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Chapter 1

Normed linear spaces

February 1, 2022

Remark 1.0.1. We’ll let K stand for either R or C (viewed as fields). We’ll
use F for a general field.

Definition 1.0.2 (Normed linear spaces). Let V be a vector space over K.
A norm on V is a function ∥·∥ : V → [0,∞) such that for any x, y ∈ V and
any scalar α, we have

(a) ∥x∥ = 0 ⇐⇒ x = 0,
(b) ∥αx∥ = |α|∥x∥, and
(c) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Remark 1.0.3. Prove Minkowski inequality!

Proposition 1.0.4 (Norms on Kn). Let n ≥ 1 and p ∈ [1,∞). Then the
following are norms on Kn over K with the usual vector addition and scalar
multiplication.

(a) (lp-norms).

∥x∥p :=

(
n∑

i=1

|xi|p
)1/p

(b) (max norm).
∥x∥max := max

1≤i≤n
|xi|

Remark 1.0.5. For n = 1, all the above norms coincide with the absolute
value norm. Hence, no need to discuss that.
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CHAPTER 1. NORMED LINEAR SPACES 5

Proposition 1.0.6 (Norms on infinite dimensional vector spaces). Let p ∈
[1,∞). In all of the following cases, the defined set will be a vector space
over K under the usual operations of addition and scalar multiplication for
sequences in K, and the defined function will be a norm over it.

(a) (For direct sums of copies of K). Let I be a nonempty set and

V :=
{
x ∈ KI : xi ̸= 0 for only finitely many i’s in I

}
.

Define ∥·∥p, ∥·∥∞ : V → [0,∞) as

∥x∥p :=
(∑

i∈I

|xi|p
)1/p

,

∥x∥∞ := sup
i∈I

∥xi∥.

(b) (For lp spaces). Let

lp :=

{
x ∈ KN :

∞∑
i=1

|xi|p < ∞
}

and define ∥·∥p : lp → [0,∞) as

∥x∥p :=
( ∞∑

i=1

|xi|p
)1/p

.

(c) (For l∞ space). Let

l∞ :=

{
x ∈ KN : sup

i∈N
|xi| < ∞

}
and define ∥x∥∞ : l∞ → [0, 1) as

∥x∥∞ := sup
i∈N

|xi|.

Proposition 1.0.7 (Subspaces of normed linear spaces). Let V be a normed
linear space and W be a subspace of V . Then W is also a normed linear
space with the inherited norm.
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Remark 1.0.8. The restriction of the norms in Proposition 1.0.6 to the
copies of Kn inside them agrees with the corresponding norms in Proposition
1.0.4. Hence, we’ll call the l∞-norm to mean the appropriate norm when
talking of Kn or KI or l∞. Similarly, we’ll call lp norm for Kn or KI or lp.

Proposition 1.0.9 (Inclusions of lp spaces). Let 1 ≤ p < q ≤ ∞. Then
lp ⊊ lq.

Remark 1.0.10. For proper inclusion, consider the sequence (1/ns)∞n=1 for
any appropriate value of s.

Remark 1.0.11. For any n ≥ 1, the unit discs for lp-norm in Kn approach
the unit disc for the l∞-norm as p → ∞. Does this hold for lp spaces as
well?

Proposition 1.0.12 (Inclusion of lp discs). Let n ≥ 2 and 1 ≤ p < q ≤ ∞.
Let Dp and Dq stand for the corresponding unit discs for the respective norms
in Kn. Then Dp ⊊ Dq ⇐⇒ p < q.

Remark 1.0.13. For proper inclusions, consider (a, · · · , a) for an appropri-
ate a ∈ K.

Corollary 1.0.14. Let n ≥ 1 and 1 ≤ p, q ≤ ∞. Then the following are
equivalent:

(a) p < q.
(b) ∥x∥q ≤ ∥x∥p for all x ∈ Kn.

Proposition 1.0.15 (Inequality between lp-norms). Let n ≥ 1 and x ∈ Kn.
Let p ∈ [1,∞). Then

∥x∥∞ ≤ ∥x∥p ≤ n1/p∥x∥∞.

1.1 Commutative algebras over K
February 2, 2022

Definition 1.1.1 (Commutative algebras over F). Let F be a field and A be
a set equipped with operations of addition and multiplication from A×A to
A such that (x, y) 7→ x + y, xy and a scalar multiplication from F× A to A
such that (α, x) 7→ αx. Then A is a commutative algebra over F iff
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(a) A is a vector space over K with addition and scalar multiplication,
(b) A is a commutative ring with unity with addition and multiplication,

and
(c) α(xy) = (αx)y for all α ∈ F and all x, y ∈ A.

Proposition 1.1.2 (Commutative algebra of functions into a field). Let X
be a set and F a field. Then KX is a commutative algebra over F with the
usual pointwise addition and multiplication of functions, and the usual scalar
multiplication.

Definition 1.1.3 (Subalgebras). Let A be a commutative algebra over a
field F, and S ⊆ A. Then S is a subalgebra of A iff it is closed under the
operations algebra operations on A, and it forms a commutative algebra over
F with the inherited operations.

Lemma 1.1.4. Let A be a commutative algebra over a field F and S ⊆ A.
Then S is a subalgebra of A ⇐⇒ it is closed under the algebra operations
on A, and if S contains the identity of multiplication on A.

Proposition 1.1.5 (Polynomials as subalgebra). Let F be a field and n ≥ 1.
Then under the usual pointwise operations, F[x1, . . . , xn] is a subalgebra of
K(Kn).

Definition 1.1.6 (Normed algebras). Let A be a commutative algebra over
K and ∥·∥ be a norm on A as a vector space over K. Then ∥·∥ is a norm on
the A as an algebra iff ∥xy∥ ≤ ∥x∥∥y∥ for all x, y ∈ A.

Proposition 1.1.7 (B(X,K) as a normed algebra). Let X be a set and let
B(X,K) be the set of bounded functions from X to K. Then (B,K) is a
subalgebra of KX over K.

Define ∥·∥∞ : B(X,K)×B(X,K) → [0,∞) as

∥f∥∞ := sup{|f(x)| : x ∈ X}.

This makes B(X,K) a normed algebra.

Proposition 1.1.8 (Convergence in ∥·∥∞). Let X be a set and consider
B(X,K) as the usual normed algebra. Then the convergence (with respect to
the induced metric) of a sequence of functions in B(X,K) is equivalent to
their usual uniform convergence.1

1For uniform convergence, we don’t need X to be a metric space.
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Proposition 1.1.9 ( Prove this! ). Let X be a set. Consider B(X,K) as
the usual normed algebra. Then it is complete.2

Further, if X is a metric space,3 then the subset C(X,K) of B(X,K)
containing all the continuous functions in B(X,K), is a normed subalgebra
(with the inherited norm), and it is complete.

2Every Cauchy sequence (with respect to the induced metric) is convergent.
3This is needed to talk of continuous functions.



Chapter 2

Metric spaces

February 2, 2022

Definition 2.0.1 (Metric spaces). Let X be a set. Then a metric on X is a
function d : X ×X → [0,∞) such that for any x, y, z ∈ X, we have

(a) d(x, y) = 0 ⇐⇒ x = y.
(b) d(x, y) = d(y, x).
(c) d(x, z) ≤ d(x, y) + d(y, z).

Proposition 2.0.2 (Subsets of a metric space). Let X be a metric space and
Y ⊆ X. Then Y is also a metric space with the inherited metric.

Definition 2.0.3 (Balls in a metric space). Let (X, d) be a metric space.
Let x ∈ X and r ∈ (0,∞). Then Br(x) := {y ∈ X : d(y, x) < r} is an open
ball (or just a ball), Dr(x) := {y ∈ X : d(y, x) ≤ r} is a closed ball (or a
disc) and Sr(x) := {y ∈ X : d(y, x) = r} is a sphere.

Proposition 2.0.4 (Metric associated with a norm / Linear metric). Let V
be a vector space over K with a norm ∥·∥ on it. Define d : V × V → [0,∞)
as

d(x, y) := ∥x− y∥.

Then d is a metric on X. This metric further satisfies the following for any
x, y, z ∈ V and any scalar α:

(a) d(x+ z, y + z) = d(x, y).
(b) d(αx, αy) = |α|d(x, y).

9
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Proposition 2.0.5 (Discrete metric). Let X be a set and define δ : X×X →
[0,∞) as

δ(x, y) =

{
0, x = y

1, x ̸= y
.

Then δ is a metric on X.

Lemma 2.0.6. Let z1, z2, z3 ∈ C. Then
(a) (1 + |z1|2)(1 + |z2|2) ≥ |1 + z1z2|2, and
(b) (z1 − z2)(1 + |z1|2) = (z1 − z3)(1 + z2z3) + (z3 − z2)(1 + z1z3).

Proposition 2.0.7 (Chord metric on C). Define dc : C× C → [0,∞) as

dc(z1, z2) :=
2|z1 − z2|√

(1 + |z1|2)(1 + |z2|2)
.

Then dc is a metric on C.

Proposition 2.0.8 (Submetric space). Let (X, d) be a metric space and
Y ⊆ X. Then the restriction of d on Y × Y is a metric on Y .

2.1 Continuous functions and convergence in

metric spaces

February 2, 2022

Definition 2.1.1 (Continuous functions on metric spaces). Let (X1, d1) and
(X2, d2) be metric spaces, f : X1 → X2 and x ∈ X1. Then f is called
continuous at x iff for every ε > 0, there exists a δ > 0 such that for all
y ∈ X, we have

d1(y, x) < δ =⇒ d2(f(y), f(x)) < ε.

We call f to be continuous iff f is continuous at all x ∈ X1.

Definition 2.1.2 (Cauchy sequences). Let (X, d) be a metric space and
(xi)

∞
i=i be a sequence in X. Then it is said to be Cauchy iff for every ε > 0,

there exists an N ≥ 1 such that for every i, j ≥ N , we have that d(xi, xj) < ε.
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Definition 2.1.3 (Convergence of sequences). Let (X, d) be a metric space
and x ∈ X. Let n ∈ Z and (yi)

∞
i=n be a sequence in X. Then (yi)

∞
i=n is said

to converge to x in (X, d), written yi → x, iff for every ε > 0, there exists an
N ≥ n such that for all n ≥ N , we have d(yn, x) < ε.

Further, a sequence (yi)
∞
i=n is said to be convergent, iff it converges to

some x ∈ X.

