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Chapter 2

Starting at the beginning: the
natural numbers

2.1 The Peano axioms

April 23, 2021
Axiom 2.1 (Natural numbers). Natural numbers are objects.

Remark 2.1.1. The domain of the function symbol “ 4+ is natural num-
bers so that n++ is an object for each natural number n. We also have a
constant symbol 0, which is hence an object.

Axiom 2.2 (Peano axioms). (i) 0 is a natural number.
(it) For each natural number n, we have that n4+ is a natural number.
(111) For any natural number n, we have n+4+ # 0.
(iv) For any natural numbers m and n, we have m++ = n++ = m =n.
(v) (Principle of mathematical induction). Let P(n) be a property pertain-
ing to any natural number n such that P(0) holds and for each natural
number n, we have P(n++) whenever P(n) holds. Then P(n) holds for
each natural number n.

Remark 2.1.2. We don’t define “4++” or equality for naturals. They are
primitive concepts which are assumed to obey axiom of substitution. Similar
remarks when axiomatizing other relations.

Remark 2.1.3. “++”7 can be replaced by a binary relation symbol, but at
an expense of an additional uniqueness axiom.
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May 2, 2021

Remark 2.1.4. For the use of N, one needs sets. We also need functions
(which also rest on first having sets) in what follows, but there is a path
possible, intertwining Chapters 2 and 3 so that there is no circularity. The
only things in Chapter 3 that rely on the properties of naturals that we’ll
derive here will be the stuff ordered n-tuples onward, and that will not be
used here. Hence, everything (not strictly) before ordered n-tuples can be
used here.

Proposition 2.1.5 (Recursive definitions). Let ¢ € N and {f,}nen be a
family of functions such that f,: N — N for each n € N. Then there exists a
unique function a such that a: N — N so that ag = ¢ and an = fn(ay,) for
each n € N.

Remark 2.1.6. Proved in Chapter 3.

2.2 [Custom]
May 7, 2021

Lemma 2.2.1 (Increment function). There ezists a unique function f such
that f: N — N and f(n) = n++ for each n € N.

Remark 2.2.2. Hence the primitive ++ can be viewed as a function.

Lemma 2.2.3 (Addition on N). Let m € N. Then there exists a unique
function f such that f: N — N so that f(0) = m and f(n++) = f(n)++ for
each n € N.

Remark 2.2.4. This allow to denote f(n) by n+m for each n € N. Axiom
of substitution satisfied.

Corollary 2.2.5. Let m,n € N. Then 0 + m = 0 and (n++) + m =
(n+m)++.

Lemma 2.2.6. Letn € N. Thenn+0=n.

Remark 2.2.7. We set 1 := 0++ and so on. We’ll not mention such remarks
again.
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Lemma 2.2.8. Let m,n € N. Then m + (n++) = (m + n)++.
Corollary 2.2.9. Let n € N. Then n++ =n+ 1.

Lemma 2.2.10 (Multiplication on N). Let m € N. Then there exists a
unique function f such that f: N — N so that f(0) = 0 and f(n+ 1) =
f(n) +m for each n € N.

Remark 2.2.11. This allows to denote f(n) by nm for each n € N. Axiom
of substitution obeyed.

Corollary 2.2.12. Let m,n € N. Then Om =0 and (n+ 1)m = (nm) +m.

Remark 2.2.13. We'll assume the usual precedence of operations, omitting
some parentheses.

Lemma 2.2.14. Let n € N. Then n0 = 0.
Lemma 2.2.15. Let m,n € N. Then m(n+ 1) = mn + m.
Proposition 2.2.16. Let a,b,c € N. Then

a+b=>b+a,
(a+b)+c=a+ (b+c),
a+0=0+a=a,
ab = ba,
(ab)e = a(bc),
al =la = a,
a(b+ c¢) = ab+ ac, and
(a+b)c = ac+ bc.

Remark 2.2.17. Prove distributivity before associativity of multiplication.

Proposition 2.2.18 (N has no zero addends). Let a,b € N such that a+b =
0. Thena=b=0.

Proposition 2.2.19 (N has no zero divisors). Let a,b € N such that ab = 0.
Then a =0 orb=0.

