Commutative Algebra Prof Sanjay Amrutiya¹

Organized Results complied by Sarthak²

April 2023

 1 samrutiya@iitgn.ac.in 2 vijaysarthak@iitgn.ac.in

Contents

Ι	Con	nmutative rings with identity	1
	1	Exercising Zorn's lemma	1
	2	Simple facts	1
	3	The different radicals	2
Π	Mod	lules	5
	1	Basics	5
	2	Cayley-Hamilton and Nakayama	8
	3	Tensor products of modules	9
	4	Exact and split sequences 1	13
	5	The Hom functors	15
	6	The $_\otimes N$ functor	17
	7	Projective and injective modules	18
	8	Flat modules	20
III	[Noe	ther, Zariski, and Hilbert 2	21
	1	On Noetherian-ness	21
	2	On algebras	22
	3	Towards the Nullstellensatz 2	23
IV	Rin	gs and modules of fractions 2	26
	1	Rings of fractions	26
		1.1 Definition and construction	26
		1.2 Properties of $S^{-1}A$	28
	2	Modules of fractions	29
		2.1 Local properties	30

CONTENTS

Α	Alge	ebras and polynomials	i
	1	Modules and algebras	i
	2	Polynomial rings	iii
	3	Field of rational functions	V
	4	Adjoining elements to rings and fields	vi
В	Basi 1	ic facts about rings General	viii viii
B C	Basi 1 Idea	ic facts about rings v General is from field theory	viii viii x
B C	Basi 1 Idea 1	ic facts about rings • General • is from field theory • Algebraic independence •	viii viii x x

ii

Chapter I

Commutative rings with identity

1 Exercising Zorn's lemma

January 12, 2023

Theorem 1.1 (Maximal ideals). Let A be a ring with identity and \mathfrak{a} be a proper ideal. Then there exists a maximal ideal \mathfrak{m} that contains \mathfrak{a} .

Corollary 1.2. Any ring A is the disjoint union of the sets A^* (the units of A) and¹ $\bigcup MaxSpec A$.

Theorem 1.3 (Prime ideals). Let A be a commutative ring, $\emptyset \neq S \subseteq A$ be multiplicative, and \mathfrak{a} be an ideal such that $\mathfrak{a} \cap S = \emptyset$. Then \mathfrak{a} is contained in some prime ideal that lies outside S.

Theorem 1.4 (Minimal prime ideals). Let A be a ring, \mathfrak{p} be a prime ideal and $S \subseteq \mathfrak{p}$. Then there exists a minimal prime ideal \mathfrak{q} such that $X \subseteq \mathfrak{q} \subseteq \mathfrak{p}$.

2 Simple facts

January 29, 2023

Convention. Throughout the rest of the document (except of appendices), unless stated otherwise, A will denote a commutative ring with unity, and Fraktur letters will denote the ideals. " $A \neq 0$ " will mean that A is a nonzero ring.

¹See Definition 3.2.

Proposition 2.1. Primes are irreducible in an integral domain.

Proposition 2.2. Maximal ideals are prime.

Proposition 2.3 (Characterizing fields). For $A \neq 0$, the following are equivalent:

- (i) A is a field.
- (ii) The only ideals of A are (0) and (1).
- (iii) Any homomorphism from A that maps 1 to some nonzero is injective.

Proposition 2.4. For ideals \mathfrak{p} and \mathfrak{m} , the following hold:

- (i) \mathfrak{p} is prime $\iff A/\mathfrak{p}$ is an integral domain.
- (ii) \mathfrak{m} is maximal $\iff A/\mathfrak{m}$ is a field.

3 The different radicals

January 12, 2023

Remark. Most of the results included will use AC, and we'll not bother to explicitly state when it is used.

Definition 3.1 (Nilradical). We define

 $Nil A := \{nilpotents in A\}.$

Definition 3.2 (Spectra of a ring). We define²

Spec $A := \{ \text{prime ideals of } A \}, \text{ and}$ MaxSpec $A := \{ \text{maximal ideals of } A \}.$

Proposition 3.3. For³ $A \neq 0$, we have

 $\operatorname{Nil} A = \bigcap \operatorname{Spec} A = \bigcap \{ \operatorname{minimal prime ideals} \}.$

Proposition 3.4. If $A \neq 0$ has no nonzero zero divisors or nilpotents, then there exist more than one minimal prime ideals.

²When "spectrum" is used, we usually see Spec A under the Zariski topology.

 $^{{}^{3}}A \neq 0$ ensures that Spec A, MaxSpec $A \neq \emptyset$.

Definition 3.5 (The Jacobson radical). For $A \neq 0$, we define Jac $A := \bigcap \text{MaxSpec } A$.

Proposition 3.6 (Characterizing Jacobson). Let $A \neq 0$. Then

 $\operatorname{Jac} A = \{ x \in A : 1 - xy \text{ is a unit for all } y \in A \}.$

Definition 3.7 (Radical of an ideal). For an ideal \mathfrak{a} , we define

Rad $\mathfrak{a} := \{x \in A : x^n \in \mathfrak{a} \text{ for some } n \ge 1\}.$

Proposition 3.8. For any ring homomorphism, we have

 $\operatorname{Rad}(\ker \phi) = \phi^{-1}(\operatorname{Nil}(\phi(A)))$

Corollary 3.9. For a proper ideal \mathfrak{a} , we have

Rad
$$\mathfrak{a} = \bigcap \{ \mathfrak{p} \in \operatorname{Spec} A : \mathfrak{p} \supseteq \mathfrak{a} \}.$$

Proposition 3.10.

 $\begin{aligned} \operatorname{Rad}(\operatorname{Rad} \mathfrak{a}) &= \operatorname{Rad} \mathfrak{a} \\ \operatorname{Rad}(\mathfrak{a} \cdot \mathfrak{b}) &= \operatorname{Rad}(\mathfrak{a} \cap \mathfrak{b}) = \operatorname{Rad} \mathfrak{a} \cap \operatorname{Rad} \mathfrak{b} \\ \operatorname{Rad}(\mathfrak{a} + \mathfrak{b}) &= \operatorname{Rad}(\operatorname{Rad} \mathfrak{a} + \operatorname{Rad} \mathfrak{b}) \\ \operatorname{Rad}(\mathfrak{p}^n) &= \mathfrak{p} \quad \text{for prime } \mathfrak{p} \text{ and } n \geq 1 \end{aligned}$

Proposition 3.11 (Characterizing locality). The following are equivalent:

- (i) A is local.
- (ii) $A \setminus A^*$ is an ideal.
- (iii) $1 + \mathfrak{m} \subseteq A^*$ for some maximal \mathfrak{m} .
- (iv) $\{a, 1-a\}$ contains a unit for every $a \in A$.

Definition 3.12 (Coprime). Ideals \mathfrak{a} and \mathfrak{b} are called coprime or comaximal iff $\mathfrak{a} + \mathfrak{b} = (1)$.

Proposition 3.13 (Chinese remainder). Let $\mathfrak{a}_1, \ldots \mathfrak{a}_n$ $(n \ge 1)$ be ideals of A and define $\phi: A \to \prod_i A/\mathfrak{a}_i$ by

$$a \mapsto (a + \mathfrak{a}_1, \ldots, a + \mathfrak{a}_n).$$

Now, the following hold:

- (i) ϕ is surjective $\iff \mathfrak{a}_i$'s are pairwise coprime.
- (ii) ϕ is injective $\iff \bigcap_i \mathfrak{a}_i = (0).$

(iii) \mathfrak{a}_i 's are pairwise coprime $\implies \bigcap_i \mathfrak{a}_i = \odot_i \mathfrak{a}_i$.⁴

 $^{^{4}}$ This is a generalization of the last part of Proposition 1.4.

Proposition 3.14. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be prime $(n \ge 1)$ with $\mathfrak{a} \subseteq \bigcup_i \mathfrak{p}_i$. Then $\mathfrak{a} \subseteq$ some \mathfrak{p}_i .

Proposition 3.15. Let $\mathfrak{p} \supseteq \bigcap_{i=1}^{n} \mathfrak{a}_i \ (n \ge 1)$ be prime. Then $\mathfrak{p} \supseteq$ some \mathfrak{a}_i . Further, the above also holds with \supseteq replaced with =.

Proposition 3.16 (Idempotents decompose the rings). Let A be a commutative ring with identity and $a \in A$. Then the following are equivalent:

(i) a is idempotent.