Definition 2.1.4 (Complete metric spaces). A metric space is called com-
plete iff every Cauchy sequence is convergent.

Corollary 2.1.5.

(a) The convergent sequences converge to a unique limit.
(b) Convergent sequences are Cauchy.

Proposition 2.1.6 (Continuity equivalent to sequential continuity). Let X1,
X2 be metric spaces, f : X1 → X2 and x ∈ X1. Then f is continuous at x
⇐⇒ for any sequence (yi)

∞
i=1, we have that

yi → x =⇒ f(yi) → f(x).

Remark 2.1.7. Continuous functions in general don’t preserve Cauchy-
ness. Consider f : (0, 1) → R given by x 7→ 1/x and consider the sequence
(1/n)∞n=1.

Theorem 2.1.8 (Composition of continuous functions). Let X1, X2, X3 be
metric spaces. Let f : X1 → X2 be continuous at x ∈ X1 and g : X2 → X3 be
continuous at f(x) ∈ X2. Then g ◦ f : X1 → X3 is continuous at x.

2.2 Uniform continuity

February 2, 2022

Definition 2.2.1 (Uniform continuity). Let (X1, d1), (X2, d2) be metric
spaces and f : X1 → X2. Then f is uniformly continuous iff for every ε > 0,
there exists a δ > 0 such that for all x, y ∈ X1, we have that

d1(x, y) < δ =⇒ d2(f(x), f(y)) < ε.

Corollary 2.2.2. Uniform continuity implies continuity for any function
between metric spaces, and hence it preserves convergence.
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Proposition 2.2.3. Uniformly continuous functions preserve Cauchy-ness.

Theorem 2.2.4 ( Prove this! ). Any real valued continuous function from a
closed interval in R is uniformly continuous.

Proposition 2.2.5 (Examples/non-exmaples of uniformly continuous func-
tions).

(a) x 7→ x2 is not uniformly continuous on R, and neither is x 7→ ex on R.
But they are uniformly continuous on any closed interval of R.

(b) Let (X, d) be a metric space and A be a nonempty subset of X. Define
dA : X → R as

dA(x) := inf{d(x, a) : a ∈ A}.
Then dA is uniformly continuous (with the usual metric on R).

2.3 Equivalences in metric spaces

February 5, 2022

Definition 2.3.1 (Similarities and isometries). Let (Xi, di) be metric spaces
for i = 1, 2 and f : X1 → X2 be a bijection. Then f is called

(a) a similarity iff there exist c1, c2 > 0 such that for any x, y ∈ X1, we
have

c1d1(x, y) ≤ d2(f(x), f(y)) ≤ c2d1(x, y), and

(b) an isometry iff for all x, y ∈ X1, we have

d2(f(x), f(y)) = d1(x, y).

Further, if such an f exists, we call the spaces similar, or respectively,
isometric.

Proposition 2.3.2. All the above relations are equivalences on any set of
metric spaces.

Corollary 2.3.3. An isometry between two metric spaces is a similarity.

Corollary 2.3.4. The restrictions of similarities and isometries are similar-
ities and isometries respectively.

Proposition 2.3.5. A similarity between two metric spaces is uniformly
continuous.
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Corollary 2.3.6. Similarities preserve Cauchy-ness and convergence of se-
quences.

Definition 2.3.7 (Diameters of metric spaces). Let (X, d) be a metric space.
Then we define

δ(X) := sup{d(x, y) : x, y ∈ X}.

The metric is called bounded iff δ < +∞.

Corollary 2.3.8 (Diameter is an isometry-invariant). The diameters of iso-
metric spaces are the same.

Proposition 2.3.9 (Similarity ≠⇒ isometry). Let (X, d) be a bounded met-
ric space such that X has at least two elements. Define d′ : X ×X → [0,∞)
as

d′(x, y) := 2d(x, y).

Then d′ is a metric on X. Now, the identity map on X is a similarity from
(X, d) to (X, d′). However, (X, d) and (X, d′) are not isometric.

Remark 2.3.10. This will not work for unbounded metric spaces like a
normed vector space on K. But we can still find bounded submetric spaces
of V (like the unit sphere) and do something like above. But this says nothing
about V , just about a bounded subset of it.

Proposition 2.3.11 (Metrics on finite product spaces). Let (Xi, di)’s be
metric spaces for i = 1, . . . , n. Let p ∈ [1,∞) and X :=

∏n
i=1 Xi. Then we

can define Dp, D∞ : X ×X → [0,∞) as

Dp(x, y) :=
( n∑

i=1

di(xi, yi)
p
)1/p

and,

D∞(x, y) := max
1≤i≤n

di(xi, yi).

Then

(a) Dp and D∞ are metrics on X,
(b) identity function is a similarity between (X,Dp) and (X,D∞), and

(c) x(i) → x in X (under Dp or D∞) ⇐⇒ x
(i)
j

i→ xj (in (Xi, di)) for all
j = 1, . . . , n; hence the following are equivalent:

(i) (X,Dp) is complete.
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(ii) (X,D∞) is complete.
(iii) Each of the (Xi, di)’s are complete.

Corollary 2.3.12. All the lp-metrics are similar (identity function being a
similarity) on Kn.

Proposition 2.3.13 (Convergence in lp norms for Kn). In Kn, vn → v with
respect to the metric induced by the lp-norm ⇐⇒ vn → v with respect to the
metric induced by the l∞-norm.

Proposition 2.3.14 (Isometry of l1-, l2-, l∞-metrics on R2). (x, y) 7→ (x +
y, x− y) is an isometry from R2 under l1-metric to R2 under l∞-metric. (In
fact, it preserves ) However, the l2-metric is not isometric to either of l1- or
l∞-metrics on R2. Prove the latter rigorously!

Remark 2.3.15. Prove this! All norms on finite dimensional Kn over K
are equivalent.

2.4 Some examples

February 2, 2022

Proposition 2.4.1 (Norms are continuous). A norm on a vector space V
over K is continuous, under the metric induced by the norm on V and the
usual metric on [0,∞).

Proposition 2.4.2 (Metrics are continuous). Let (X, d) be a metric space
and x0 ∈ X. Then the function x 7→ d(x, x0) is continuous, under the usual
metric on [0,∞).

Remark 2.4.3. We’ll denote sequences in Kn as
(
u(i)
)∞
i=1

, where u(i) =

(u
(i)
1 , . . . , u

(i)
n ), for any n ≥ 1.

In this subsection, we’ll consider Kn with the linear metric of the lp-norm
for a fixed p ∈ [1,∞). Remember that all lp-norms coincide for K.

Theorem 2.4.4 (Convergence of sequences in Kn). Let n ≥ 1 and
(
u(i)
)∞
i=1

be a sequence in Kn and v ∈ Kn. Then u(i) i→ v ⇐⇒ u
(i)
j

j→ vi for all
1 ≤ i ≤ n.

Corollary 2.4.5 (Projections are continuous). Let n ≥ 1 and 1 ≤ i ≤ n.
Then the function πi : Kn → K defined by πi(u) := ui is continuous.
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Corollary 2.4.6 (Continuity of functions in terms of projections). Let (X, d)
be a metric space and f : X → Kn for n ≥ 1. Let x ∈ X. Then f is
continuous at x ⇐⇒ πi ◦ f : X → K is continuous at x for all 1 ≤ i ≤ m.

Theorem 2.4.7 (Sums and products of convergent sequences in K). Let
ui → a and vi → b in K. Then ui + vi → a+ b and uivi → ab in K.

Corollary 2.4.8 (Sums and products of continuous functions on K). Let
f, g : K → K be continuous at x ∈ K. Then f+g and fg (defined by pointwise
operations) are continuous at x.

Corollary 2.4.9 (Addition and scalar multiplication are continuous). Let
n ≥ 1. Then the usual vector space operations of addition and scalar mul-
tiplication on Kn (over K) are continuous, upon identifying Km × Kk with
Km+k (for which we have fixed the metric) for any m, k ≥ 1.

Corollary 2.4.10 (Polynomials are continuous). Let n ≥ 1 and d ≥ 0.
Then, with multi-index notation, for any cα’s, we have that the polynomial
function p : Kn → K defined by p(x) :=

∑
α≥0:|α|≤d cαx

α is continuous.

Proposition 2.4.11 (Some complete metric spaces). The following are com-
plete metric spaces:

(a) K under the usual metric.
(b) Kn under the lp metric for any n ≥ 1 and any p ∈ [0,∞].
(c) B(X;K) with the usual metric.

2.5 Completion of metric spaces

March 1, 2022

Definition 2.5.1 (Pseudo-metric). A pseudo-metric d on X obeys all the
conditions of being a metric except that d(x, y) can be 0 even when x ̸= y.

Proposition 2.5.2. A pseudo-metric is a metric ⇐⇒ every singleton is
closed in the pseudo-metric topology.

Proposition 2.5.3 (Metric from a pseudo-metric). Let (X, d) be a pseudo-
metric space. Then the relation ∼ on defined by x ∼ y iff d(x, y) = 0 is an
equivalence relation. Further, there exists a metric d̂ : X ×X → [0,∞) such
that

d̂([x], [y]) = d(x, y).
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Proposition 2.5.4 (Completion of metric spaces). Let (X, d) be a metric
space. Let X̃ be the set of all Cauchy sequences in X (starting at some fixed
index). We can define a d̃ : X̃ × X̃ → [0,∞) as

d̃
(
(xi)i, (yi)i

)
:= lim

i→∞
d(xi, yi).

Then d̃ is a pseudo-metric on X̃. We now define (X̂, d̂) to be the metric
space induced by the pseudo-metric space (X̃, d̃) as in Proposition 2.5.3.

Then the (X̂, d̂) is complete and the function η : X → X̂ defined by

η(x) := [(x, x, . . .)]

satisfies the following:

(a) η is a distance-preserving embedding.
(b) Every open ball in X̂ intersects with η[X].
(c) X is complete =⇒ η is an isometry.

2.6 Topology of metric spaces

February 2, 2022

Lemma 2.6.1. Union of unions can be written as a union.

Lemma 2.6.2. The intersection of two open balls in a metric space is a
union of open balls.



Part II

Topological spaces
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Chapter 3

Main definitions

February 2, 2022

Definition 3.0.1 (Topological spaces). Let X be a set and T ⊆ 2X . Then
T is a topology on X iff the following hold:

(a) X ∈ T .
(b) T is closed under arbitrary unions.
(c) T is closed under pairwise intersections.

We that (X, T ) is a topological space. We call the elements of T open sets,
we call subsets of X whose complement (with respect to X) is open, closed.