Proposition 2.2.20 (Cancellation law for addition on N). Let a,b,c € N.
Thena+c=b+c = a=0b.
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Definition 2.2.21 (Positive naturals). An object n is called a positive nat-
ural iff n € N and n # 0.

Remark 2.2.22. Axiom of substitution obeyed.

Corollary 2.2.23 (Sums and products of positives are positive). Let a, b be
positive naturals. Then a + b and ab are positive naturals.

Proposition 2.2.24. Let a be a positive natural. Then there exists a unique
b €N such that a =b+ 1.

Definition 2.2.25 (Order on N). For any objects m, n, we write

(i) “m > n”, or “‘n < m”, iff n € N and m = n + a for some positive
natural a, and
(ii) “m >n",or “n <m”,iff n € N and m = n + a for some natural a.

Remark 2.2.26. Axiom of substitution satisfied.

Corollary 2.2.27 (Characterizing “>" and “>"). Let a,b € N. Then

(i) a>b <= a>bora=>, and
(ii)) a >b <= a>banda#b.

Lemma 2.2.28. Let a,b € N. Then

(i) a+1>a, and
(i1) a <b < a+1<bh.

Proposition 2.2.29 (Trichotomy of order on N). Let a,b € N. Then exactly
one of the these holds: a < b, a ="b, ora > b.

Corollary 2.2.30 (Order properties on N). Let a,b,c € N. Then

(1) (transitivity) a < b and b <c¢ = a <c,
(i1) (addition preserves order) a <b = a+c<b+c¢, and
(111) (multiplication by positives preserves order) a < b and ¢ is positive
— ac < be.

Corollary 2.2.31 (Cancellation law for multiplication on N). Let a,b,c € N
such that ¢ # 0 and ac = bc. Then a = b.
Definition 2.2.32 (Even and odd naturals). An object m is called

(i) an even natural iff there exists an n € N such that m = 2n, and
(ii) an odd natural iff there exists an n € N such that m = 2n + 1.
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Remark 2.2.33. Axiom of substitution obeyed.
Proposition 2.2.34 (Properties of odds and evens). Let n € N. Then

(i) nis an odd natural => n+1 is an even natural,
(it) n is an even natural = n+ 1 is an odd natural,
(111) n is an odd natural or an even natural, but not both.

Remark 2.2.35. For m € N and a property P(i) pertaining to any i € N,
we'll write “P(7) holds for each i < m” to mean “for each natural number i
we have that i« < m = P(i)”. Similar remarks for the existential quantifier
and for other possible generalizations.

Proposition 2.2.36 (Equivalent forms of induction). The following are all
equivalent to the principle of induction:

(i) (Induction from base case mg). Let my € N and P(m) be a property
pertaining to any m € N such that P(mg) holds and for each m € N,
we have that P(m) = P(m++1). Then P(m) holds for each m > my.

(i1) (Strong induction). Let my € N, and P(m) be a property pertaining to
any m € N such that for each m > mq, we have that P(m) follows if
P(m') holds for each 0 < m' < m. Then P(m) holds for each m > my.

(111) (Backwards induction). Let mo € N and P(m) be a property pertaining
to any m € N such that P(mg) holds and for each m € N, we have that
P(m+1) = P(m). Then P(m) holds for each m < my.

(iv) (Principle of infinite descent). Let P(n) be a property pertaining to any
n € N such that for every n € N, we have that P(n) = there ezists
an m € N such that P(m) holds and m < n. Then P(n) is false for all
n € N.

(v) (Well ordering principle). Let S be a set such that S C N and S # 0.
Then there exists a unique n € S such that n < x for each x € S.

Proposition 2.2.37 (Euclid’s division lemma). Let n,q € N such that q is
a positive natural. Then there exist unique m,r € N such that n = mq + r
and 0 < r <q.

Lemma 2.2.38 (Exponentiation on N). Let m € N. Then there exists a
unique function f such that f: N — N so that f(0) = 0 and f(n+1) = f(n)m
for each n € N.

Remark 2.2.39. This allows to denote f(n) by m™ for each n € N. Axiom
of substitution obeyed.



Chapter 3

Set theory

3.1 Fundmentals

May 8, 2021
Axiom 3.1 (Sets). Sets are objects.

Axiom 3.2 (“Element of” relation). For any objects x, A, we have that
re€A = Aisa set.

