα)s
α

which is further a nice homomorphism if φ is an algebra.

Definition 2.11 (Image of evaluation). We denote the image of the evaluation de-
fined in Proposition 2.10 by φ(R)[s], or by φ(R)[s1, . . . , sn] if s = (s1, . . . , sn).

Remark. Note that φ(R) is in “hold-form” in the notation, but sometimes, it gets
abused.

Proposition 2.12 (Extending R→ S to R[x]→ S[x]). Let φ : R→ S be a function
between rings such that φ(0R) = 0S. Let n ∈ N. Then there exists a unique function
P(R, n)→ P(S, n) such that

∑

|α|≤n

aα x
α 7→

∑

|α|≤n

φ(aα)x
α

which is further a (nice) homomorphism if φ is a (nice) homomorphism.

Remark. Proposition 2.12 has an immediate generalization to RN → SN.

3 Field of rational functions

April 7, 2023

Definition 3.1 (Rational functions in n variables). Let R be an integral domain
and n ≥ 0. Then P(R, n) is also an integral domain, and we define

R(R, n) := Frac
(

P(R, n)
)

.

3The monomials of the right-hand-side are well-defined, even if some αi = 0, by considering
φ(aα)s

α as a “single term”, and not as the product of several terms, like we did for monomials. If
S contains identity, then we can also interpret this as product of terms.
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Proposition 3.2. For any integral domain R and n ≥ 0, we have that

R(R, n) ∼= R(Frac(R), n).

Remark. This is just saying that: It doesn’t matter whether the coefficients come
from R or Frac(R). Thus, we can just assume R to be a field rather than an integral
domain.

Definition 3.3 (Evaluations at rational functions). Let φ : F → K be a field homo-
morphism.4 Then for α ∈ Kn (n ≥ 0), we define5

φ(F )(α) :=

{

f(α)

g(α)
: f, g ∈ P(F, n) with g(α) 6= 0

}

.

Remark. We also denote φ(F )(α) by φ(F )(α1, . . . , αn) if α = (α1, . . . , αn).
Again, φ(F ) must be “held”.

Proposition 3.4. Continuing Definition 3.3, we have that that φ(F )(α) is a subfield
of K.

4 Adjoining elements to rings and fields

April 7, 2023

Definition 4.1 (Adjoining elements).

(i) Let φ : R → S be a ring homomorphism and T ⊆ S. Then by φ(R)[T ], we
denote the smallest subring of S containing φ(R) as well as T .

(ii) Let ψ : F → K be a field homomorphism and T ⊆ K. Then we denote the
smallest subfield of K containing ψ(F ) as well as T , by ψ(F )(T ).

Remark. Again, φ(R), ψ(F ), strictly speaking, are in “hold-form” in the notation,
but this is sometimes abused.

4That is, a nice ring homomorphism.
5“f(α)” and “g(α)” denote the images of f , g under the evaluation at α.
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Corollary 4.2. Continuing Definition 4.1, we have

φ(R)[T ] =
⋃

T ′⊆T
|T ′|<∞

φ(R)[T ′], and

ψ(F )(T ) =
⋃

T ′⊆T
|T ′|<∞

ψ(F )(T ′).

Also, if s1, . . . , sn ∈ S and α1, . . . , αn ∈ K for n ≥ 0, then we have

φ(R)[{s1, . . . , sn}] = φ(R)[s1, . . . , sn], and

ψ(F )({α1, . . . , αn}) = ψ(F )(α1, . . . , αn)

∼= Frac
(

ψ(F )[α1, . . . αn]
)

.



Appendix B

Basic facts about rings

1 General

January 12, 2023

Proposition 1.1 (Prime ideals via multiplicative set). In a ring A a proper ideal p
is prime ⇐⇒ A \ p is multiplicative.1

Proposition 1.2. The correspondence of ideals in A/ kerφ and φ(A) preserves max-
imality and primality.

Proposition 1.3 (Operations on ideals). In a ring A, the following hold:

a+ b = b + a

(a+ b) + c = a+ (b + c)

a+ (0) = a

a ∩ b = b ∩ a

(a ∩ b) ∩ c = a ∩ (b ∩ c)

a ∩A = a

a · b = b · a if A is commutative

(a · b) · c = a · (b · c)

a · (1) = a if 1 ∈ A

We also have

n
∑

i=1

ai = {a1 + · · ·+ an : ai ∈ ai}, and

⊙ni=1ai = {finite sums of terms of the form a1 · · · an where ai ∈ ai}.

1That is, closed under the ring multiplication.

viii
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The former motivates to define arbitrary sums of ideals as

∑

i∈I

ai := {finite sums of elements from ai’s}

which is indeed an ideal.

Proposition 1.4. For ideals, the following hold:

a · (b+ c) = a · b+ a · c

(a+ b) · (a ∩ b) ⊆ a · b

a ∩ b = a · b if 1 ∈ A and a+ b = (1)

Proposition 1.5. Let A be a ring and R, S be its additive subgroups. Then the
following are equivalent:

(i) Every x ∈ R + S has a unique decomposition.

(ii) R ∩ S = {0}.

(iii) 0 has a unique decomposition.

Definition 1.6 (Independence of additive subgroups). We call such subgroups as
R, S above as independent. Further, if A = R + S, then we also write

A = R ⊕ S.



Appendix C

Ideas from field theory

Convention. In this appendix, F , K, L will denote generic fields.

1 Algebraic independence

April 24, 2023

Definition 1.1 (Algebraic independence). Let φ : F → K be an extension. Then
a subset S ⊆ K is called algebraically independent with respect to φ iff for all
β1, . . . , βn ∈ K for n ≥ 0, we have that the kernel of the evaluation F [x1, . . . , xn]→ K
at (β1, . . . , βn) via φ is 0.1

Corollary 1.2.

(i) We have the obvious characterization of algebraically independence if S is finite.

(ii) Subsets of algebraically independent sets are algebraically independent.

Lemma 1.3 (Extending an algebraically independent set by one element). Let
φ : F → K be an extension and S ⊆ K be algebraically independent. Let β ∈ K
be transcendental with respect to the inclusion φ(F )(S) →֒ K. Then S ∪ {β} is
algebraically independent with respect to φ.

Proposition 1.4 (Maximal algebraically independent subset). Let φ : F → K be an
extension and S ⊆ K. Then there exists a maximal subset S̃ ⊆ S such that

(i) S̃ is algebraically independent with respect to φ; and,

(ii) each element of S \ S̃ is algebraic with respect to φ(F )(S̃) →֒ K.

1That is, F [x1, . . . , xn]→ φ(F )[β1, . . . , βn] is an isomorphism.

x
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2 Algebraically closed fields

April 24, 2023

Definition 2.1 (Algebraically closed fields). A field F is called so iff every noncon-
stant polynomial in F [x] has a root in F .

Corollary 2.2. The following are equivalent:

(i) F is algebraically closed.

(ii) The irreducibles of F [x] are precisely x− α for α ∈ F .

(iii) MaxSpec(F [x]) =
{

(x− α) : α ∈ F
}

.2

Lemma 2.3. Let φ : F → K be a field extension with F being algebraically closed.
Then φ(F ) is an algebraically closed subfield of K.

Proposition 2.4 (No proper algebraic extensions of algebraically closed fields pos-
sible). Let φ : F → K be a field extension with F being algebraically closed. Then φ
is an isomorphism.

2We have unit in F , so we can use x for 1F x1.
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