Further, let x ∈ X and A be a subset of X. Then A is called a neigh-
borhood of x iff there exists an open U such that x ∈ U ⊆ A. We call A an
open neighborhood of x if A is open also.

Remark 3.0.2. For finite T , closure under pairwise unions is sufficient for
(b).

Proposition 3.0.3 (Alternate definition of topology). Let X be a set and
T ,F ⊆ 2X such that F = {X \ U : U ∈ T }. Then T is a topology on X
⇐⇒ each of the following hold:

(a) ∅, X ∈ F .
(b) F is closed under pairwise unions.
(c) F is closed under arbitrary nonempty intersections.

Proposition 3.0.4 (Characterizing open and closed sets). Let A be a subset
of a topological space X. Then

18
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(a) A is open ⇐⇒ every point in A has an open neighborhood conatined
in A, and

(b) A is closed ⇐⇒ every point contained in all of the closed sets con-
taining A, is in A.



Chapter 4

Bases and subbases

February 4, 2022

Theorem 4.0.1 (Intersection of topologies). Let {Ti}i∈I be a family of topolo-
gies on a set X. Then

⋂
i∈I Ti is also a topology on X.

Definition 4.0.2 (Topology generated by a set). Let X be a set and S ⊆ X.
Then we call the smallest topology on X containing S the topology generated
by S and denote it by TS.

Corollary 4.0.3. Let X be a set. Let A,B ⊆ 2X and T be a topology on X.
Then

(a) A ⊆ B =⇒ TA ⊆ TB, and
(b) A ⊆ T =⇒ TA ⊆ T .

Definition 4.0.4 (Cover of a set). Let X be a set. Then U ⊆ 2X is a cover
of X iff X =

⋃
U .

Definition 4.0.5 (Bases for topologies). Let X be a set. Then B ⊆ 2X is
called a base for a topology on X iff

(a) B is a cover for X, and
(b) for every B1, B2 ∈ B and for every x ∈ B1 ∩ B2, there exists a B3 ∈ B

such that x ∈ B3 ⊆ B1 ∩B2.

If B is a base for a topology on X, and T is a topology on X, then we say
that B is a base for T iff T = TB.

Theorem 4.0.6 (Characterization of the topology generated by a base). Let
X be a set. Let B ⊆ 2X and T be a topology on X. Then the following are
equivalent:

20
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(a) B is a base for T .
(b) B ⊆ T and T =

{
arbitrary unions of subfamilies of B

}
.

(c) B ⊆ T and for every U ∈ T and every x ∈ U , there exists a B ∈ B
such that x ∈ B ⊆ U .

Definition 4.0.7 (Subbases). Any set of subsets of X is called its subbase.

Remark 4.0.8. Every base is a subbase, but not conversely: Consider S :=
{(−∞, a) : a ∈ R}∪{(a,+∞) : a ∈ R} for R. (This is a base for the standard
topology on R defined later.)

Theorem 4.0.9 (Characterization of the topology generated by a subbase).
Let X be a set. Let S ⊆ 2X and T be a topology on X. Let

BS :=
{
finite nonempty intersections of subfamilies of S

}
∪
{
X
}
.

Then

(a) BS is a base for TS ,
(b) BS is closed under finite intersections,
(c) TS =

{
arbitrary unions of finite nonempty intersections of subfamilies

of S ∪ {X}
}
, and

(d) if S is closed under finite nonempty intersections, then BS = S ∪ {X}.

Remark 4.0.10. Not all bases are closed under finite intersections: Consider
the base of balls in general metric spaces.

Corollary 4.0.11. Any topology is a base as well as a subbase for itself.

Definition 4.0.12 (Base of a set). Let X be a set and B ⊆ 2X . Then B is
a base of X iff

(a)
⋃

B = X, and
(b) for any B1, B2 ∈ B, we have that B1 ∩B2 =

⋃
C for some C ⊆ B.

Remark 4.0.13. (b) above is equivalent to this: For any B1, B2 ∈ B and
any x ∈ B1 ∩B2, there exists a C ∈ B such that x ∈ C ⊆ B1 ∩B2.

Proposition 4.0.14 (Topology generated by a base). Let X be a set and B
be a base for X. Let T be the set of all unions of subsets of B. Then T is a
topology on X.
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Proposition 4.0.15 (Some bases).

(a) The set of singletons of a set X generate the discrete topology (X, 2X).
(b) The set of open balls of a metric space generate the metric topology.
(c) The following subsets of R:{

[a, b) : a, b ∈ R
}
,

B ∪ {U \K : U ∈ B},

where B := {(a, b) : a, b ∈ R} and K := {1/n : n ≥ 1} generate the
lower-limit and K-topologies.

Remark 4.0.16. For this section, we’ll use these notations for the topologies
on R: Tstd for the usual metric topology, Tl for the lower-limit topology, and
TK for the K-topology.

Remark 4.0.17. Unless stated otherwise, take R equipped with the stan-
dard (also called usual) topology.

Proposition 4.0.18 (Is B a base for (X, T )?). Let (X, T ) be a topological
space. Let B ⊆ T such that for each U ∈ T and for each x ∈ U , there exists
a B ∈ B such that x ∈ B ⊆ U . Then B is a base for X which generates the
topology T on X.

Definition 4.0.19 (Subbases). Let X be a set and S ⊆ 2X . Then S is a
subbase for X iff

⋃
S = X.

Proposition 4.0.20 (Subbases generate bases). Let S be a subbase for a set
X and let B be the set of all nonempty finite intersections in S. Then B is
a base for X.

Corollary 4.0.21. For a set X, let S be a subbase, B be a base and T be a
topology. Then

(a) S ⊆ B =⇒ the topology generated by S is coarser than the topology
generated by B, and

(b) S ⊆ T =⇒ the topology generated by S is coarser than T .
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Comparing Tstd, Tl and TK

Definition 5.0.1 (Finer and coarser topologies). Let T , T ′ be topologies on
a set X. Then T is called finer than T ′ iff T ⊇ T ′, and is called strictly finer
iff T ⊋ T . Similarly for coarser.

We call them incomparable iff neither is a subset of the other.

Corollary 5.0.2. Let B, B′ be bases for a set X. Then B ⊆ B′ =⇒ the
topology generated by B is coarser than that generated by B′.

Proposition 5.0.3 (Comparing topologies). Let T and T ′ be topologies on
X generated by bases B and B′. Then the following are equivalent:

(a) T is finer than T ′.
(b) T ⊇ B′.
(c) For any x ∈ X and any B′ ∈ B′, there exists a B ∈ B such that

x ∈ B ⊆ B′.

Remark 5.0.4. Prove this! The topologies generated by the open balls of
l2- and l∞-norms on R2 are same.

Proposition 5.0.5 (Comparing Tstd, Tl, TK). On R, we have that Tl and TK

are both strictly finer that Tstd, whereas Tl and TK are incomparable.
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More examples of topological
spaces

February 2, 2022

Proposition 6.0.1 (Discrete and indiscrete topologies). Let X be a set.
Then 2X and {∅, X} are topologies on X. Further, the discrete metric on
any set induces the discrete topology.

6.1 Metric topology

Proposition 6.1.1 (Metric and pseudo-metric topologies). Balls of any
(pseudo-)metric space form a base for a topology, called the (pseudo-)metric
topology.

Definition 6.1.2 (Metrizable topologies). A topological space for which
there exists a metric which induces that topology, is called metrizable. Oth-
erwise, it’s called non-metrizable.

Proposition 6.1.3. The discrete metric on any set induces the discrete
topology.

Proposition 6.1.4. Any metric on a finite set induces the discrete topology.

Corollary 6.1.5. Any topology other than the discrete topology on a finite
set having at least two elements is non-metrizable.
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6.2 Sierpiński topology

Definition 6.2.1 (Sierpiński point). Let (X, T ) be a topological space. Then
x ∈ X is called a Sierpiński point for that space iff the only open set con-
taining x is X.

Proposition 6.2.2 (Sierpiński topology). Let X := {0, 1} and S := {∅, {0}, X}.
Then (X,S) is a topology with 1 being the Sierpiński point.

Remark 6.2.3. Prove that any topological space is completely determined by
the set of continuous functions from it to S.

Proposition 6.2.4 (Sierpińskification). Let (X, T ) be a topological space
and ⋆ /∈ X. Then T ∪ {X ∪ {⋆}} is a topology on X ∪ {⋆} with ⋆ being a
Sierpiński point.

6.3 coF and coC
Proposition 6.3.1 (Co-finite and co-countable topologies). Let X be a set
and let

T := {A ⊆ X : X \ A is finite} ∪ {∅}.
Then T is a topology on X which coincides with the discrete topology if X is
a finite set.

The same holds if finite is replaced with countable.
Further, we have the following two sets of equivalences:

(a) (i) Co-finite and co-countable topologies on X coincide.
(ii) X is finite.
(iii) Co-finite, co-countable and discrete topologies on X coincide.

(b) (i) Co-countable and discrete topologies on X coincide.
(ii) X is countable.

Proposition 6.3.2 (A characterization of co-finite topology). The co-finite
topology on a set X is the smallest topology such that for every x ∈ X, the
intersection of all the open neighborhoods of x is exactly {x}.

The co-countable topology also satisfies this property.

Proposition 6.3.3 (A generator for co-finite topology). Let X be a set.
Then the cover set

{X \ {x} : x ∈ X}
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generates the co-finite topology on X.
Further, for any n ≥ 1, the cover set

{U ⊆ X : |X \ U | = n}

also generates the co-finite topology on X.

6.4 Order topology

Definition 6.4.1 (Open intervals and open rays). Let ≤ be a total order on
a set X. Let x, y ∈ X. Then we set

(a) (x, y) := {z ∈ X : x < z < y},
(b) (x,+∞) := {z ∈ X : z > x}, and
(c) (−∞, x) := {z ∈ X : z < x}.

Proposition 6.4.2 (Order topology). Let ≤ be a total order on a non-
singleton set X and T be the set of arbitrary unions of open rays or open
intervals in X. Then (X, T ) is a topological space.

Proposition 6.4.3 (Total orders which contain Q). Let ≤ be a total order
on a set X having at least two elements such that for any x, y ∈ X, there
exists a z ∈ X such that x < z < y. Then there exist a, b ∈ X such that
(a, b) (with the inherited order) is similar to Q (with usual order on it).

6.5 Topologies on R
Remark 6.5.1. The metric topology induced by the usual metric on R is
called the usual or the standard topology on R.