Axiom 3.3 (Equality of sets). Let A, B be sets and for any object x, let
r€A < xe€B. Then A= B.

Axiom 3.4 (Empty set). There exists a set A such that for any object x, we
have x ¢ A.

Remark 3.1.1. It follows that existence above can be strengthened to unique
existence, allowing to denote A by ().

Remark 3.1.2. Uniqueness of objects is implicitly assumed to be uniqueness
up to equality for that class of objects.

Definition 3.1.3. (i) An object A is called nonempty iff A # ().
(ii) For an object A, we write “A is a nonempty set” iff A is nonempty and
Ais a set.

Remark 3.1.4. Axiom of substitution obeyed.

Lemma 3.1.5 (Single choice). Let A be a nonempty set. Then there ezists
an object v € A.
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Axiom 3.5 (Singletons and pair sets). Let a, b be objects. Then

(i) (singletons) there exists a set X such that for any object x, we have
reX << zr=a, and

(11) (pair sets) there exists a set'Y such that for any object y, we havey € Y
<~ y=aory=nh.

Remark 3.1.6. Existence can again be strengthened to unique existence in
both of the above, allowing to denote X and Y respectively as {a} and {a, b}.
This also obeys axiom of substitution.

Remark 3.1.7. (ii) implies (i).

Axiom 3.6 (Pairwise unions). Let A, B be sets. Then there exists a set X
such that for any object x, we have v € X <= x € A orxz € B.

Remark 3.1.8. Existence again can be strengthened to unique existence,
allowing to denote X by A U B This also obeys axiom of substitution.

Lemma 3.1.9. Let a, b be objects. Then {a} U {b} = {a,b}.

Remark 3.1.10. Axiom 3.5 (i) (singletons) and Axiom 3.6 (pairwise unions)
together imply Axiom 3.5 (ii) (pair sets).
Definition 3.1.11 (Subsets). For any objects A, B, we write

(i) “AC B”,or “B 2 A”,iff A and B are sets and for any object x, we
have r € A = x € B, and
(i) “AC B", or "B A”,iff AC B and A # B.

Remark 3.1.12. Obeys axiom of substitution.
Corollary 3.1.13. Let A be a set. Then ) C A.

Lemma 3.1.14. Let A, B be sets and A C B. Then there exists an object
x such that x € B, but x ¢ A.

Proposition 3.1.15 (Sets are partially ordered by C). Let A, B, C be sets.
Then

(i) (reflexive) A C A,

(1) (transitive) AC B and BCC = ACC, and

(11i) (anti-symmetric) AC B and BC A = A= B.

Remark 3.1.16. Some notes on properties:
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(i) Properties are formed by constant symbols, function symbols, atomic
relations, and logical connectives and quantifiers.

(ii) Suppose P(z) is a predicate symbol, and A is a set. We then write
“P(x) pertains to any x € A” iff for any object =, we have P(x) =
x € A. Similar comments when “pertains to” is followed by some
objects of specified types, possibly mentioned to satisfy some other
conditions.

Axiom 3.7 (Specification). Let A be a set and P(x) be a property pertaining
to any x € A. Then there exists a set X such that for any object x, we have
reX <= x €A and P(x) holds.

Remark 3.1.17. Existence above can be again strengthened to unique ex-
istence, allowing to denote X by {x € A : P(z)}. Axiom of substitution
satisfied.

Remark 3.1.18. If we can show that a set exists (for instance, {0} exists
because of Axioms 2.1 (natural numbers) and 3.5 (singletons and pair sets);
one can also use Axiom 3.9 (infinity)), then Axiom 3.7 (specification) implies
Axiom 3.4 (empty set). Further, due to Axiom 3.7 (specification), Axiom 3.5
(singletons and pairs) and Axiom 3.6 (pairwise unions) can formulated with
“ <=7 instead of “ <= ".

Lemma 3.1.19 (Pairwise intersections). Let A and B be sets. Then there
exists a unique set X such that for any object x, we havex € X <= x € A
and x € B.

Remark 3.1.20. This lets us denote X by AN B. Obeys axiom of substi-
tution.

Definition 3.1.21 (Disjoint sets). Objects A and B are called disjoint sets
iff A and B are sets, and AN B = (.