- (ii) 1 a is idempotent.
- (iii) $A = aA \oplus (1-a)A.^5$

⁵See Definition 1.6.

Chapter II

Modules

1 Basics

February 17, 2023

Definition 1.1 (Modules, submodules, module homomorphisms). See Definition 1.1. Submodules are defined obviously. Homomorphisms between two modules over a common ring are defined in the obvious sense.

Remark. To emphasize that the algebraic object is an A-module, we'll use use "A-module homomorphism" or "A-linear homomorphism".

Example 1.2.

- (i) Any abelian group is a \mathbb{Z} -module.
- (ii) A is an A-module.
- (iii) Submodules of a ring are precisely its ideals.

Lemma 1.3 (Choices for scalar multiplications). Let M be an abelian group and R be any ring. Then there exists a one-to-one correspondence:

$$\begin{cases} scalar multiplications \ A \times M \to M \\ that \ make \ M \ an \ A\text{-module} \end{cases} \longleftrightarrow \begin{cases} ring \ homomorphisms \\ A \to \operatorname{End}(M) \end{cases}$$

Proposition 1.4 (Submodules and homomorphisms).

(i) Characterization of submodules (when the ring has identity).

- (ii) Transitivity of "being a submodule".
- (iii) Sums and intersections of submodules are submodules.
- (iv) ker and im of homomorphisms are submodules.
- (v) The injection of a submodule into the parent submodule is a homomorphism.
- (vi) Submodules preserved in both directions under homomorphisms.
- (vii) For a homomorphism, injectivity \iff ker = 0.

Convention. Throughout the document (except in the appendices), M and N will stand for generic A-modules.

Proposition 1.5 (Quotient of modules). Let N be a submodule of M. Then the quotient group M/N forms an A-module under the following well-defined operations:

$$\overline{m_1} + \overline{m_2} = \overline{m_1 + m_2}$$
$$a \,\overline{m} = \overline{am}$$

Proposition 1.6. We have the analogues of correspondence and all the three isomorphism theorems.

Definition 1.7 (Independence, spans, bases, free modules). Defined in the obvious way.

Modules that have a basis are called free.

Proposition 1.8 (Characterizing spanning and independent sets). Let $S \subseteq M$. Define $\phi: A^{[S]} \to M \ via^1$

$$(a_s) \mapsto \sum_s a_s s.$$

Then the following hold:

- (i) ϕ is a homomorphism.
- (ii) S is independent $\iff \phi$ is injective.
- (iii) S spans $M \iff \phi$ is surjective.

Definition 1.9 (Direct sums and direct products). Given A-modules $\{M_{\lambda}\}_{\lambda \in \Lambda}$, the sets

$$\oplus_{\lambda \in \Lambda} M_{\lambda}$$
 and $\prod_{\lambda \in \Lambda} M_{\lambda}$

(defined usually) form A-modules via pointwise operations.²

¹Since direct sum, ϕ is well-defined.

²Note that the former is a submodule of the latter.

Proposition 1.10 (The universal property of direct sums and direct products). Let M_{λ} 's be A-modules for $\lambda \in \Lambda$. Then the following universal properties respectively characterize³ ($\bigoplus_{\lambda} A_{\lambda}, (\iota_{\lambda})$) and ($\prod_{\lambda} A_{\lambda}, (\pi_{\lambda})$) up to (unique) isomorphisms:

(i) Given any A-module N and homomorphisms $\phi_{\lambda} \colon M_{\lambda} \to N$, there exists a unique homomorphism $\psi \colon \bigoplus_{\lambda} M_{\lambda} \to N$ such that each ϕ_{λ} factors through⁴ ι_{λ} :

(ii) Given any A-module N and homomorphisms $\phi_{\lambda} \colon N \to M_{\lambda}$, there exists a unique homomorphism $\psi \colon N \to \prod_{\lambda} M_{\lambda}$ such that each ϕ_{λ} factors through π_{λ} :

Notation. Sometimes, the unique functions ψ 's above are denoted by $\bigoplus_{\lambda} \phi_{\lambda}$ and $\prod_{\lambda} \phi_{\lambda}$.

Definition 1.11 (Ideal times a module). We define⁵

$$\mathfrak{a} \cdot M := \sum_{i \in \mathbb{N}} \mathfrak{a} M.$$

Lemma 1.12. For any $a \in A$, we have

$$aM = (a) \cdot M.$$

Definition 1.13 ((N : L) and annihilators). For submodules N, L of M, we define

$$(N:L) := \{a \in A : N \supseteq aL\}.$$

We define

$$\operatorname{Ann}(M) := (0:M).$$

 ${}^{3}\iota_{\lambda}$ is the injection $A_{\lambda} \hookrightarrow \bigoplus_{\lambda} A_{\lambda}$, and π_{λ} is the projection $\prod_{\lambda} A_{\lambda} \twoheadrightarrow A_{\lambda}$.

⁵Note how $\mathfrak{a} \cdot \mathfrak{b} = \sum_{i \in \mathbb{N}} \mathfrak{a}\mathfrak{b}$.

⁴That is, the diagram commutes.

Proposition 1.14 (A-module as an A/\mathfrak{a} -module). Let $\mathfrak{a} \subseteq \operatorname{Ann}(M)$. Then M forms an A/\mathfrak{a} with the following well-defined scalar multiplication:

$$\overline{a}m = am$$

Lemma 1.15. A/\mathfrak{a} as the "ring over itself" module is the same as the module constructed by these steps:

A over
$$A \longrightarrow A/\mathfrak{a}$$
 over $A \longrightarrow A/\mathfrak{a}$ over A/\mathfrak{a} .

2 Cayley-Hamilton and Nakayama

February 17, 2023

Theorem 2.1 (Generalized Cayley-Hamilton). Let $\{m_1, \ldots, m_k\}$ generate the M $(k \ge 1)$. Let $\phi: M \to M$ be a homomorphism and $P \in A^{k \times k}$ such that

$$\phi(m_j) = \sum_{i=1}^k P_{i,j} \, m_i$$

Let $\chi \in A[x]$ be the characteristic polynomial of P. Then

$$\chi(\phi) = 0.$$

Corollary 2.2. Let M be generated by $k \ge 0$ elements and $\phi: M \to M$ be a homomorphism such that $\phi(M) \subseteq \mathfrak{a} \cdot M$. Then there exist $a_0, \ldots, a_{k-1} \in \mathfrak{a}$ such that

 $\phi^k + a_{k-1} \phi^{k-1} + \dots + a_0 I = 0.$

Theorem 2.3 (Nakayama's lemma). Let M be finitely generated.

Version I Let $\mathfrak{a} \cdot M = M$. Then there exists an $a \in A$ such that

 $a \equiv 1_A \pmod{\mathfrak{a}}$ and aM = 0.

Version II $\mathfrak{a} \subseteq \operatorname{Jac}(A)$ and $\mathfrak{a} \cdot M = M \implies M = 0$.

Version III Let $\mathfrak{a} \subseteq \operatorname{Jac}(A)$ and N be a submodule of M such that $\mathfrak{a} \cdot M + N = M$. Then N = M.⁶

Proposition 2.4 (Pulling a spanning set from the quotient vector space to the module). Let \mathfrak{m} be maximal in A. Then the following hold:

(i) $M/(\mathfrak{m} \cdot M)$ is a vector space over A/\mathfrak{m} .

(ii) If (A, \mathfrak{m}) is local and finitely many $\overline{m_i}$'s $(m_i \in M)$ span the vector space $M/(\mathfrak{m} \cdot M)$ (over A/\mathfrak{m}), then m_i 's span M (over A).

⁶Version II becomes a special case of Version III by putting N = 0.

3 Tensor products of modules

February 20, 2023

Definition 3.1 (Multilinear maps). Let $\{M_{\lambda}\}$ and N be A-modules. Then a set theoretic function $\not{\ell} : \prod_{\lambda} M_{\lambda} \to N$ is called A-multilinear iff for each λ_0 and each $(m_{\lambda \neq \lambda_0}) \in \prod_{\lambda \neq \lambda_0} M_{\lambda}$, the induced function $M_{\lambda_0} \to N$ given by

$$\tilde{m} \mapsto \not f\left(\begin{smallmatrix} \tilde{m}, & \lambda = \lambda_0 \\ m_\lambda, & \lambda \neq \lambda_0 \end{smallmatrix} \right)$$

is a homomorphism.

Convention. We'll use calligraphic font for multilinear maps.