Proposition 6.5.2. Order topology on R coincides with the usual metric
topology on it.

Proposition 6.5.3 (LR and RR topologies). On R,

{(−∞, a) : a ∈ R}, and
{(a,+∞) : a ∈ R}

are subbases for the left and right ray topologies, and are not bases. Adjoining
them with {∅,R} gives the topologies. These are strictly coarser than the
standard topology.
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Proposition 6.5.4 (Semi-interval topology). On R,{
[a, b) : a, b ∈ R, a < b

}
forms a base for a topology that is strictly finer than the usual topology.

6.6 Subspace topology

March 15, 2022

Proposition 6.6.1 (Subspace topology). Let (X, T ) be a topological space
and Y ⊆ X. Then

{U ∩ Y : U ∈ T }

is a topology on Y .

Remark 6.6.2. We’ll usually denote this by T |Y .

Corollary 6.6.3 (Transitivity of subspace topologies). Let (X, T ) be a topo-
logical space and Z ⊆ Y ⊆ Z. Then

T |Z = (T |Y )
∣∣
Z
.

Remark 6.6.4. Unless stated otherwise, consider the subset of a topological
space as equipped with the subspace topology.

Also, we’ll talk of “closed” or “open subspaces of a topological space to
mean that the subsets taken by themselves are open or closed in the parent
topology.

Corollary 6.6.5. Open (respectively closed) sets of open (respectively closed)
subspaces are open (respectively closed) in the parent topology.

Proposition 6.6.6 (Characterizing subspace topology by closed sets). Let
X be a topological space and Y ⊆ X. Then the closed sets in Y are precisely

{K ∩ Y : K is closed in X}.

February 3, 2022
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Proposition 6.6.7 (Subspace topology). Let (X, T ) be a topological space
and S ⊆ X. Define

T ′ := {S ∩ U : U ∈ T }.

Then the (S, T ′) is a topology.

Remark 6.6.8. When talking about subsets of a topological space, consider
them under the supspace topology, unless stated otherwise.

Remark 6.6.9. Sets that were not open (or were even closed) in the parent
topology might become open in the subspace topology. Similarly for not
closed (or even open). However, common subsets inherit openness.

Proposition 6.6.10 (A base for the subspace topology). Let (X, T ) be a
topological space generated by a base B and A ⊆ X. Then {A ∩ B : B ∈ B}
is a base for the subspace topology for A.

Proposition 6.6.11 (Characterization of subspace topology with closed
sets). Let F be the set of closed sets of a topological space X. Let Y ⊆ X.
Then the closed sets in the subspace topology are {Y ∩K : K ∈ F}.

Proposition 6.6.12. The topology induced in a submetric space is exactly
the subspace topology inherited from the metric topology of the parent space.

Proposition 6.6.13. The co-finite topology on a subset is the same as the
subspace topology induced due to a co-finite topology.

Proposition 6.6.14. Let (X, T ) be a topological space and consider the sub-
sets Y1, Y2 ⊆ X with subspace topology. If Y1 ⊆ Y2, then Y1’s subspace
topology as a subset of X is the same as its subspace topology as a subset of
Y2.

6.7 Box topology

March 3, 2022

Lemma 6.7.1. Let {Ai,j}(i,j)∈I×J be a family of sets. Then∏
i∈I

(⋃
j∈J

Ai,j

)
=

⋃
f : I→J

(∏
i∈I

Ai,f(i)

)
.
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Proposition 6.7.2 (Box topology). Let (Xi, Ti)i∈I be topological spaces with
bases Bi’s. Define

B :=

{∏
i∈I

Bi : Bi ∈ Bi

}
, and

C :=

{∏
i∈I

Ui : Ui ∈ Ti

}
.

Then B and C are bases for topologies on
∏

i∈I Xi. Further, they generate
the same topology, i.e., TB = TC.

6.8 Product topology

March 20, 022

Definition 6.8.1 (Product topology). Let (Xi, Ti) be topological spaces for
i ∈ I. Then the topology on

∏
i Xi generated by the subbase{

π−1
i (Ui) : i ∈ I, Ui ∈ Ti

}
is called the product topology.

6.9 Product and box topologies

February 7, 2022

Proposition 6.9.1 (Product and box topologies). Let I be a nonempty index
set and (Xi, Ti)i∈I be topological spaces. Define

SΠ :=
⋃
i∈I

{
π−1
i [U ] : U ∈ Ti

}
,

B□ :=
{∏

i∈I

Ui : Ui ∈ Ti

}
.

Then SΠ and B□ are respectively a subbase and a base for
∏

i∈I Xi.
Further,

(a) if I is a finite set then TΠ = T□, and
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(b) if I is infinite, and none of Xi’s is empty and for infinitely many i’s, we
have that Ti’s are strictly finer than the respective indiscrete topologies,
then TΠ ⊊ T□.

Proposition 6.9.2 (Another characteristic for finite product topologies).
Let (Xi, Ti) be topological spaces generated by bases Bi for i = 1, 2. Then
P := {B1 × B2 : Bi ∈ Bi} is a base that generates the product (or box)
topology on X1 ×X2.

6.10 Miscellaneous

March 3, 2022

Proposition 6.10.1 (Zariski topology). Let n ≥ 1. For each f ∈ K[x1, . . . , xn],
define

Uf := {x ∈ K : f(x) ̸= 0}.

Then the set of all the Uf ’s forms a base for a topology on Kn such that
Uf ∩ Ug = Ufg.

Further, for n = 1, this topology coincides with the co-finite topology on
K.
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Continuous functions on
topological spaces

February 2, 2022

Definition 7.0.1 (Continuous functions on topological spaces). Let (X1, T1),
(X2, T2) be topological spaces and f : X1 → X2 and x ∈ X1. Then f is
continuous at x iff for every open neighborhood V of f(x), there exists an
open neighborhood U of x such that f [U ] ⊆ V .

f is called continuous iff it is continuous on all x ∈ X1.

Remark 7.0.2. The identity function Rstd → R is continuous when the
codomain is taken under the standard topology, and is not continuous under
the lower-limit topology.

Proposition 7.0.3 (Continuity compatible with metric spaces). Let X, Y
be metric spaces and f : X → Y and x ∈ X. Then f is continuous at x
in the sense of Definition 2.1.1 ⇐⇒ f is continuous at x in the sense of
Definition 7.0.1.

Proposition 7.0.4 (Characterizing continuity). Let X, Y be topological
spaces. Let f : X → Y and x ∈ X. Then the following are equivalent:

(a) f is continuous at x.
(b) Inverse images of open sets containing f(x) are open.
(c) Inverse images of closed sets containing f(x) are closed.
(d) For any subbase (and hence every base) of Y , the inverse images of

subbase (respectively base) sets containing f(x) are open.
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Corollary 7.0.5 (Characterizing continuous functions). Let X and Y be
topological spaces. Let f : X → Y and x ∈ X. Then the following are
equivalent:

(a) f is continuous.
(b) Inverse images of open sets are open.
(c) Inverse images of closed sets are closed.
(d) For any subbase (and hence a base), the inverse images of subbse (re-

spectively base) sets are open.

Remark 7.0.6. Let f : X → Y and A ⊆ X. Then by “a restriction of f to
A”, we mean any restriction with a codomain that contains f [A].

But for by f |A, we’ll mean the restriction with the entire codomain Y .

Proposition 7.0.7 (Constructing continuous functions). (a) Constant func-
tions are continuous.

(b) (Continuity of compositions) If f : X → Y and g : Y → Z are functions
between topological spaces such that f is continuous at x ∈ X and g is
continuous at f(x), then g ◦ f : X → Z is continuous at x.

(c) Any restriction of a continuous function is continuous.
(d) The inclusion function for a subspace is continuous.
(e) (Local formulation of continuity). A function f is continuous ⇐⇒

for any subbase, all the restrictions of f to the subbase sets are contin-
uous.

(f) (Pasting lemma). Let X, Y be topological spaces. Let A, B be both
closed or both open in X such that X = A ∩ B. Let f : A → Y and
g : B → Y be continuous such that they agree on A ∩ B. Then the
function h : X → Y defined by

h(x) :=

{
f(x), x ∈ A

g(x), x ∈ C

is continuous.
(g) Let X be a topological space and Xi’s be subspaces of X such that X =⋃

iXi. Let the topology on X be coherent with Xi’s. Let f : X → Y for
another topological space Y . Then f is continuous ⇐⇒ each f |Xi

is
continuous.

(h) Projections are continuous (for both, product as well as box topologies).
(i) (Continuity of z 7→ fi(z) for box topology). Let Xi’s for i ∈ I and Z be

topological spaces. Let f : Z →
∏

i Xi be such that each πi ◦ f : Z → Xi
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is continuous. Then f is continuous at z w.r.t. to the box topology
=⇒ each πi ◦ f is continuous at z. The converse is true for finite I.

(j) (Continuous real-valued functions). The sum, product, negation a
and reciprocation (for a function that never attains 0) of continuous
real-valued functions are continuous.

Remark 7.0.8.

(a) To show the necessity of A, B being both closed or both open in (f),
consider A = [0, 1] and B = (1,∞) for the subspace X = [0,∞) of R.
Then take any functions f and g such that h is discontinuous at 1 in
the sense of Definition 2.1.1.
Another non-example: f : Q → R and g : R \Q → R given by f(x) = 1
and g(x) = 0.

(b) To show the necessity of finite I for the converse in (i), consider I = N
and each Xi’s and Z to be Rstd and fi(x) := ix. Then U :=

∏∞
i=0(−1, 1)

is open in the box topology, but f−1(U) = {0} is not open in Z.

Proposition 7.0.9 (Characterizing subspace topology). The subspace topol-
ogy is the smallest topology that makes the inclusion continuous.

Proposition 7.0.10 (Characterizing product topology). Let (Xi, Ti) be topo-
logical spaces for i ∈ I and let X :=

∏
i Xi and T be a topology on X. Then

the following are equivalent:

(a) T is the product topology.
(b) T is the smallest topology such that all the projections πi : X → Xi are

continuous.
(c) T is the topology such that for any topological space Y and any function

f : Y → X, we have that f is continuous ⇐⇒ each πi ◦ f : Y → Xi is
continuous.