Lemma 3.1.22 (Difference sets). Let A and B be sets. Then there exists a

unique set X such that for any object x, we have x € X <= x € A and
r ¢ B.

Remark 3.1.23. This lets us denote X by A\ B. Axiom of substitution
satisfied.

Proposition 3.1.24 (Sets form a Boolean algebra). Let A, B, C, X be sets.
Then
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(1) (minimal element) AUQ = A and AN =0,
(17) (maximal element) AC X — AUX =X and ANX = A,

(
(
(1i1) (identity) AUA=ANA=A,
(iv) (commutativity) AUB=BUA and ANB=BNA,
(v) (associativity) AU(BUC) = (AUB)UC and AN(BNC) = (ANB)NC,
(vi) (distributivity) AU(BNC)=(AUB)N(AUC) and AN(BUC) =
(ANB)U(ANCO),
(vii) (partition) AC X = AU(X\A)=X and AN (X\A) =0, and
(viii) (De Morgan laws) X \ (AUB) = (X \A)U(X\B) and X\ (ANB) =
(

X\ A)U(X\ B).

Remark 3.1.25. (v) allows to denote AU (BUC) and (AU B)UC both by
AUBUC,and AN (BNC)and (ANB)NC both by ANBNC.

Proposition 3.1.26. Let A, B be sets. Then these are equivalent: A C B,
AUB=B,and ANB=A.

Proposition 3.1.27. Let A, B, C be sets. ThenC C A,B <— (C C AN B,
and A, BCC <— AUBCC(C.

Proposition 3.1.28 (Absorption laws). Let A, B be sets. Then AU(ANB) =
AN(AUB) =A.

Proposition 3.1.29. Let A, B, X be sets such that AUB = X and ANB =
). Then A= X\ B and B= X\ A.

Proposition 3.1.30. Let A, B be sets. Then (A\B)N(ANDB)=(ANB)N
(B\A)=(B\A)N(A\B)=0, and (A\ B)U(ANB)U(B\ A)=AUB.

Axiom 3.8 (Replacement). Let A be a set and P(x,y) be a property per-
taining to any x € A and any object y such that for each x € A, there is at
most one object y such that P(x,y) holds. Then there exists a set X such
that for any object y, we have y € X <= P(x,y) holds for some x € A.

Remark 3.1.31. It follows that above holds with “exists” replaced with
“exists a unique”, “X” replaced with “X"” and “ <= " replaced with “ <=
7. This allows to denote X’ by {y : P(x,y) for some z € A}. Obeys axiom
of substitution.

Remark 3.1.32. Axiom 3.8 (replacement) implies Axiom 3.7 (specification).
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Remark 3.1.33. If f: A — B, then we abbreviate {y : y = f(z) for some x € A}
by {f(x):x € A}.

Axiom 3.9 (Infinity). There ezists a set X such that for any object x, we
have x € X <= x is a natural number.

Remark 3.1.34. It follows that the above holds with “exists” replaced with
“exists a unique”, “X” replaced with “X’” and “ <= " replaced with “ <=
7. This allows to denote X’ by N.

3.2 Russel’s Paradox

May 9, 2021

Axiom (not to be used) 3.1 (Universal specification). Let P(x) be a
property pertaining to any object x. Then there exists a set X such that for
any object x, we have x € X <= P(x).

Remark 3.2.1. Existence above can be strengthened to unique existence
(using only Axiom 3.3 (equality of sets)), allowing to denote X by {z : P(z)}.

Remark 3.2.2. Axiom (not to be used) 3.1 (universal specification) implies
Axioms 3.4 (empty set) to 3.9 (infinity).

Remark 3.2.3. Axiom (not to be used) 3.1 and Axiom 3.3 (equality of sets)
imply:
(i) Russel’s paradox: There exists a unique set X such that for any object
x, we have © € X <= xis aset and x ¢ z. Further, for any such set
X', we have X' € X' <—= X' ¢ X'
(ii) (Universal set). There exists a unique set Y such that for any object
y, we have y € Y <= 1y is a an object. This allows to denote Y by
(2. We have that €2 € Q.
(iii) There exists a unique set Z such that for any object z, we have z € Z
<= zis a set. Further, for any such set Z’, we have Z' € Z'.