Definition 3.2 (Tensor products). Let $\{M_{\lambda}\}$ be A-modules. Then an A-module T together with a multilinear map $i: \prod_{\lambda} M_{\lambda} \to T$, denoted (T, i) is called a tensor product of M_{λ} 's iff the following universal property holds:

Any multilinear map $\not e : \prod_{\lambda} M_{\lambda} \to N$ (N any A-module) factors through i via a unique homomorphism $\phi : T \to N$.

Remark. Generally, just T is called the tensor product.

Proposition 3.3. Any two tensor products of a family of modules are unique up to a unique isomorphism.⁷

Notation. This allows us to denote the (module of the) tensor product (up to (the unique) isomorphism) by $\otimes_i M_i$.

⁷More precisely, given (T_1, i_1) and (T_2, i_2) , there exists a unique isomorphism $T_1 \to T_2$.

CHAPTER II. MODULES

Lemma 3.4 (Existence of tensor products). Let $\{M_{\lambda}\}$ be A-modules. Let P be the submodule of $A^{[\prod_{\lambda} M_{\lambda}]}$ generated by the following elements:

$$e\binom{n_1, \lambda=\lambda_0}{m_{\lambda}, \lambda\neq\lambda_0} + e\binom{n_2, \lambda=\lambda_0}{m_{\lambda}, \lambda\neq\lambda_0} - e\binom{n_1+n_2, \lambda=\lambda_0}{m_{\lambda}, \lambda\neq\lambda_0} \\ a e\binom{n, \lambda=\lambda_0}{m_{\lambda}, \lambda\neq\lambda_0} - e\binom{an, \lambda=\lambda_0}{m_{\lambda}, \lambda\neq\lambda_0}$$

Here, $(m_{\lambda}) \in \prod_{\lambda \neq \lambda_0} M_{\lambda}$; $n, n_1, n_2 \in M_{\lambda_0}$; and, $a \in A$. Write $T := A^{[\prod_{\lambda} M_{\lambda}]}$ and let $i : \prod_{\lambda} M_{\lambda} \to T$ be given by⁸

$$(m_{\lambda}) \mapsto \overline{e_{(m_{\lambda})}}.$$

Then (T, i) is a tensor product of M_{λ} 's.

Definition 3.5 (Simple tensors). For a given tensor product (T, i) of modules M_{λ} 's, we set

$$\otimes_{\lambda} m_{\lambda} := i((m_{\lambda})).$$

Remark. Strictly speaking, *i* must've been mentioned in the notation.

Remark. Sometimes, when modules can be seen as being over several rings, we might specify the ring A over which the tensor product is being taken by writing \otimes_A .

- **Corollary 3.6.** (i) $m \otimes n = 0 \implies$ every bilinear map on $M \times N$ vanishes at (m, n).
- (ii) $M \otimes N = 0 \implies$ the only bilinear map on $M \times N$ are zero maps.⁹
- (iii) If G is an abelian group with each element having finite order, then $G \otimes_{\mathbb{Z}} \mathbb{Q} = 0$.

Proposition 3.7. The tensor product is generated by simple tensors.

Remark. Not all tensors are simple: Consider $e \otimes e + f \otimes f \in M \otimes M$ where $\{e, f\}$ form a basis of M.

Proposition 3.8 (Being a basis is preserved by $_\otimes_$). If $\{m_i\}$'s and $\{n_j\}$'s respectively form bases for M and N, Then $\{m_i \otimes n_j\}$'s form a basis for $M \times N$.

⁸Note that we are using two notations for the same thing: $e \square$ and e_\square .

⁹Maps, not map (since codomain can vary).

Corollary 3.9. Over A, we have

$$A^m \otimes A^n \cong A^{m \times n}.$$

Proposition 3.10. We have

$$A/\mathfrak{a}\otimes A/\mathfrak{b}\cong A/(\mathfrak{a}+\mathfrak{b})$$

with an isomorphism given by

 $\overline{a} \otimes \overline{b} \mapsto \overline{ab}.$

Proposition 3.11. The kernel of the homomorphism $A \mapsto A/\mathfrak{a} \otimes A/\mathfrak{b}$ given by

$$a \mapsto a(\overline{1} \otimes \overline{1})$$

is $\mathfrak{a} + \mathfrak{b}$.

Remark. Contrast this with the kernel $\mathfrak{a} \cap \mathfrak{b}$ of the map $A \to A/\mathfrak{a} \times A/\mathfrak{b}$ given by $a \mapsto (\overline{a}, \overline{a}) = a(\overline{1}, \overline{1}).$

Proposition 3.12 ($_ \otimes _$ as a covariant bifunctor $\mathsf{Mod}_A \times \mathsf{Mod}_A \to \mathsf{Mod}_A$). Let $f: M \to M'$ and $g: N \to N'$ be homomorphisms. Then the function $f: M \times N \to M' \otimes N'$ defined by

$$(m,n) \mapsto f(m) \otimes g(n)$$

is bilinear and we define $f \otimes g$ to be the unique homomorphism through which $\not f$ factors:

$$M \times N \xrightarrow{\ell} M' \otimes N'$$

$$i \xrightarrow{\tau}_{f \otimes g}$$

$$M \otimes N$$

 $f \otimes g$ is characterized by ¹⁰

$$(f \otimes g)(m \otimes n) = f(m) \otimes g(n)$$

Further, if we also have homomorphisms $f' \colon M' \to M''$ and $g' \colon N' \to N''$, then we have that

$$(f' \circ f) \otimes (g' \circ g) = (f' \otimes g') \circ (f \otimes g).$$

¹⁰Note that \otimes is different in the tensor products on the left- and right-hand-sides.

Diagrammatically, the commutativity of the left-hand-side implies the commutativity of the right-hand-side:

Corollary 3.13. If $M \cong M'$ and $N \cong N'$, then $M \otimes N \cong M' \otimes N'$.

Proposition 3.14 (Canonical isomorphisms).

$$M \otimes N \cong N \otimes M \qquad \qquad m \otimes n \leftrightarrow n \otimes m$$
$$(M \otimes N) \otimes P \cong M \otimes N \otimes P \qquad (m \otimes n) \otimes p \leftrightarrow m \otimes n \otimes p$$
$$\cong M \otimes (N \otimes P) \qquad \qquad \leftrightarrow m \otimes (n \otimes p)$$
$$(\bigoplus_{\lambda} E_{\lambda}) \otimes M \cong \bigoplus_{\lambda} (E_{\lambda} \otimes M) \qquad (e_{\lambda}) \otimes m \leftrightarrow (e_{\lambda} \otimes m)$$
$$A \otimes M \cong M \qquad \qquad a \otimes m \leftrightarrow am$$

Corollary 3.15. It follows that if A is an integral domain, then

$$\operatorname{Frac}(A) \otimes_A \operatorname{Frac}(A) \cong \operatorname{Frac}(A).$$

Proposition 3.16 ($M \otimes$ (a free module)). Let F be a free A-module with a basis $\{f_i\}$. Then

$$M \otimes F \cong \bigoplus_i M,^{11}$$

and each $t \in M \otimes F$ can uniquely be written as

$$t = \sum_{i} m_i \otimes f_i.$$

¹¹This just says that for any set \mathcal{B} , we have $M \otimes A^{[\mathcal{B}]} \cong M^{[\mathcal{B}]}$, which is a generalization of the last part of Proposition 3.14.

Proposition 3.17. For $k \ge 0$, we have¹²

$$A[x]^{\otimes k} \cong A[x_1, \dots, x_k]$$

with

$$p_1(x) \otimes \cdots \otimes p_k(x) \leftrightarrow p_1(x_1) \cdots p_k(x_k)$$

4 Exact and split sequences

February 22, 2023

Definition 4.1 (Exact and short sequences). A sequence (finite or infinite) of modules joined by homomorphisms

$$\cdots \longrightarrow M_{i-1} \xrightarrow{\phi_i} M_i \xrightarrow{\phi_{i+1}} M_{i+1} \longrightarrow \cdots$$

is called exact at M_i iff we have

$$\operatorname{im}(\phi_i) = \ker(\phi_{i+1}).$$

The whole sequence is called exact iff it is exact at all the (non-terminal) modules. A sequence of the form

$$0 \longrightarrow M' \stackrel{\phi}{\longrightarrow} M \stackrel{\psi}{\longrightarrow} M'' \to 0$$

is called a short sequence.

Corollary 4.2.