7.1 Upper and lower semi-continuity

March 2, 2022

Definition 7.1.1 (Upper and lower semi-continuity). Let X be a topological
space. Let f : X → R. Then we say that

(a) f is upper semi-continuous at x iff for every ε > 0, there exists an open
neighborhood U of x such that

y ∈ U =⇒ f(y) < f(x) + ε and,
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(b) f is called lower semi-continuous at x iff for every ε > 0, there exists
an open neighborhood U of x such that

y ∈ U =⇒ f(x)− ε < f(y).

Further, if these hold for all points in X, then f is called upper/lower
semi-continuous.

Proposition 7.1.2 (Characterizing upper and lower semi-continuities). Let
X be a topological space. Let f : X → R and x ∈ X. Then

(a) f is upper semi-continuous at x ⇐⇒ f is continuous at x under the
LR topology on R,

(b) f is lower semi-continuous at x ⇐⇒ f is continuous at x under the
RR topology on R, and

(c) f is continuous at x with the usual topology on R ⇐⇒ f is both upper
and lower semi-continuous.

Proposition 7.1.3 (Openness and closedness via characteristic function). A
set in a topological space is open (respectively closed) ⇐⇒ the corresponding
characteristic function is lower (respectively upper) semi-continuous.

Remark 7.1.4. Infimum and supremum for a family of (extended) real-
valued functions are defined obviously.

Proposition 7.1.5. Infimum (respectively supremum) of upper (respectively-
lower) semi-continuous functions is upper (respectivelyupper) semi-continuous.
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Convergence in topological
spaces

February 20, 2022

Definition 8.0.1 (Convergence in topological spaces). Let X be a topolog-
ical space and (xi)i be a sequence in X. Then it is said to converge to an
x ∈ X, written xi → x iff for every open neighborhood U of x, there exists
an N such that for all i ≥ N , we have that xi ∈ U .

Further, (xi)i is called convergent iff there exists an x ∈ X such that
xi → x.

Proposition 8.0.2 (Convergent sequences in discrete, coF and coC topolo-
gies). Let X be a set. Then we have the following:

(a) Under the discrete topology, the xi → x ⇐⇒ (xi)i becomes eventually
equal to x.

(b) Under the co-finite topology on infinite X, we have that xi → x ⇐⇒
for every k ≥ 0, and for any y1, . . . , yk ∈ {xi : i} \ {x}, there exists an
N such that for every i ≥ N , we have that xi /∈ {y1, . . . , yk}.

(c) Under the co-countable topology on uncountable X, we have that xi →
x ⇐⇒ (xi)i becomes eventually equal to x.

Proposition 8.0.3 (Convergence compatible with metric spaces). Let X be
a metric space and (xi)i be a sequence in X. Then (xi)i is convergent in the
sense of Definition 2.1.3 ⇐⇒ it is convergent in the sense of Definition
8.0.1.

Further, for any x ∈ X, we have that xi → x in the sense of Definition
2.1.3 ⇐⇒ xi → x in the sense of Definition 8.0.1.
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Remark 8.0.4. Unlike in metric spaces, a sequence in a general topological
space may converge to more than one point. For instance, every sequence
converges to any Sierpiński point.

Proposition 8.0.5 (Sequential continuity in topological spaces). For topo-
logical spaces, continuity of a function at a point =⇒ sequential continuity
at that point.

Further, if the domain space is metrizable, then the converse also holds.
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Homeomorphisms

Definition 9.0.1 (Homeomorphisms). Let (Xi, Ti) be topological spaces for
i = 1, 2 and f : X1 → X2. Then f is a homeomorphism iff f is continuous
and invertible with it inverse being also continuous.

Further, if there exists such a homeomorphism, then (X1, T1) is said to
be homeomorphic to (X2, T2).

Remark 9.0.2. The continuity of inverse is important. Consider the identity
function Rdiscrete → Rstd.

Definition 9.0.3 (Open and closed maps). Let (Xi, Ti) be topological spaces
for i = 1, 2. Then a function f : X1 → X2 is called open iff it maps open sets
to open sets, and it is called closed iff it maps closed sets to closed sets.

Corollary 9.0.4. Let (Xi, Ti) be topological spaces for i = 1, 2 and f : X1 →
X2 be a bijection. Then the following are equivalent:

(a) f−1 is continuous.
(b) f is open.
(c) f is closed.

Corollary 9.0.5. “Being homeomorphic to” is an equivalence relation on
any set of topological spaces.

Corollary 9.0.6. The set of all self-homeomorphisms on a topological space
forms a group (under function composition).

Proposition 9.0.7 (Restrictions of homeomorphisms are homeomorphisms).
Let (Xi, Ti) be toplogical spaces for i = 1, 2. Let f : X1 → X2 be a homeo-
morphism and S ⊆ X1. Then f ’s restriction on S is a homeomorphism from
S to f [S] with respect to subspace topologies.

37



CHAPTER 9. HOMEOMORPHISMS 38

Proposition 9.0.8 (Intervals are homeomorphic). Consider R with usual
topology. Let a < b. Then the following pairs (under the subspace topology)
are homeomorphic:

(a) (0, 1) and (a, b).
(b) (0, 1] and (a, b].
(c) [0, 1) and [a, b).
(d) [0, 1] and [a, b].

Proposition 9.0.9 ( Prove this! ). Let f : R → R. Then f is a self-
homeomorphism on R (under usual topology) ⇐⇒ f is surjective, con-
tinuous, and strictly monotonic.

Proposition 9.0.10 (All lines in R2 are homeomorphic). Let a, b, c ∈ R such
that one of a, b is nonzero. Then the set

L := {(x, y) ∈ R2 : ax+ by = c}

is homeomorphic to R, with a possible homeomorphism given by

t 7→

{(−bt+c
a

, t
)
, a ̸= 0(

t, −at+c
b

)
, b ̸= 0

.

9.1 Homeomorphisms on Kn

February 3, 2022

Remark 9.1.1. For this subsection, fix a p ∈ [0,∞). For any n ≥ 1,

(a) viewKn as the usual vector space overK equipped with the lp-norm and
consider it as a metric as well as a topological space with the induced
metric and topology, and

(b) view any (proper) subsets of Kn as topological spaces under the sub-
space topology.

Remark 9.1.2. Also fix an n ≥ 1 for this subsection. Then we define

B := B1(0),

D := D1(0),

S := S1(0),
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where the right hand sides have the obvious usual meanings (for the metric
we have fixed).

For α ∈ (0,∞)n and x ∈ Kn, we’ll define

Rα(x) := {y ∈ Kn : d(yi, xi) < αi},
Rα(x) := {y ∈ Kn : d(yi, xi) ≤ αi},

∂Rα(x) := {y ∈ Rα(x) : d(yi, xi) = αi for some i}.

Also, we set

J := R1(0),

J := R1(0),

∂J := ∂R1(0),

where 1 := (1, . . . , 1).
We’ll denote ∥·∥p by ∥·∥, but we’ll write ∥·∥∞ fully.
This is only for this subsection.

Proposition 9.1.3 (Vector addition and scalar multiplication are homeo-
morphisms). Let z ∈ Kn and s ∈ K \ {0}. Define Tz,Ms : Kn → Kn as

Tz(x) := x+ z,

Ms(x) := sx.

Then Tz and Ms are self-homeomorphisms on Kn with inverses given by T−z

and Ms−1.

Corollary 9.1.4. Let x ∈ Kn and r > 0. Then the following pairs are
homeomorphic:

(a) B and Br(x).
(b) D and Dr(x).
(c) S and Sr(x).

Proposition 9.1.5 (Kn homeomorphic to open balls). B is homeomorphic
to Kn. Two possible homeomorphisms f, g : B → Kn are given by

f(x) =
x

1− ∥x∥
, g(x) =

x√
1 + ∥x∥2

,

with inverses

f−1(y) =
y

1 + ∥y∥
, g−1(y) =

y

1
√

1 + ∥y∥2
.
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Proposition 9.1.6 (Linear transformations are continuous). Let A be an
n × n matrix with entries in K. Then x 7→ Axt is continuous. If A is
further invertible, then this is a homeomorphism with the inverse given by
y 7→ A−1yt.

Corollary 9.1.7. Let x ∈ Kn and α ∈ (0,∞)n. Then the following pairs are
homeomorphic:

(a) J and Rα(x).
(b) J and Rα(x).
(c) ∂J and ∂Rα(x).

Proposition 9.1.8 (Unit boxes are unit discs on l∞-norm). J, J, ∂J are
precisely the unit open ball, the unit closed ball, and the unit sphere centered
at the origin for the l∞-norm on Kn.

Proposition 9.1.9 (Balls and boxes homeomorphic). Define ϕ : D → J as

ϕ(x) :=

{
∥x∥
∥x∥∞

x x ̸= 0,

0 x = 0.

Then ϕ is a homeomorphism with inverse given by

ϕ−1(y) =

{
∥y∥∞
∥y∥ y y ̸= 0,

0 y = 0

Further, its restriction is a homeomorphism between S and ∂J.

Remark 9.1.10. Construct the above homeomorphism in reverse: extend
the homeomorphism from one between the boundaries.
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Topological equivalences of
metric spaces

February 8, 2022

Definition 10.0.1. Two metric spaces are called topologically equivalent iff
they are homeomorphic under the metric topology.

Proposition 10.0.2 (Similarity =⇒ topological equivalence). Similarities
between metric spaces are homeomorphisms.

Proposition 10.0.3. Let d, d′ be two metrics on a set X. Then T (d) ⊆
T (d′) ⇐⇒ for every x ∈ X and for every ε > 0, there exists a δ > 0 such
that Bd′,δ(x) ⊆ Bd,ε(x).

Proposition 10.0.4 (All lp-topologies equal to T□ on Kn). Let n ≥ 1 and
p ∈ [1,∞). Then Tp = T∞ = T□, where the box topology is for the n instances
of K, each with the usual topology.

Proposition 10.0.5 (Topological equivalence ≠⇒ similarity). Let (X, d)
be a metric space and define D,D′ : X ×X → [0,∞) as

D(x, y) :=
d(x, y)

1 + d(x, y)
,

D′(x, y) := min{d(x, y), 1}.

Then D, D′ are bounded metrics on X. Hence, if d were unbounded, then
(X, d) is not similar to either of (X,D) or (X,D′). However, T (D) =
T (d) = T (D′).

41
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Proposition 10.0.6 (Another non-example). Let (X1, d1) and (X2, d2) be
metric spaces and f : X → Y be a homeomorphism. Then the function
d̃ : X1 ×X1 → [0,∞) defined by

d̃(x, y) := d2(f(x), f(y))

is a metric on X1 and T (d̃) = T (d1).