Remark 3.2.4. (ii) and Axiom 3.7 (specification) imply Axiom (not to be
used) 3.1.

Axiom 3.10 (Regularity). Let A be a nonempty set. Then there exists an
object x € A such that x is not a set, or t N A = ().
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Proposition 3.2.5. Let A and B be sets. Then
(i) A¢ A, and
(i) A¢ B or B¢ A.

Remark 3.2.6. This is readily generalizable to the fact that for any sets,
Ay, ..., A,, it is not the case that A, € A, €--- € A, € A;.

3.3 Functions

May 10, 2021
Axiom 3.11 (Functions). Functions are objects.

Axiom 3.12 (Properties of the relation symbol f: X —Y). (i) Let f be
a function. Then there exist objects X, Y such that f: X — Y.
(ii) Let f, X, Y be objects such that f: X — Y. Then

(a) f is a function and X, Y are sets,
(b) for any objects x, y, OrdIn(x,y; f) — z€ X andy €Y,
(c) for each x € X, there exists a unique y such that OrdIn(z,y; f).
(111) Let f, X, Y, Y’ be objects such that f: X —Y and f: X —Y'. Then
Y =Y.

Axiom 3.13 (Equality of functions). Let f, g, X, Y be objects such that
f,g: X = Y and for any objects x, y, v/, let OrdIn(z, y; f) and OrdIn(z,v'; g)
= y=1vy'. Then f=g.

Axiom 3.14 (Functions defined by functional properties). Let X, Y be sets
and P(x,y) be a property pertaining to any x € X and any y € Y such that
for each x € X, there exists a unique y such that P(x,y) holds. Then there
exists a function f such that f: X — Y and for any objects x, y, we have
OrdIn(z,y; f) = P(z,y).

Lemma 3.3.1. Let f be a function and X, X', Y, Y’ be sets such that
f: X=>Yand f: X' =Y. Then X =X"andY =Y".

Lemma 3.3.2 (Domains and codomains of functions). Let f be a function.
Then there exist unique sets X, Y such that f: X — Y.

Remark 3.3.3. This allows to denote X and Y by dom f and codom f
respectivelty. Axiom of substitution obeyed.
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Corollary 3.3.4. Let f be a function. Then f: dom f — codom f.

Lemma 3.3.5 (Function values at inputs). Let f be a function and x €
dom f. Then there exists a unique y such that OrdIn(z,y; f).

Remark 3.3.6. This allows to denote y by f(z) or f,. Axiom of substitution
obeyed.

Lemma 3.3.7 (Equality of functions). Let f, g be functions. Then f = g
<= dom f = domg, and codom f = codomg, and f(z) = g(x) for each
x € dom f Ndomg.

Lemma 3.3.8 (Functions defined by functional properties). Let X, Y, be
sets and P(x,y) be a property pertaining to any v € X and any y € Y such
that for each x € X, there exists a unique y such that P(x,y) holds. Then
there exists a unique function f such that f: X — Y so that for each v € X,
we have x € dom f and P(z, f(x)) holds.

Lemma 3.3.9. Let f be a function and X, Y be sets. Then f: X — Y
<= dom f = X and codom f =Y.

Lemma 3.3.10. Let P(f,X,Y) be a property pertaining to any function f
and any sets X, Y. Then the following are equivalent:

(1) Let f be a function and X, Y be sets such that f: X — Y. Then
P(f, X.,Y).
(ii) Let f be a function. Then P(f,dom f,codom f).

Lemma 3.3.11 (Function compositions). Let f, g be functions such that
codom f = dom g. Then there exists a unique function h such that h: dom f —
codom g and for each x € dom f, we have f(z) € dom g and h(z) = g(f(x)).

Remark 3.3.12. This allows to denote h by g o f. Axiom of substitution
obeyed.

Lemma 3.3.13 (Function composition is associative). Let f, g, h be func-
tions such that codom f = dom g and codom g = domh. Then (hog)o f =

ho(gof).

Remark 3.3.14. This allows to denote (ho g) o f and ho (go f) both by
hogof.
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Definition 3.3.15 (One-to-one functions). An object f is called an injection
iff f is a function and for each xq,x2 € dom f, we have x; # 23 = f(x1) #

f(x2).