- (i) $0 \longrightarrow M' \xrightarrow{\phi} M$ is exact $\iff \phi$ is injective.
- (ii) $M \xrightarrow{\psi} M'' \longrightarrow 0$ is exact $\iff \psi$ is surjective.

Corollary 4.3 (Two ways to generate exact sequences).

(i) If $\phi: M \to N$ is injective, then

$$0 \longrightarrow M \stackrel{\phi}{\longrightarrow} N \longrightarrow N/\operatorname{im} \phi \longrightarrow 0$$

is exact.

¹²Note that the tensor product of an empty family of modules is the zero module.

(ii) If $\psi \colon M \to N$ is surjective, then

$$0 \longrightarrow \ker \psi \longrightarrow M \xrightarrow{\psi} N \longrightarrow 0$$

is exact.

Theorem 4.4 (Splitting of an injective sequence). Let the sequence

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{f'}{\longrightarrow} M''$$

be exact. Let $\tilde{f}: M'' \to M$ be a homomorphism such that $f' \circ \tilde{f} = \mathrm{Id}_{M''}$. Then, in the diagram¹³

the following hold:

- (i) f' is surjective.
- (ii) The dashed arrows commute.
- (iii) $f \oplus \tilde{f}$ is an isomorphism.

Theorem 4.5 (Splitting of a surjective sequence). Let the sequence

$$M' \xrightarrow{f} M \xrightarrow{f'} M'' \longrightarrow 0$$

be exact. Let $\tilde{f}: M \to M'$ be a homomorphism such that $\tilde{f} \circ f = \mathrm{Id}_{M'}$. Then, in the $diagram^{14}$

$$0 \longrightarrow M' \xrightarrow[\ell_{M'}]{\tilde{f}} M \xrightarrow{f'} M'' \longrightarrow 0$$

$$\downarrow \tilde{f} \downarrow \tilde{f} \times f'$$

$$M' \times M''$$

the following hold:

(i) f is injective.

¹³The diagram is *not* commutative for $\tilde{f} \circ \pi_{M''} \neq f \oplus \tilde{f}$ in general.

¹⁴Again, the diagram is non-commutative in general.

- (ii) The dashed arrows commute.
- (iii) $\tilde{f} \times f'$ is an isomorphism.

Lemma 4.6 ("Converse" to Theorems 4.4 and 4.5). Write $N := M' \times M'' = M' \otimes M''$ and let the following diagram commute with $M \cong N$:

Then there exist homomorphisms $\tilde{f}: M \to M'$ and $\tilde{f}': M'' \to M$ such that $\tilde{f} \circ f = \mathrm{Id}_{M'}$ and $\tilde{f}' \circ f' = \mathrm{Id}_{M''}$.

5 The Hom functors

February 21, 2023

Remark. For us, Hom will mean Hom_{Mod_A} and hence we'll omit the subscript.

Remark. Note that if $M, N \in Mod_A$, then $Hom(M, N) \in Mod_A$ as well. This is not true of general categories.

Proposition 5.1 (Hom(<u>,</u>) as a covariant functor $\mathsf{Mod}_A^{\mathrm{op}} \times \mathsf{Mod}_A \to \mathsf{Mod}_A$). Let $f: M' \to M$ and $g: N \to N'$ be homomorphisms. Then

$$\operatorname{Hom}(f,g)\colon\phi\mapsto g\circ\phi\circ f$$

defines a homomorphism $\operatorname{Hom}(M, N) \to \operatorname{Hom}(M', N')$. Further, if we also have homomorphisms $f' \colon M'' \to M'$ and $g' \colon N' \to N''$, then

$$\operatorname{Hom}(f \circ f', g' \circ g) = \operatorname{Hom}(f', g') \circ \operatorname{Hom}(f, g).$$

Diagrammatically, the commutativity of the left-hand-side implies the commutativity

of the right-hand-side:

Proposition 5.2 (Hom $(M, _)$ on $\mathsf{Mod}_A \to \mathsf{Mod}_A$ as a covariant left-exact functor). Fix a module M. Let $g: N' \to N$ be a homomorphism. Then we have a homomorphism Hom $(M, N') \to \operatorname{Hom}(M, N)$ given by

Hom
$$(M, g)$$
: $\phi \mapsto g \circ \phi$.

Further, if we also have a homomorphism $g' \colon N \to N''$, then we have

$$\operatorname{Hom}(M, g' \circ g) = \operatorname{Hom}(M, g') \circ \operatorname{Hom}(M, g).$$

Diagrammatically, the commutativity of the left-hand-side implies that of the righthand-side:

Further, the following are equivalent:¹⁵ (i) $0 \to N' \to N \to N''$ is exact. (ii) $0 \to \operatorname{Hom}(M, N') \to \operatorname{Hom}(M, N) \to \operatorname{Hom}(M, N'')$ is exact.

¹⁵This required AC.

Proposition 5.3 (Hom($_, N$) on $\mathsf{Mod}_A \to \mathsf{Mod}_A$ as a contravariant left-exact¹⁶ functor). Fix a module N. Let $f: M' \to M$ be a homomorphism. Then we have a homomorphism $\operatorname{Hom}(M, N) \to \operatorname{Hom}(M', N)$ given by

$$\operatorname{Hom}(f, N) \colon \phi \mapsto \phi \circ f.$$

Further, if we also have a homomorphism $f': M \to M''$, then we have

 $\operatorname{Hom}(f' \circ f, N) = \operatorname{Hom}(N, f) \circ \operatorname{Hom}(N, f').$

Diagrammatically, the commutativity of the left-hand-side implies that of the righthand-side:

Further, the following are equivalent:

- (i) $M' \to M \to M'' \to 0$ is exact.
- (ii) $\operatorname{Hom}(M', N) \leftarrow \operatorname{Hom}(M, N) \leftarrow \operatorname{Hom}(M'', N) \leftarrow 0$ is exact.

6 The $_ \otimes N$ functor

Notation. We'll denote by $Bil(M \times N, P)$ the set of all bilinear maps $M \times N \rightarrow P$. This in turn also forms an A-module under pointwise operations.

Proposition 6.1. We have

 $\operatorname{Hom}(M, \operatorname{Hom}(N, P)) \cong \operatorname{Bil}(M \times N, P) \cong \operatorname{Hom}(M \otimes N, P).$

¹⁶Yea, calling it "left-exact" here *is* confusing.

Lemma 6.2 (Exactness of isomorphic sequences). Consider the following:

Let dashed arrows be the induced homomorphisms. Then the exactness at M is equivalent to exactness at N.

Proposition 6.3 ($_\otimes N$ is a right-exact covariant functor on $\mathsf{Mod}_A \to \mathsf{Mod}_A$). Let $M' \xrightarrow{f} M \xrightarrow{f'} M'' \to 0$ be exact. Then

$$M' \otimes N \xrightarrow{f \otimes \mathrm{Id}_N} M \otimes N \xrightarrow{f' \otimes \mathrm{Id}_N} M'' \otimes N \xrightarrow{} 0$$

is exact as well.¹⁷

7 Projective and injective modules

February 21, 2023

Definition 7.1 (Projective and injective modules). We call M projective iff Hom $(M, _)$ is exact, *i.e.*, it preserves short exact sequences. We call N injective iff Hom $(_, N)$ is exact.

Corollary 7.2.

(i) M is projective \iff every $M \rightarrow N''$ factors through each surjection $N \twoheadrightarrow N''$:

(ii) N is injective \iff every $M' \rightarrow N$ factors through each injection $M' \hookrightarrow M$:

¹⁷That $_\otimes N$ is a covariant functor follows straight away from Proposition 3.12.

Definition 7.3 (Splitting of surjective and injective homomorphisms). The exact sequence $L \to M \to 0$ is said to split iff there exists a commutative diagram like so:

Similarly, an exact sequence $0 \to N \to L$ is said to split iff there exists a commutative diagram of the following kind:

Corollary 7.4.

(i) If M is projective, then each exact $L \to M \to 0$ splits.

(ii) If N is injective, then each exact $0 \to N \to L$ splits.

Corollary 7.5. Let N be a submodule of M such that either N is injective or M/N is projective. Then

$$M \cong N \oplus M/N$$

Example 7.6. \mathbb{Z} (over \mathbb{Z}) is not injective and \mathbb{Q}/\mathbb{Z} (over \mathbb{Z}) is not projective.

Lemma 7.7. Free modules are projective.¹⁸

Theorem 7.8 (Characterizing projective modules). *M* is projective \iff it is the direct summand of a free module.