Remark 10.0.7. T (d1) and T (d̃) needn’t be similar: For X = (−π/2, π/2)
and Y = R, both under the usual metrics, and with f(x) = tanx, the
Cauchy-ness of (π/2− 1/n)∞n=1 is not preserved.
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Subsets of a topological space

February 10, 2022

Definition 11.0.1 (Some terminology for sets and points in a topological
space). Let (X, T ) be a topological space and A ⊆ A and x ∈ X. Then

(a) A is open iff A ∈ T ,
(b) A is closed iff X \ A is open,
(c) A is an open neighborhood of x iff A is open and x ∈ A,
(d) A is a neighborhood of x iff A contains an open neighborhood of x,
(e) interior of A, denoted intA or Å is the union of all the open sets

contained in A,
(f) x is a closure point of A iff every (open) neighborhood of x intersects

with A,
(g) closure of A, denoted clA or A is the set of all closure points of A,
(h) boundary of A, denoted ∂A, is the set A \ Å,
(i) x is a limit or accumulation point of A iff every (open) neighborhood

of x intersects with A \ {x} (or equivalently, any (open) neighborhood
of x deleted {x} intersects with A),

(j) A’s derived set, denoted ℓ(A) or A′, is the set of all of A’s limit points,
(k) A is dense in X iff A = X,
(l) A is nowhere dense in X iff int clA is empty,

(m) x is an isolated point of A iff there exists an (open) neighborhood of x
that intersects A at only x,

(n) A is isolated iff for every point in A is isolated, and
(o) A is discrete iff A is isolated and closed.

Theorem 11.0.2 (Properties of closure). Let (X, T ) be a topological space
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and A,B ⊆ X and (Ai)i∈I be a nonempty family of sets in X. Then

(a) cl(∅) = ∅ and cl(X) = X,
(b) A ⊆ cl(A),
(c) A ⊆ B =⇒ cl(A) ⊆ cl(B),
(d) A is closed =⇒ cl(A) = A,
(e) cl(cl(A)) = A,
(f) A is open and A does not intersect with B =⇒ A does not intersect

with cl(B),
(g) cl(A) is closed,
(h) cl(A) is the smallest closed set containing A,
(i) cl(A ∪B) = cl(A) ∪ cl(B),
(j) cl

(⋃
i∈I Ai

)
⊇
⋃

i∈I cl(Ai),
(k) cl

(⋂
i∈I Ai

)
⊆
⋂

i∈I cl(Ai).

Remark 11.0.3. For (j), consider R =
⋃

r∈Q{r} ⊋
⋃

r∈Q {r} = Q.

For (k), consider ∅ = Q ∩ (R \Q) ⊊ Q ∩ R \Q = R.

Remark 11.0.4. When a same set can be viewed in two different topologies,
we might use some notational tools to make clear the topology in which it is
viewed.

Proposition 11.0.5 (Closures in subspaces). Let Y be a subspace of a topo-
logical space X and A ⊆ Y . Then

(a) clY (A) = Y ∩ cl(A), and
(b) Y is closed =⇒ clY (A) = cl(A).

Proposition 11.0.6 (Closure points using bases and subbases). Let X be a
topological space with a base B and A ⊆ X. Let x ∈ A. Then a ∈ A ⇐⇒
every base set containing x intersects with A.

Similar result holds for any subbase of X.

Theorem 11.0.7 (Properties of interiors). Let (X, T ) be a topological space
and A,B ⊆ X and (Ai)i∈I be a nonempty family of sets in X. Then

(a) int(∅) = ∅ and int(X) = X,
(b) int(A) ⊆ A,
(c) A ⊆ B =⇒ int(A) ⊆ int(B),
(d) A is open =⇒ int(A) = A,
(e) int(int(A)) = int(A),
(f) int(A) is open,
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(g) int(A) is the largest open set contained in A,
(h) int(A ∩B) = int(A) ∩ int(B),
(i) int

(⋃
i∈I Ai

)
⊇
⋃

i∈I int(Ai),
(j) int

(⋂
i∈I Ai

)
⊆
⋂

i∈I int(Ai), and
(k) A and B are disjoint closed sets =⇒ int(A ∪B) = int(A) ∪ int(B).

Remark 11.0.8.

(a) For (j), consider ∅ = int
(⋂

n≥1(−1/n, 1/n)
)
⊊
⋂

n≥1 int
(
(−1/n, 1/n)

)
=

{0}.
(b) For (i), consider R = int

(⋃
x∈R{x}

)
⊋
⋃

x∈R int
(
{x}
)
= ∅.

(c) For (k), consider

(i) A = [0, 1] and B = [1, 2], and
(ii) A = [0, 1] and B = (1, 2).

Proposition 11.0.9 (Interiors in subspaces). Let Y be a subspace of a topo-
logical space X and A ⊆ Y . Then

(a) intY (A) ⊇ Y ∩ int(A), and
(b) Y is open =⇒ intY (A) = int(A).

Remark 11.0.10. For (a), consider Y = [0, 1] and X = Rstd.

Proposition 11.0.11 (Closures and interiors of complements). For any sub-
set A of a topological space X,

(a) cl(X \ A) = X \ int(A), and
(b) int(X \ A) = X \ cl(A).

Theorem 11.0.12 (Properties of boundary). Let (X, T ) be a topological
space and A,B ⊆ X and x ∈ X. Then

(a) ∂∅ = ∅ and ∂X = ∅,
(b) ∂A is closed,
(c) ∂(∂A) ⊆ ∂A with equality holding ⇐⇒ int(∂A) = ∅,
(d) x ∈ ∂A ⇐⇒ every (open) neighborhood of x intersects with both A

and X \ A,
(e) ∂A = ∂(X \ A),
(f) ∂(A ∪B), ∂(A ∩B) ⊆ ∂A ∪ ∂B, and
(g) A and B are disjoint, and both are either open, or both closed =⇒

∂(A ∪B) = ∂A ∪ ∂B.

Remark 11.0.13. For (c), consider ∅ = ∂(∂Q) ⊊ ∂Q = R.
For (f), take A = (0, 2) and B = (1, 3).
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Proposition 11.0.14. For any subset A of a topological space, we have that
int(∂(∂A)) = ∅ so that ∂(∂(∂A)) = ∂(∂A).

Also, ∂A = ∅ =⇒ A is clopen.

Theorem 11.0.15 (Properties of derived sets). Let (X, T ) be a topological
space and A,B ⊆ X and (Ai)i∈I be a nonempty family of sets in X. Then

(a) ℓ(∅) = ∅,
(b) ℓ(X) = {x ∈ X : {x} is not open},
(c) A ⊆ B =⇒ ℓ(A) ⊆ ℓ(B),
(d) ℓ(A ∪B) = ℓ(A) ∪ ℓ(B),
(e) ℓ

(⋃
i∈I Ai

)
⊇
⋃

i∈I ℓ(Ai), and
(f) ℓ

(⋂
i∈I Ai

)
⊆
⋂

i∈I ℓ(Ai).

Remark 11.0.16. ℓ(A) need not be open or closed and A, ℓ(A), ℓ(ℓ(A))
need not be comparable. Consider the indiscrete topology on {0, 1}. Then
ℓ({0}) = {1} and so on.

For (e), consider {0} = ℓ
(⋃

n≥1{1/n}
)
⊋
⋃

n≥1 ℓ
(
{1/n}

)
= ∅. For (f),

consider ∅ = ℓ
(
Q ∩ (R \Q)

)
⊊ ℓ(Q) ∩ ℓ(R \Q) = R.

Proposition 11.0.17. Let X be a topological space and A ⊆ X. Then
cl(A) = A ∪ ℓ(A).

Also, any point in A is either its limit point or its isolated point, which
are disjoint sets.

Lemma 11.0.18 (Characterizing dense sets). A set in a topological space is
dense in it ⇐⇒ it intersects with every nonempty open set.

Proposition 11.0.19 (Characterizing nowhere dense sets). Let A be a set
in a topological space X. Then the following are equivalent:

(a) X \ cl(A) is dense in X.
(b) int(cl(A)) = ∅.
(c) cl(A) contains no nonempty open set.
(d) Every nonempty open set in X has a nonempty open subset that is

disjoint from cl(A).
(e) Every nonempty open set in X has a nonempty open subset that is

disjoint from A.

Proposition 11.0.20 (Characterizations in metric spaces). Let A be a subset
of a topological space X and x ∈ X. Then
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(a) there exists a sequence (xi)
∞
i=n in A such that xn → x =⇒ x ∈ cl(A),

(b) there exists a sequence (xi)
∞
i=n of distinct xn’s in A such that xn → x

=⇒ x ∈ ℓ(A),
(c) every nonempty open set contains the closure of a nonempty open set

that is disjoint from A =⇒ A is nowhere dense.

Further, if X is metrizable, then the converses of the above also hold.

Remark 11.0.21. Necessity of metrizability in converses:

(a) For (a) and (b), consider coC on any uncountable set X: Take any
uncountable A ⊊ X. Then for any x ∈ X \ A, x ∈ X = cl(A), but no
sequence in A converges to x. (See Propositions 8.0.2 and 11.1.8.)

(b) For (c), consider coF on any infinite set X: Take any nonempty finite
A ⊆ X. Then it’ll be nowhere dense, and closure of any nonempty
open set will intersect A.

Proposition 11.0.22 (Characterizing continuous functions). Let (Xi, Ti) be
topological spaces for i = 1, 2 and f : X1 → X2. Then the following are
equivalent:

(a) f is continuous.
(b) f [cl(A)] ⊆ cl(f [A]) for any A ⊆ X1.
(c) f−1[int(B)] ⊆ int(f−1[B]) for any B ⊆ X2.

Proposition 11.0.23 (Kuratowski’s closure axioms). Let X be a set and c
be an operator on 2X such that for all A,B ⊆ X, we have

(a) c(∅) = ∅,
(b) A ⊆ c(A),
(c) c(c(A)) = c(A), and
(d) c(A ∪B) = c(A) ∪ c(B).

Let Tc := {U ⊆ X : c(X \ U) = X \ U}. Then
(a) for any A ⊆ B ⊆ X, we have c(A) ⊆ c(B), and
(b) Tc is a topology on X with cl(A) = c(A) for all A ⊆ X.

Remark 11.0.24. Exactly parallel description can be given in terms of an
interior operator i, with the same properties except that the first is replaced
with i(X) = X.