Lemma 7.9. A free module over an integral domain can't have nonzero torsion elements.

Corollary 7.10. In particular, if G is an abelian group with a non-zero torsion element, then G as a \mathbb{Z} -module is not projective.

Corollary 7.11. $\oplus_{\lambda} M_{\lambda}$ is projective \iff each M_{λ} is projective.

 $^{^{18}\}mathrm{This}$ is one of the results that uses AC.

8 Flat modules

February 22, 2023

Definition 8.1 (Flat modules). N is said to be flat iff $\underline{} \otimes N$ is exact.

Proposition 8.2. $\oplus_{\lambda} M_{\lambda}$ is flat \iff each M_{λ} is flat.

Chapter III

Noether, Zariski, and Hilbert

1 On Noetherian-ness

April 22, 2023

Lemma 1.1 (Chain condition). For a poset Σ , the following are equivalent:

- (i) Σ satisfies the ascending chain condition.
- (ii) Every nonempty subset of Σ has a maximal element.

Corollary 1.2. A is Noetherian \iff A is Noetherian as an A-module.

Proposition 1.3.

- (i) A is Noetherian \iff each ideal of A is finitely generated.
- (ii) M is Noetherian \iff each submodule is finitely generated.

Corollary 1.4. Submodules of Noetherian modules are Noetherian.

Remark. Subrings of Noetherian subrings needn't be Noetherian (although their ideals will be, as A-modules). For instance $K[x_1, x_2, \ldots]$ a non-Noetherian subring of the field $K(x_1, x_2, \ldots)$, where K is a field.

Theorem 1.5 (Exactness and Noetherian-ness).

- (i) Let M', M'' be Noetherian and the composition $M' \to M \to M''$ be zero. Then M is Noetherian as well.
- (ii) Let M be Noetherian, and $0 \to M' \to M$ (respectively $M \to M'' \to 0$) be exact. Then M' (respectively M'') is Noetherian as well.

Corollary 1.6.

- (i) Submodules and quotients of Noetherian modules are Noetherian.
- (ii) Let N be a Noetherian submodule of M with M/N also Noetherian. Then M is Noetherian as well.
- (iii) Homomorphic image of a Noetherian module is Noetherian.
- (iv) If M, N are Noetherian, then $M \oplus N$ is Noetherian as well.
- (v) If A is Noetherian, then A/\mathfrak{a} is Noetherian (as a ring) as well.
- (vi) If A is Noetherian and M over A is finitely generated, then M is Noetherian as well.

Theorem 1.7 (Hilbert's basis¹ theorem). If A is Noetherian, then A[x] is Noetherian as well.

2 On algebras

April 24, 2023

Convention. Throughout the rest of the document, we'll also reserve B, C for commutative rings with identity.

Definition 2.1 (Algebra). *B* together with a nice ring homomorphism $\phi: A \to B$ is called an *A*-algebra.

Remark.

- (i) We'll work with this definition rather than the more general Definition 1.4.
- (ii) If clear from the context, we'll just write B as the A-algebra, omitting ϕ .
- (iii) The A-algebra B above also is an A-module with the scalar multiplication given by $(a, b) \mapsto \phi(a) b$. When we call an A-algebra an A-module, this is the module that we'll mean, unless stated otherwise.

Corollary 2.2. A is a \mathbb{Z} -algebra via the nice homomorphism $n \mapsto n1_A$.

¹The set of generators of an ideal was earlier called a "basis" of the ideal.

Definition 2.3 (Algebra homomorphisms). Let B, C be A-algebras. Then an A-algebra homomorphism from B to C is a nice ring homomorphism $B \to C$ such that the following diagram commutes:

Proposition 2.4 (Alternate definition of algebra homomorphisms). Let B, C be A-algebras. Then a nice ring homomorphism $B \to C$ is an A-algebra homomorphism \iff it is an A-module homomorphism.

Proposition 2.5 (Finitely generated algebras). Let B be an A-algebra via $\phi: A \rightarrow B$. Then the following are equivalent:

- (i) There exists a $b \in B^n$ such that the evaluation $A[x_1, \ldots, x_n] \to B$ at b via ϕ is surjective.
- (ii) There exists a surjective A-algebra homomorphism $A[x_1, \ldots, x_n] \to B^2$.

Definition 2.6 (Finitely generated algebras). An A-algebra satisfying either of the (equivalent) conditions in Proposition 2.5 is called a finitely generated A-algebra.

Lemma 2.7. Homomorphic image of a Noetherian ring is Noetherian.

Proposition 2.8. A finitely generated algebra over a Noetherian ring is Noetherian as a ring.

3 Towards the Nullstellensatz³

April 24, 2023

Theorem 3.1 (Artin-Tate). Let nice ring homomorphisms

$$A \stackrel{\phi}{\longrightarrow} B \stackrel{\psi}{\longrightarrow} C$$

be given such that

(i) ψ is injective;

²Note that $A[x_1, \ldots, x_n]$ is an A-algebra via the usual inclusion.

³In German, null is zero, stellen is place, and satz is sentence.

(ii) C is finitely generated as B-module (via ψ); and,

(iii) C is finitely generated also as A-algebra (via $\psi \circ \phi$).

Then B is finitely generated as A-algebra (via ϕ).

Convention. Let's reserve k, E, F, K to denote generic fields in the remainder of this document.

Theorem 3.2 (Zariski's lemma). Let $\phi: k \to E$ be a field extension such that E is finitely generated as k-algebra. Then ϕ is an algebraic extension of finite degree.

Corollary 3.3 (Field theory version of the Nullstellensatz). Let A be a finitely generated k-algebra and \mathfrak{m} be maximal in A. Then A/\mathfrak{m} is an algebraic extension of k of finite degree.

Definition 3.4 (The sets Z(T) and I(X)). Let $n \ge 0$. Then for any $T \subseteq k[x_1, \ldots, x_n]$, we define

 $Z(T) := \{ \text{common zeroes of the polynomials in } T \}$

and for any $X \subseteq k^n$, we define

 $I(X) := \{ \text{polynomials that vanish on } X \}.$

Result 3.5 (The Zariski topology). Let $n \ge 0$ and set $A := k[x_1, \ldots, x_n]$. Then the following hold:

(i)
$$Z(A) = \emptyset$$
.

(ii)
$$Z(0) = k^n$$
.

- (iii) $Z(\mathfrak{a} \cap \mathfrak{b}) = Z(\mathfrak{a} \cdot \mathfrak{b}) = Z(\mathfrak{a}) \cup Z(\mathfrak{b})$ for ideals \mathfrak{a} , \mathfrak{b} of A.
- (iv) $Z(\sum_i \mathfrak{a}_i) = \bigcap_i Z(\mathfrak{a}_i).$

Consequently, $Z(\mathfrak{a})$'s for ideals \mathfrak{a} of A form closed sets of a topology on k^n . For n = 1 and k algebraically closed, we recover the cofinite topology.

Proposition 3.6 (The weak Nullstellensatz). Let k be algebraically closed. Then the following equivalent statements hold:

(i) For any $n \ge 0$, we have that

$$\operatorname{MaxSpec}(F[x_1,\ldots,x_n]) = \{(x_1 - \alpha_1,\ldots,x_n - \alpha_n) : \alpha_i \in k\}.$$

(ii) For any ideal \mathfrak{a} of $k[x_1, \ldots, x_n]$ for $n \ge 0$, we have that

$$Z(\mathfrak{a}) = \emptyset \iff \mathfrak{a} = A.$$

Theorem 3.7 (The strong Nullstellensatz). Let k be algebraically closed and \mathfrak{a} be an ideal of $k[x_a, \ldots, x_n]$ for $n \ge 0$. Then

$$I(Z(\mathfrak{a})) = \operatorname{Rad}(\mathfrak{a}).$$

Chapter IV Rings and modules of fractions

Convention. Throughout this chapter, S will denote a multiplicative subset of A containing 1_A .

1 Rings of fractions

1.1 Definition and construction

April 26, 2023

Definition 1.1 (Rings of fractions). A commutative ring with identity R together with a homomorphism $i: A \to R$ with $i(S) \subseteq R^*$ is called a ring of fractions of Awith respect to S iff any homomorphism $f: A \to B$ with $f(S) \subseteq B^*$ factors uniquely through R via i:

Remark. As with tensor products, we'll usually mean just the ring R when we say a ring of fractions.

Proposition 1.2 (Properties derivable directly from the universal property). Let (R, i) be a ring of fractions of A with respect to S. Then the following hold:

- (i) Any other ring of fractions of A with respect to S is isomorphic to R via a unique isomorphism.¹
- (ii) The fractions generate the whole of R, i.e.,

$$R = \{i(a) \, i(s)^{-1} : a \in A, s \in S\}.$$

(iii) For $a, b \in A$ and $s, t, u \in S$,

$$(at - bs)u = 0 \implies i(a) i(s)^{-1} = i(b) i(t)^{-1}$$

Remark. (i) allows us to denote ("up to unique isomorphisms") a generic ring of fractions of A with respect to S, using $S^{-1}A$ and i_A^S .

(ii) allows us to denote the elements of $S^{-1}A$ by a/s.

Proposition 1.3 (Existence of $S^{-1}A$). The following is an equivalence relation on $A \times S$:

$$(a,s) \sim (b,t)$$
 iff $(at-bs)u = 0$ for some $u \in S$

Denoting the set of equivalence classes by R and the equivalence classes as a/s := [(a, s)], we have addition and multiplication on R that satisfy

$$a/s + b/t = (at + bs)/(st)$$
, and
 $(a/s)(b/s) = (ab)/(st)$.

Then R together with the map $i: A \to R$ given by

 $a \mapsto a/1_A$

forms a ring of fractions of A with respect to S.

Remark. *i* is not in general injective.

Proposition 1.4 (A property derived via the construction). If (R, i) is a ring of fractions of A with respect to S, then for $a \in A$, we have

$$i(a) = 0 \implies as = 0 \text{ for some } s \in S.$$

Proposition 1.5 ("Converse" of the derived properties). Let $i: A \to R$ be a homomorphism such that the following hold:

- (i) $i(A) \subseteq R^*$. (ii) $i(a) = 0 \implies as = 0 \text{ for some } s \in S$.
- (*iii*) $R = \{i(a) \ i(s)^{-1} : a \in A, s \in S\}.$

Then (R, i) is a ring of fractions of A with respect to S.

¹See Footnote 7.

1.2 Properties of $S^{-1}A$

April 28, 2023

Theorem 1.6 $(A_a \cong A[1/a])$. Let $a \in A$. Set $A_a := \{a^0, a^1, \ldots\}^{-1}A$. Then

$$A_a \cong A[x]/(ax - 1_A).$$

Proposition 1.7 (Extension and contraction of ideals). Let \mathfrak{a} be an ideal of A, and \mathfrak{b} be an ideal of $S^{-1}A$. Then we define the following:

$$\mathfrak{a}^e := (i^S_A(\mathfrak{a}))$$

 $\mathfrak{b}^c := (i^S_A)^{-1}(\mathfrak{b})$

We also define

$$S^{-1}\mathfrak{a} := \{a/s : a \in \mathfrak{a}, s \in S\}.$$

Remark. Of course, these notations are not robust, but we'll rely on context.

Proposition 1.8. Let \mathfrak{a} be an ideal of A and \mathfrak{b} an ideal of $S^{-1}A$. Then the following hold:

$$S^{-1}\mathfrak{a} = \mathfrak{a}^{e}$$
$$(\mathfrak{b}^{c})^{e} = \mathfrak{b}$$
$$(\mathfrak{a}^{e})^{c} = \bigcup_{s \in S} (\mathfrak{a} : \{s\})$$

Proposition 1.9. For an ideal \mathfrak{a} of A, we have

$$S^{-1}\mathfrak{a} = S^{-1}A \iff \mathfrak{a} \cap S \neq \emptyset.$$

Lemma 1.10. Inverse images of prime ideals under ring homomorphisms are prime.²

Proposition 1.11. We have the following correspondence given by extension and contraction:

 $\operatorname{Spec}(S^{-1}A) \quad \longleftrightarrow \quad \{\mathfrak{p} \in \operatorname{Spec}(A) : \mathfrak{p} \cap S = \emptyset\}$

 2 True for general rings.

Proposition 1.12. Let \mathfrak{a} , \mathfrak{b} be ideals of A. Then the following hold:

 $S^{-1}(\mathfrak{a} + \mathfrak{b}) = (S^{-1}\mathfrak{a}) + (S^{-1}\mathfrak{b})$ $S^{-1}(\mathfrak{a} \cap \mathfrak{b}) = (S^{-1}\mathfrak{a}) \cap (S^{-1}\mathfrak{b})$ $S^{-1}(\mathfrak{a} \cdot \mathfrak{b}) = (S^{-1}\mathfrak{a}) \cdot (S^{-1}\mathfrak{b})$ $S^{-1}(\operatorname{Rad}\mathfrak{a}) = \operatorname{Rad}(S^{-1}\mathfrak{a})$ $S^{-1}(\operatorname{Nil}\mathfrak{a}) = \operatorname{Nil}(S^{-1}\mathfrak{a})$

Proposition 1.13 (Localization). Let \mathfrak{p} be a prime ideal of A. The the ring of fractions $A_{\mathfrak{p}} := (A \setminus \mathfrak{p})^{-1}A$ is a local ring with the maximal ideal being \mathfrak{p}^e .

2 Modules of fractions

April 28, 2023

Remark. We'll not define the modules of fractions categorically, rather, we will work with an explicit construction.

Proposition 2.1 (When can M be an $S^{-1}A$ -module as well?). If for each scalar $s \in S$, the endomorphism $\mu_s \colon m \mapsto sm$ is a bijection, then M forms an $S^{-1}A$ -module with the scalar multiplication satisfying

$$(a/s)m = a(m/s)$$

where m/s denotes the pre-image of m under μ_s .

Proposition 2.2 (Constructing $S^{-1}M$). The following defines an equivalence relation on $M \times S$:

$$(m,s) \sim (n,t)$$
 iff $u(tm-sn) = 0$ for some $u \in S$

Denoting the equivalence classes [(m, s)] by m/t, the set $S^{-1}M$ of these equivalence classes forms an $S^{-1}A$ module with addition and scalar multiplication satisfying the following:

$$m/s + n/t = (tm + sn)/(st)$$
$$(a/s) (m/t) = (am)/(st)$$

Proposition 2.3. S^{-1} : $Mod_A \rightarrow Mod_{S^{-1}A}$ is a covariant exact functor.

2.1 Local properties

April 28, 2023

Notation. For a prime ideal \mathfrak{p} , we'll use $\Box_{\mathfrak{p}} := (A \setminus \mathfrak{p})^{-1} \Box$.

Proposition 2.4 ("Zeroness"). The following are equivalent:

(*i*) M = 0.

(ii) $M_{\mathfrak{p}} = 0$ for all prime ideals \mathfrak{p} .

(iii) $M_{\mathfrak{m}} = 0$ for all maximal ideals \mathfrak{m} of A.

Proposition 2.5 (Surjectivity or injectivity of A-module homomorphisms). Let $\phi: M \to N$ be an A-module homomorphism. Then the following are equivalent:

- (i) $\phi: M \to N$ is injective.
- (ii) $\phi_{\mathfrak{p}} \colon M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is injective for all prime ideals \mathfrak{p} .
- (iii) $\phi_{\mathfrak{m}} \colon M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is injective for all maximal ideals \mathfrak{m} of A. The above also holds if "injective" is replaced by "surjective" throughout.

Appendix A

Algebras and polynomials

1 Modules and algebras

January 9, 2023

Definition 1.1 (*R*-modules). Let *R* be a ring. Then a (left-)module over *R* is an abelian additive group *M* along with a scalar multiplication $R \times M \to M$ such that the following hold:

- (i) (r+s)m = rm + sm.
- (ii) r(m+n) = rm + rn.
- (iii) (rs)m = r(sm).
- (iv) If R has an identity, then $1_R m = m$.

Remark. Unless stated otherwise, a module will be a left-module.

Definition 1.2 (*R*-algebras). An *R*-algebra *A* is an *R*-module over a ring *R* along with a bilinear multiplication on \times on *M*, *i.e.*, the following hold:

- (i) $a \times (b+c) = a \times b + a \times c;$
- (ii) $(a+b) \times c = a \times c + b \times c$; and,
- (iii) $(ra) \times (sb) = (rs)(a \times b).$

A is said to be associative, commutative, or to have an identity according to the operation \times .

Definition 1.3 (Nice homomorphisms). A ring homomorphism $R \to S$ is said to be nice iff the image of the identity of R, if existent, is the identity in S.

Definition 1.4 (Homomorphism algebras). A nice ring homomorphism $R \to S$ is called an algebra iff the image of R is central in S.