11.1 Some examples

February 28, 2022



CHAPTER 11. SUBSETS OF A TOPOLOGICAL SPACE 48

Proposition 11.1.1 (Closed sets in discrete, coF and coC topologies). Let
X be a set. Then

(a) Under discrete topology, all the subsets are closed.
(b) Under co-finite topology, the closed sets are exactly the finite subsets.
(c) Under co-countable topology, the closed sets are exactly the countable

subsets.

Proposition 11.1.2 (Some open and closed sets in metric spaces). Let (X, d)
be a metric space and f : X → R be a continuous function under the usual
metric on R. Let K be closed (respectively open) in R. Then f−1[K] is closed
(respectively open) in X. In particular, disk? discs and spheres are closed,
with open balls being open with

cl
(
Bε(x)

)
⊆ Dε(x).

Other noteworthy sets are hyperplanes in Kn and the half-planes in Rn, and
their intersections.

Remark 11.1.3. In general, cl
(
Bε(x)

)
̸= Dε(x). Consider B1(x) = {x} in

the discrete topology. Whereas its closure is itself, the corresponding disc is
the entire space.

Proposition 11.1.4. Every finite subset of a metric space is discrete.

Proposition 11.1.5. Consider R with the usual topology and a subset F of
rationals, or of irrationals, be closed. Then F is nowhere dense in R.

Remark 11.1.6. There can be nonempty open sets that contain no closures
of any nonempty set: Consider the set {0} in the Sierpiński topology.

Remark 11.1.7. It can be that X \A is dense and X \cl(A) is not: Consider
X = R and A = Q.

Proposition 11.1.8 (Closures and interiors in discrete, coF and coC topolo-
gies). Let X be a set and A ⊆ X. Then under any of the discrete, coF or
coC topologies,

(a) A is not open or A = ∅ ⇐⇒ int(A) = ∅, and
(b) A is not closed or A = X ⇐⇒ cl(A) = X.
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Proposition 11.1.9 (Closures, interiors, etc. under different topologies).
Let A := {1/n : n ≥ 1} ∪ {0} ⊆ R. Then we have the following:

Topology cl(A) int(A) ∂A ℓ(A)
co-finite R ∅ R R
co-countable A ∅ A ∅
lower ray [0,∞) ∅ [0,∞) (0,∞)

Lemma 11.1.10. Prove this! A non-constant polynomial in n ≥ 1 variables
over Kn can’t be uniformly zero over a nonempty open set of Kn.

Corollary 11.1.11. For any non-constant p ∈ K[x1, . . . , xn] for an n ≥ 1,
the set of zeros of p is nowhere dense in Kn.

11.2 Fσ, Gδ and meager sets

February 27, 2022

Definition 11.2.1 (Fσ, Gδ and meager sets). Let X be a topological space
and A ⊆ X. Then A is called

(a) an Fσ set1 iff A is a countable union of closed sets,
(b) a Gδ set

2 iff A is a nonempty countable intersection of open sets,
(c) a meager or a first category set iff A is a countable union of nowhere

dense sets, and
(d) a non-meager or a second category set iff A is not meager.

Proposition 11.2.2 (Some examples).

(a) Countable sets are Fσ in a metric space.
(b) Any interval in R is both, Fσ and Gδ.

Proposition 11.2.3. The inverse images of Fσ (respectively Gδ) sets are Fδ

(respectively Gδ) under continuous functions between topological spaces.

1French: fermé for F which means closed, and somme for σ, which means set union.
2German: Gebeit for G which means area or neigborhood, and δ for Durchshnitt used

for set intersection.
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Cantor set

February 23, 2022

Remark 12.0.1. For this section:

(a) Let S be the set of all finite disjoint nonempty union of nonempty and
non-singleton closed intervals.

(b) Let ϕ be the function on S well-defined (see Lemma 12.0.2) by

ϕ
( n⋃

i=1

[ai, bi]
)
:=

n⋃
i=1

([
ai +

bi − ai
3

]
∪
[
bi −

bi − ai
3

])
for ai < bi. It follows that for each A ∈ S, we have ϕ(A) ⊊ ϕ(A).

(c) Define C : {[a, b] : a < b} → 2R as follows: Given a < b, first define the
following well-defined strictly descending sequence

J0 := [a, b],

Jn+1 := ϕ(Jn).

Now, define

C([a, b]) :=
∞⋂
i=1

Jn.

(d) For [0, 1], we’ll denote the above sequence by In’s and we’ll set

C := C([0, 1]).
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Lemma 12.0.2 (Well-definedness of ϕ). Let A ∈ S. Then there exist a
unique n ≥ 1 and unique a1 < b1 < · · · < an < bn such that

A =
n⋃

i=1

[ai, bi].

Lemma 12.0.3. Let n ≥ 1 and let J :=
⋃n

i=1 Ji for nonempty and non-
singleton closed intervals Ji’s. Define {Ki,Li} to be the unique pair set of
disjoint, nonempty and non-singleton closed intervals such that

ϕ(Ji) = Ki ∪ Li.

Then X :=
⋃n

i=1{Ki,Li} contains distinct disjoint sets and

ϕ(J ) =
⋃

X .

Proposition 12.0.4 (ϕ is linear). Let k > 0 and r ∈ R, define f, g : R → R
as

f(x) := kx,

g(x) := x+ a.

Then for any I := [a, b] for a < b, we have that f([a, b]), g([a, b]) ∈ S and

ϕ
(
f([a, b])

)
= f

(
ϕ([a, b])

)
,

ϕ
(
g([a, b])

)
= g
(
ϕ([a, b])

)
.

Corollary 12.0.5 (Similarity between C and C([a, b])). Let a < b. Then the
restriction of the similarity f : R → R defined by

f(x) := a+ (b− a)x

is a similarity from C to C([a, b]).

February 25, 2022

Lemma 12.0.6. Let N ≥ 2. Let n ≥ 1 and a1, . . . , an ∈ Z such that each
|ai| < N . Let S :=

∑n
k=1 ak/N

k. Then

(a) |S| ≤ 1− 1/Nn, and
(b) The sign of S is the same as that of the first nonzero ai.
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Proposition 12.0.7 (An explicit formula for In’s). For n ≥ 1, the set In is
the disjoint union of the closed intervals [α, α+1/3n] for α ∈

{∑n
k=1 ak/3

k :
ak = 0, 2

}
. The intervals [α, α + 1/3n] are disjoint for distinct α’s.

Lemma 12.0.8. Let n ≥ 1 and a1 < b1 < · · · < an < bn. Let α < β and
(α, β) ⊆

⋂n
i=1[ai, bi]. Then (α, β) ⊆ [ai, bi] for some i.

Lemma 12.0.9. Let a < b and α < β such that b − a < β − α. Then
(α, β) ⊈ [a, b].

Lemma 12.0.10 (Decimals in different bases). Prove this! Let N ≥ 1. Let
a1, a2, . . . ∈ N such that each ai < N . Then for each

∑∞
i=1 ai/3

n converges,
and we have that distinct sequences converge to distinct sums.

Proposition 12.0.11 (Properties of C).

(a) C is closed and bounded.
(b) Let J be one of the disjoint intervals of an In. Then C(J) ⊆ C.
(c) The endpoints of C, viz. 0 and 1, are in C.
(d) The endpoints of each of the disjoint intervals of each In are in C.
(e) C has no open intervals, and hence, being closed, it is nowhere dense.
(f) Every point of C is its limit point.
(g) C is uncountable.
(h) For every distinct x, y ∈ C, there exist disjoint closed subsets A, B of

C such that x ∈ A and y ∈ B and A ∪B = C.
(i) Not rigorous yet! The length of C is 0.
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Metric trinity

February 27, 2022

Theorem 13.0.1 (Cantor’s intersection theorem). Let X be a complete met-
ric space and let F1 ⊇ F2 ⊇ · · · be a descending sequence of nonempty closed
subsets such that δ(Fn) → 0 (in the usual topology in R). Then ∩∞

i=1 is a
singleton.

Proposition 13.0.2 (Nested closed intervals and Bolzano-Weierstraß). Let
X be a complete metric space where Bolzano-Weierstraß holds. Let F1 ⊇
F2 ⊇ · · · be a descending sequence of nonempty closed sets such that δ(Fn) →
D < ∞. Then

⋂∞
i=1 Fi ̸= ∅.

Proposition 13.0.3 (Some sequences of sets in R).
(a) With the usual metric on R, the sets An := [n,∞) for n ≥ 0 are closed

with each δ(An) = +∞, and yet
⋂∞

i=0 = ∅.
(b) With the usual metric on R, the sets An := (0, 1/n) for n ≥ 1 are open

with each δ(An) = 1/n and yet
⋃∞

i=1 = ∅.
(c) With the discrete metric on R, the sets in (b) become closed with

δ(An) = 1 for all n ≥ 1. By Proposition 13.0.2, this means that
Bolzano-Weierstraß is violated here.

Definition 13.0.4 (Contraction mappings). Let X, Y be metric spaces.
Then a function f : X → Y is called a contraction mapping iff there exists a
0 < c < 1 such that for all x, y ∈ X, we have that d(f(x), f(y)) ≤ cd(x, y).

Theorem 13.0.5 (Banach’s contraction mapping theorem). Every contrac-
tion mapping on a nonempty complete metric space has a unique fixed point.

53



CHAPTER 13. METRIC TRINITY 54

Definition 13.0.6 (Baire spaces). A topological space X is called a Baire
space iff X is of second category.

Lemma 13.0.7 (Diameters of balls and closures). Let X be a metric space.
Then

(a) for A ⊆ X,
δ
(
cl(A)

)
= δ(A), and

(b) for ε > 0 and x ∈ X,
δ
(
Bε(x)

)
≤ 2ε.

Remark 13.0.8. For (b), consider for discrete metric, in which δ(B2(x)) =
1 < 4 = 2 · 2.

Theorem 13.0.9 (Baire’s category theorem). Let X be a complete metric
space and A1, A2, . . . ⊆ X be nowhere dense. Then X \

⋃∞
i=1 Ai is dense.

Proposition 13.0.10 (Versions of BCT). Let X be a complete metric space.
Then the following are equivalent:

(a) Baire’s category theorem.
(b) If A1, A2, . . . ⊆ X such that X \

⋃∞
i=1 Ai is not dense, then one of Ai’s

is not nowhere dense set.
(c) Countable nonempty intersection of open dense sets is dense.

Proposition 13.0.11 (Weak BCT). Every nonempty complete metric space
is Baire space.