We call it commutative or to be having an identity according to the ring S.

Theorem 1.5 (Interplay of Definitions 1.2 and 1.4).

(i) Let R be a ring with identity and A be an associative R-algebra with identity. Then the map $R \to A$ given by

$$r \mapsto r \mathbf{1}_A$$

is an algebra with identity.

(ii) Let $\phi: R \to S$ be a nice ring homomorphism. Then the scalar multiplication $R \times S \to S$ defined by

$$(r,s)\mapsto\phi(r)s$$

makes S an R-module, which is further an associative R-algebra if $\phi(R)$ is central in S.

Proposition 1.6. *Rings form* \mathbb{Z} *-algebras.*

Definition 1.7 (Module homomorphisms). Let M, N be modules over a ring R. Then a function $\phi: M \to N$ is called an R-linear map iff the following hold:

(i) $\phi(m_1 + m_2) = \phi(m_1) + \phi(m_2)$.

(ii)
$$\phi(rm) = r\phi(m)$$
.

Proposition 1.8 (Algebra of endomorphisms). Let M be an R-module and define

 $\mathcal{L}(M) := \{ linear \ R \text{-maps on } M \}.$

Then we can define the following operations on $\mathcal{L}(M)$:

$$\begin{aligned} (\phi + \psi)(m) &:= \phi(m) + \psi(m) \\ (\phi \psi)(m) &:= \phi(\psi(m)) \end{aligned}$$

Under these operations, $\mathcal{L}(M)$ forms a ring with identity.

Further, if R is commutative, then we can also define $R \times \mathcal{L}(M) \to \mathcal{L}(M)$ via

$$(r\phi)(m) := r\phi(m),$$

and under these operations $\mathcal{L}(M)$ forms an associative R-algebra with identity.

2 Polynomial rings

January 9, 2023

Definition 2.1 (Multi-index notation). Let $n \in \mathbb{N}$. Then on the set \mathbb{N}^n , we define the following:

$$(\alpha + \beta)_i := \alpha_i + \beta_i$$
$$0_i := 0$$
$$(n\alpha)_i := n\alpha_i$$

Proposition 2.2 ("Infinite-polynomial" rings with commuting indeterminates). Let R be a ring and $n \in \mathbb{N}$. The the addition and multiplication on $R^{\mathbb{N}^n}$ defined by

$$(f+g)_{\alpha} := f_{\alpha} + g_{\alpha}, and$$

 $(fg)_{\alpha} := \sum_{\mu+\nu=\alpha} f_{\mu} g_{\nu}$

make $R^{\mathbb{N}^n}$ a ring which is commutative (respectively, has identity) $\iff R$ is commutative (respectively, has identity).

Notation. For monomials: We set¹

$$(ax^{\alpha})_{\beta} := \begin{cases} a, & \beta = \alpha \\ 0, & \beta \neq \alpha \end{cases}$$

Remark. Only when R has identity can we view ax^{α} as a (more precisely, ax^{0}) times the monomial x^{α} (which is $1_{R}x^{\alpha}$).

Proposition 2.3 (Algebra of monomials). In $\mathbb{R}^{\mathbb{N}^n}$, the following hold:

$$ax^{\alpha} + bx^{\alpha} = (a+b)x^{\alpha}$$
$$(ax^{\alpha})(bx^{\beta}) = ab x^{\alpha+\beta}$$

Proposition 2.4 $(R \hookrightarrow R^{\mathbb{N}^n})$. Let R be a ring and $n \in \mathbb{N}$. Then $\phi: R \to R^{\mathbb{N}^n}$ defined by

$$(\phi(a))_{\alpha} := \begin{cases} a, & \alpha = 0\\ 0, & \alpha \neq 0 \end{cases}$$

is a nice embedding, rendering $R^{\mathbb{N}^n}$ an R-module too. If R is commutative, then ϕ becomes a commutative algebra.

¹We shouldn't use Kronecker delta since R needn't have identity.

Proposition 2.5 (Sufficient to study $\mathbb{R}^{\mathbb{N}^n}$'s). Let \mathbb{R} be a ring and $m, n \in \mathbb{N}$. Then as rings,

$$(R^{\mathbb{N}^m})^{\mathbb{N}^n} \cong R^{\mathbb{N}^{m+n}}.$$

In particular, the function $\psi \colon R^{\mathbb{N}^{n+1}} \to (R^{\mathbb{N}^n})^{\mathbb{N}}$ given by

$$(\psi(f)_i)_\alpha := f_{(\alpha,i)}$$

is a ring isomorphism.

Corollary 2.6 ($\mathbb{R}^{\mathbb{N}^n}$'s nest). Let \mathbb{R} be a ring, then we have the following embeddings:

$$R \hookrightarrow R^{\mathbb{N}} \hookrightarrow R^{\mathbb{N}^2} \hookrightarrow \cdots$$

Proposition 2.7 ((Finite-)polynomial rings with commuting coefficients). Let R be a ring and $n \in \mathbb{N}$. Then

$$\mathcal{P}(R,n) := \left\{ p \in R^{\mathbb{N}^n} : p^{-1}(R \setminus \{0\}) \text{ is finite} \right\}$$

is a subring of $\mathbb{R}^{\mathbb{N}^n}$ which is commutative (respectively, has identity) $\iff \mathbb{R}$ is commutative (respectively, has identity).

Also, we have that

$$\mathcal{P}(R,n) = \left\{ \sum_{\alpha \in S} a_{\alpha} \, x^{\alpha} : S \subseteq \mathbb{N}^n \text{ is finite and } \alpha \colon S \to R \right\}.$$

Proposition 2.8. Analogues of Propositions 2.4 and 2.5 hold: ϕ can be restricted to be on $R \to \mathcal{P}(R, n)$, and ψ to be on $\mathcal{P}(R, n+1) \to \mathcal{P}(\mathcal{P}(R, n), 1)$.

Under ψ , we have

$$\sum_{|\alpha| \le k} a_{\alpha} x^{\alpha} \mapsto \sum_{i=0}^{k} \left(\sum_{|\beta| \le k-i} a_{(\beta,i)} x^{\beta} \right) x_{n+1}^{i}.$$

We also have analogue of Corollary 2.6.

Lemma 2.9. Let R, S be rings. Then $f: \mathcal{P}(R, 1) \to S$ is a homomorphism \iff the following hold:

(i)
$$\phi(0) = 0.$$

(ii) $\phi(p + ax^i) = \phi(p) + \phi(ax^i).$
 $a \in \mathbb{N}^n, i \in \mathbb{N} \text{ and } (\alpha, i) \in \mathbb{N}^{n+1}.$

(*iii*) $\phi(ax^i bx^j) = \phi(ax^i) \phi(bx^j).$

Proposition 2.10 (Evaluations of polynomials). Let $\phi: R \to S$ be a function between rings with $\phi(0_R) = 0_S$. Let $s \in S^n$ for $n \ge 0$. Then there exists a unique function $\mathcal{P}(R, n) \to S$ such that³

$$\sum_{|\alpha| \le k} a_{\alpha} x^{\alpha} \mapsto \sum_{|\alpha| \le k} \phi(a_{\alpha}) s^{\alpha}$$

which is further a nice homomorphism if ϕ is an algebra.

Definition 2.11 (Image of evaluation). We denote the image of the evaluation defined in Proposition 2.10 by $\phi(R)[s]$, or by $\phi(R)[s_1, \ldots, s_n]$ if $s = (s_1, \ldots, s_n)$.

Remark. Note that $\phi(R)$ is in "hold-form" in the notation, but sometimes, it gets abused.

Proposition 2.12 (Extending $R \to S$ to $R[x] \to S[x]$). Let $\phi: R \to S$ be a function between rings such that $\phi(0_R) = 0_S$. Let $n \in \mathbb{N}$. Then there exists a unique function $\mathcal{P}(R, n) \to \mathcal{P}(S, n)$ such that

$$\sum_{|\alpha| \le n} a_{\alpha} x^{\alpha} \mapsto \sum_{|\alpha| \le n} \phi(a_{\alpha}) x^{\alpha}$$

which is further a (nice) homomorphism if ϕ is a (nice) homomorphism.

Remark. Proposition 2.12 has an immediate generalization to $\mathbb{R}^{\mathbb{N}} \to \mathbb{S}^{\mathbb{N}}$.