Proposition 13.0.12 (Versions of weak BCT). Let X be a nonempty com-
plete metric space. Then the following are equivalent:

(a) Weak BCT.
(b) If A1, A2, . . . ⊆ X such that X =

⋃∞
i=1Ai, then one of Ai’s is not

nowhere dense.
(c) Countable nonempty intersection of open dense sets is nonempty.

Remark 13.0.13. If Ai’s are countably many nowhere dense sets, then
⋃

i Ai

needn’t be nowhere dense. Consider Ar := {r} for r ∈ Q.

Proposition 13.0.14 (Consequences of BCT).

(a) R \Q is not Fσ in R.
(b) Kn is not a union of the zero sets of countably many nonzero polyno-

mials in K[x1, . . . , xn] for any n ≥ 1.
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13.1 Discontinuities in functions between met-

ric spaces

Remark 13.1.1. For this subsection, we fix two metric spaces X and Y and
a function f : X → Y . Also, for any UA ⊆ X, we define

ω(A) := sup
x,y∈A

d
(
f(x), f(y)

)
,

and for any x ∈ X, we define

ω(x) := inf{ω(U) : U is an open neighborhood of x}.

We let D to be the set of all the points in X where f is discontinuous.

Theorem 13.1.2 (Continuity via oscillations). Let x ∈ X. Then f is con-
tinuous at x ⇐⇒ ω(x) = 0.

Theorem 13.1.3. D is Fσ in X.

Corollary 13.1.4. There can’t be any function on R which is discontinuous
on exactly R \Q.

Proposition 13.1.5 (The popcorn function). Define g : R → R by

g(x) :=

{
0, x ∈ R \Q
1/q, x = p/q where p, q ∈ Z, q > 0, gcd(p, q) = 1

.

Then

(a) g’s left and right rand limits vanish for all x ∈ R, and
(b) g is discontinuous on exactly Q.



Chapter 14

Union of spaces: Coherent
topology

March 15, 2022

Lemma 14.0.1. Let (Xi, Ti)’s be topological spaces and X :=
⋃

iXi. Let

T := {A ⊆ X : A ∩Xi ∈ Ti}.

Then

(a) T is a topology on X,
(b) the closed sets of T are precisely {B ⊆ X : B ∩ Xi is closed in Xi},

and
(c) T |Xi

⊆ Ti for each i.

Definition 14.0.2 (Coherent topology). Let (Xi, Ti)’s be topological spaces
let X :=

⋃
i Xi. Then a topology T on X is called coherent with (Xi, Ti)’s iff

(a) T = {A ⊆ X : A ∩Xi ∈ Ti}, and
(b) Ti = T |Xi

for each i.

Characterize this!

Theorem 14.0.3. Let (Xi, Ti)’s be topological spaces and X :=
⋃

i Xi. Let

(a) each Xi ∩Xj be open (respectively closed) in both Xi and Xj, and
(b) Ti|Xi∩Xj

= Tj|Xi∩Xj
for all i, j.

Then there is a (unique) topology T on X that is coherent with (Xi, Ti)’s. In
this topology, each Xi is an open (respectively closed) subspace in (X, T ).

Further, for the open case, the last property characterizes this topology.
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Remark 14.0.4. To show that this doesn’t characterize for the closed case,
consider any space (X, T ) in which each singleton is closed. Then this char-
acterization would imply that any such topology on X will be discrete. Rstd

provides a counterexample.

Corollary 14.0.5 (Disjoint union). Let (Xi, Ti)’s be disjoint topological spaces
and let X :=

⋃
iXi. Then there exists a (unique) topology on X coherent

with (Xi, Ti)’s. In this topology, each Xi is clopen.

Definition 14.0.6 (Locally finite sets). Let X be a topological space and
C ⊆ 2X . Then C is called locally finite at x ∈ X iff there exists an (open)
neighborhood U of X that intersects with only finitely many sets in C.

If this happens for all x ∈ X, then C is called locally finite.

Proposition 14.0.7. Let Xi’s be closed subspaces of a topological space X
such that X =

⋃
i Xi and Xi’s form a locally finite set. Then the topology on

X is coherent with the subspaces Xi’s.



Chapter 15

Quotient spaces

March 18, 2022

Proposition 15.0.1 (Making quotient sets in three equivalent ways). Let A
be a set. Then there are one-to-one correspondences{

equivalence relations on A
} {

partitions of A
}

{
surjections with domain A

}

f

gh

such that

h ◦ g ◦ f = id,

f ◦ h ◦ g = id,

g ◦ h ◦ f = id.

These functions are given as follows:

(a) f assigns an equivalence relation ∼ on A to the set of its equivalence
classes that form a partition of A.

(b) g assigns a partition C of A to the surjection f : A → C defined so that
a ∈ f(a) for all a ∈ A.

(c) h assigns a surjection f : A → B to the equivalence relation ∼ on A
defined by a ∼ b iff f(a) = f(b).

Lemma 15.0.2. Let q : X → Y be a surjection and f : X → Z be a function.
Then the following are equivalent:
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(a) q(x1) = q(x2) =⇒ f(x1) = f(x2).
(b) There exists a unique function f̃ : Y → Z such that f̃ ◦ q = f .

X

Z

Y

q

f

f̃

Further, the following pairs are equivalent:

(a) (i) f̃ is injective.
(ii) f(x1) = f(x2) =⇒ q(x1) = q(x2).

(b) (i) f̃ is surjective.
(ii) f is surjective.

Remark 15.0.3. The surjectivity of q is needed to only guarantee unique-
ness.

Corollary 15.0.4 (Bijection between S1 and R/Z). Let f : R → R/Z be the
canonical map taking R, Z as additive groups. Let g : R → S1 defined by
t 7→ e2πit. Then there exists a bijection between R/Z and S1.

15.1 Group actions

March 19, 2022

Definition 15.1.1 (Group action). Let G be a group and X be a set. Then
a function ◦ : G × X → X is called an action of group G on AX iff the
following hold:

(a) 1 ◦ x = x.
(b) (gh) ◦ x = g ◦ (h ◦ x).

Remark 15.1.2. We can call the above as the “left” group action, and
similiarly can define right group actions.

By default, we’ll talk of left actions, and when no confusion, we’ll denote
group action by juxtaposition.

We’ll denote the group of permutations of a set X by
∑

(X).

Corollary 15.1.3 (Why called “actions”?). Let G be a group acting on a
set X and g ∈ G. Then
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(a) x 7→ gx is a permutation of X, and
(b) the function G →

∑
(X) that maps g to the map x 7→ gx, is a group

homomorphism.

Proposition 15.1.4 (Identifying a group action with a homomorphism
G →

∑
(X)). Let G be a group and X be a set. Let ϕ : G →

∑
(X) be

a group homomorphism. Then there exists a unique action of G on X such
that it induces the same group homomorphism ϕ.

Definition 15.1.5 (Orbits). Let G be a group acting on a set X and x ∈ X.
Then we call the set

Gx := {gx : g ∈ G}
the orbit of x.

Further, the set of all the orbits is called the orbit space.

Proposition 15.1.6. Orbit space of a group action on a set X forms a
partition of X.

Remark 15.1.7. Abusing notation, we’ll denote the orbit space by X/G.

Proposition 15.1.8 (Cosets as results of group actions). Let H be a subgroup
of a group G. Then the restriction of the group operation to H × G is an
action of H on G, the orbits of which are the right cosets of H.

15.2 Quotient spaces

March 19, 2022

Proposition 15.2.1 (Quotient topology). Let (X, T ) be a topological space
and Y be a set. Let q : X → Y be a function, and let

T ′ := {V ⊆ Y : q−1[V ] ∈ T }.

Then

(a) T ′ is a topology on Y ,
(b) q becomes continuous with this topology on Y , and
(c) T ′ is the largest topology on Y for which q is continuous.

Proposition 15.2.2 (Characterizing quotient topology). Let X be a topo-
logical space and Y be a set. Let f : X → Y . Then the quotient topology on
Y is the finest topology on Y such that f is continuous.
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Definition 15.2.3 (Quotient maps). LetX be a topological space q : X → Y
be a function for a set Y . Then we call q a quotient map iff Y is equipped
with the topology

T ′ := {V ⊆ Y : q−1[V ] ∈ T }.

By Proposition 15.2.1, a quotient map is always continuous.

Remark 15.2.4. Note that we are not requiring q to be surjective.

Proposition 15.2.5. Let X and Z be topological spaces and Y be a set.
Consider a surjective quotient map q : X → Y and a continuous f : X → Z
such that

q(x1) = q(x2) =⇒ f(x1) = f(x2).

Then the unique function f̃ : Y → Z such that f̃ ◦ q = f , is continuous.

Remark 15.2.6. Again the surjectivity only ensures uniqueness, and is re-
dundant for continuity.

Proposition 15.2.7. Let X and Z be topological spaces and Y be a set. Let
q : X → Y be a quotient map and f : Y → Z. Then q ◦f is continuous ⇐⇒
f is continuous.

Proposition 15.2.8. A surjective open (or closed) function between topo-
logical spaces is a quotient map.

15.3 Topological actions: A source of quo-

tient spaces

March 20, 2022

Definition 15.3.1 (Topological actions and associated quotient maps). A
group action by a group G on a topological space X is called topological iff
for every g ∈ G, the corresponding map x 7→ gx is a homeomorphism on X.

Since, G/X partitions X, we can associate a quotient.

Proposition 15.3.2. The associated quotient map for a topological action
is surjective and open.
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Proposition 15.3.3 (Homeomorphisms between X/G and another topolog-
ical space). Let G be a group acting topologically on a topological space X
and let q be its associated quotient map. Let Z be a topological space and
g : X → Z be surjective and continuous such that for any g ∈ G and any
x, y ∈ X,

x = gy ⇐⇒ g(x) = g(y).

Let g̃ : X/G → Z be the unique function such that g̃ ◦ q = g.

X

Z

X/G

q

g

g̃

Then g̃ is a homeomorphism.

Corollary 15.3.4 (R/Z ∼= S1). Consider the equivalence relation ∼ on R
defined by

x ∼ y ⇐⇒ x− y ∈ Z.

Then R/∼ endowed with the quotient topology is homeomorphic to S1.

Definition 15.3.5 (Real projective spaces). Let ≥ 1 and X := Rn+1 \ {0}.
Define an equivalence relation ∼ on X by

x ∼ y ⇐⇒ x = λy for some λ ∈ R \ {0}.

ThenX/∼ endowed with the quotient topology is called the real n-dimensional
projective space denoted by Pn.
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