3 Field of rational functions

April 7, 2023

Definition 3.1 (Rational functions in *n* variables). Let *R* be an integral domain and $n \ge 0$. Then $\mathcal{P}(R, n)$ is also an integral domain, and we define

$$\mathcal{R}(R,n) := \operatorname{Frac}(\mathcal{P}(R,n)).$$

³The monomials of the right-hand-side are well-defined, even if some $\alpha_i = 0$, by considering $\phi(a_{\alpha})s^{\alpha}$ as a "single term", and not as the product of several terms, like we did for monomials. If S contains identity, then we can also interpret this as product of terms.

Proposition 3.2. For any integral domain R and $n \ge 0$, we have that

$$\mathcal{R}(R,n) \cong \mathcal{R}(\operatorname{Frac}(R),n).$$

Remark. This is just saying that: It doesn't matter whether the coefficients come from R or Frac(R). Thus, we can just assume R to be a field rather than an integral domain.

Definition 3.3 (Evaluations at rational functions). Let $\phi: F \to K$ be a field homomorphism.⁴ Then for $\alpha \in K^n$ $(n \ge 0)$, we define⁵

$$\phi(F)(\alpha) := \left\{ \frac{f(\alpha)}{g(\alpha)} : f, g \in \mathcal{P}(F, n) \text{ with } g(\alpha) \neq 0 \right\}.$$

Remark. We also denote $\phi(F)(\alpha)$ by $\phi(F)(\alpha_1, \ldots, \alpha_n)$ if $\alpha = (\alpha_1, \ldots, \alpha_n)$. Again, $\phi(F)$ must be "held".

Proposition 3.4. Continuing Definition 3.3, we have that that $\phi(F)(\alpha)$ is a subfield of K.

4 Adjoining elements to rings and fields

April 7, 2023

Definition 4.1 (Adjoining elements).

- (i) Let $\phi: R \to S$ be a ring homomorphism and $T \subseteq S$. Then by $\phi(R)[T]$, we denote the smallest subring of S containing $\phi(R)$ as well as T.
- (ii) Let $\psi: F \to K$ be a field homomorphism and $T \subseteq K$. Then we denote the smallest subfield of K containing $\psi(F)$ as well as T, by $\psi(F)(T)$.

Remark. Again, $\phi(R)$, $\psi(F)$, strictly speaking, are in "hold-form" in the notation, but this is sometimes abused.

⁴That is, a nice ring homomorphism.

⁵ " $f(\alpha)$ " and " $g(\alpha)$ " denote the images of f, g under the evaluation at α .

Corollary 4.2. Continuing Definition 4.1, we have

$$\phi(R)[T] = \bigcup_{\substack{T' \subseteq T \\ |T'| < \infty}} \phi(R)[T'], \text{ and}$$
$$\psi(F)(T) = \bigcup_{\substack{T' \subseteq T \\ |T'| < \infty}} \psi(F)(T').$$

Also, if $s_1, \ldots, s_n \in S$ and $\alpha_1, \ldots, \alpha_n \in K$ for $n \ge 0$, then we have

$$\phi(R)[\{s_1,\ldots,s_n\}] = \phi(R)[s_1,\ldots,s_n], and$$

$$\psi(F)(\{\alpha_1,\ldots,\alpha_n\}) = \psi(F)(\alpha_1,\ldots,\alpha_n)$$

$$\cong \operatorname{Frac}(\psi(F)[\alpha_1,\ldots,\alpha_n]).$$

Appendix B

Basic facts about rings

1 General

January 12, 2023

Proposition 1.1 (Prime ideals via multiplicative set). In a ring A a proper ideal \mathfrak{p} is prime $\iff A \setminus \mathfrak{p}$ is multiplicative.¹

Proposition 1.2. The correspondence of ideals in $A / \ker \phi$ and $\phi(A)$ preserves maximality and primality.

Proposition 1.3 (Operations on ideals). In a ring A, the following hold:

$$a + b = b + a \qquad a \cap b = b \cap a$$

$$(a + b) + c = a + (b + c) \qquad (a \cap b) \cap c = a \cap (b \cap c)$$

$$a + (0) = a \qquad a \cap A = a$$

$$a \cdot b = b \cdot a \qquad if A \text{ is commutative}$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

$$a \cdot (1) = a \qquad if 1 \in A$$

We also have

$$\sum_{i=1}^{n} \mathfrak{a}_{i} = \{a_{1} + \dots + a_{n} : a_{i} \in \mathfrak{a}_{i}\}, and$$
$$\odot_{i=1}^{n} \mathfrak{a}_{i} = \{\text{finite sums of terms of the form } a_{1} \cdots a_{n} \text{ where } a_{i} \in \mathfrak{a}_{i}\}.$$

¹That is, closed under the ring multiplication.

The former motivates to define arbitrary sums of ideals as

$$\sum_{i \in I} \mathfrak{a}_i := \{ \textit{finite sums of elements from } \mathfrak{a}_i \textit{'s} \}$$

which is indeed an ideal.

Proposition 1.4. For ideals, the following hold:

$$\begin{aligned} \mathfrak{a} \cdot (\mathfrak{b} + \mathfrak{c}) &= \mathfrak{a} \cdot \mathfrak{b} + \mathfrak{a} \cdot \mathfrak{c} \\ (\mathfrak{a} + \mathfrak{b}) \cdot (\mathfrak{a} \cap \mathfrak{b}) &\subseteq \mathfrak{a} \cdot \mathfrak{b} \\ \mathfrak{a} \cap \mathfrak{b} &= \mathfrak{a} \cdot \mathfrak{b} \text{ if } 1 \in A \text{ and } \mathfrak{a} + \mathfrak{b} = (1) \end{aligned}$$

Proposition 1.5. Let A be a ring and R, S be its additive subgroups. Then the following are equivalent:

- (i) Every $x \in R + S$ has a unique decomposition.
- (*ii*) $R \cap S = \{0\}.$
- (iii) 0 has a unique decomposition.

Definition 1.6 (Independence of additive subgroups). We call such subgroups as R, S above as independent. Further, if A = R + S, then we also write

 $A = R \oplus S.$

Appendix C Ideas from field theory

Convention. In this appendix, F, K, L will denote generic fields.

1 Algebraic independence

April 24, 2023

Definition 1.1 (Algebraic independence). Let $\phi: F \to K$ be an extension. Then a subset $S \subseteq K$ is called algebraically independent with respect to ϕ iff for all $\beta_1, \ldots, \beta_n \in K$ for $n \ge 0$, we have that the kernel of the evaluation $F[x_1, \ldots, x_n] \to K$ at $(\beta_1, \ldots, \beta_n)$ via ϕ is 0.¹

Corollary 1.2.

- (i) We have the obvious characterization of algebraically independence if S is finite.
- (ii) Subsets of algebraically independent sets are algebraically independent.

Lemma 1.3 (Extending an algebraically independent set by one element). Let $\phi: F \to K$ be an extension and $S \subseteq K$ be algebraically independent. Let $\beta \in K$ be transcendental with respect to the inclusion $\phi(F)(S) \hookrightarrow K$. Then $S \cup \{\beta\}$ is algebraically independent with respect to ϕ .

Proposition 1.4 (Maximal algebraically independent subset). Let $\phi: F \to K$ be an extension and $S \subseteq K$. Then there exists a maximal subset $\tilde{S} \subseteq S$ such that

(i) \tilde{S} is algebraically independent with respect to ϕ ; and,

(ii) each element of $S \setminus \tilde{S}$ is algebraic with respect to $\phi(F)(\tilde{S}) \hookrightarrow K$.

¹That is, $F[x_1, \ldots, x_n] \to \phi(F)[\beta_1, \ldots, \beta_n]$ is an isomorphism.

2 Algebraically closed fields

April 24, 2023

Definition 2.1 (Algebraically closed fields). A field F is called so iff every nonconstant polynomial in F[x] has a root in F.

Corollary 2.2. The following are equivalent:

- (i) F is algebraically closed.
- (ii) The irreducibles of F[x] are precisely $x \alpha$ for $\alpha \in F$.
- (*iii*) MaxSpec(F[x]) = { $(x \alpha) : \alpha \in F$ }.²

Lemma 2.3. Let $\phi: F \to K$ be a field extension with F being algebraically closed. Then $\phi(F)$ is an algebraically closed subfield of K.

Proposition 2.4 (No proper algebraic extensions of algebraically closed fields possible). Let $\phi: F \to K$ be a field extension with F being algebraically closed. Then ϕ is an isomorphism.

²We have unit in F, so we can use x for $1_F x^1$.