Definition 3.3.16 (Onto functions). An object f is called a surjection iff f
is a function and for each y € codom Y, there exists an z € dom f such that

y = f(z).

Definition 3.3.17 (Bijections). An object f is called a bijection iff f is both,
an injection and a surjection.

Remark 3.3.18. Axiom of substitution followed by all three above.

Proposition 3.3.19. There exists a unique function f such that f: N —
N\ {0} and f(n) =n+1 for each n € N. Further, such an f is bijective.

Proposition 3.3.20. There exists a unique function f such that f: N — N
such f(n) =n? for each n € N. Further, such an f is injective.

Proposition 3.3.21. Let f, g be functions such that codom f = dom g.
Then

(i) f,g are both injective —> go f is injective,

(i1) f,g are both surjective —> go f is surjective,

(iii) go f is injective —> [ is injective, and

(iv) go f is surjective = g is surjective.

Proposition 3.3.22 (Cancellation law for function compositions). Let f, f ,
g, g be functions such that codom f = codom f = dom g = dom g. Let f be
surjective and g be injective. Then

(i) gof =gof = [ =], and

(ii) gof=gof = g=3.

Lemma 3.3.23 (Inverses of functions). Let f be a bijection. Then there
exists a unique function g such that g: codom f — dom f and for each x €
dom f and for each y € codom f, we have g(y) =z < f(z)=y.

Remark 3.3.24. This lets us denote g by f~!. Axiom of substitution holds.

Proposition 3.3.25 (Empty functions). (i) Let X be a set. Then there
exists a unique function [ such that f: 0 — X.
(it) Let f be a function such that dom f = (). Then
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(a) [ is injective, and
(b) [ is surjective <= codom f = ().

Proposition 3.3.26. Let f be a bijection. Then for each x € dom f, we have
7Y f(x)) =z and for each y € codom f, we have f(f~*(y)) = y. Further,
f~1is also a bijection with (f~1)~' = f.

Proposition 3.3.27 (Inverses of compositions). Let f, g be bijections such
that codom f = domg. Then go f is a bijection. Further, codomg~! =
dom f~' and (go f)™' = ftog™".

Lemma 3.3.28 (Inclusion maps). Let X, Y be sets such that X CY. Then
there exists a unique function f such that f: X — Y and for each x € X,

f(@) =.

Remark 3.3.29. This lets us denote f by tx_,y. Axiom of substitution
obeyed.

Proposition 3.3.30. Let X, Y, Z be sets and f, g be functions. Then
(1)) XCY CZ = 1yLz0lxny = lxoz,
(i) f: X =Y = f=foiux,x=wysyolf,
(iii) f: X =Y and f is invertible = f~lof =1x_x and fof ! =1y .y,
() if f: X — Z and g: Y — Z such that for each v € X NY, we have
f(z) = g(x), then there exists a unique function h such that h: XUY —

Z,houtx_ sxuy = f and hovy_xuy = g. Further, for such a function
h, we have h(z) = f(z) for any x € X and h(y) = g(y) for anyy € Y.

3.4 Images and inverse images

May 11, 2021

Lemma 3.4.1 (Forward images of sets). Let f be a function and S be a set
such that S C dom f. Then there exists a unique set Z such that for any
object y, we have y € Z <= y = f(x) for some x € S.

Remark 3.4.2. This lets us denote Z by f[S]. Axiom of substitution obeyed.

Corollary 3.4.3. Let f be a function. Then f is surjective <= f[dom f] =
codom f.
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Lemma 3.4.4 (Inverse images of sets). Let f be a function and U be a set
such that U C codom f. Then there exists a unique set Z such that for any
object x, we have x € Z <= x € dom f and f(z) € U.

Lemma 3.4.5. Let f be a bijection and S be a set such that S C dom f~!.
Then S C codom f. Let Z be a set such that for any object x, we have x € Z
<= zedomf and f(zx) € S. Then f71[S] = Z.

Remark 3.4.6. Lemmas 3.4.4 and 3.4.5 let us denote Z of Lemma 3.4.4 by
f7HU]. Axiom of substitution obeyed.

Proposition 3.4.7 (Forward images of inverse images and vice versa). Let
f be a function and S, U be sets such that S C dom f and U C codom f.
Then

(1) f[S] C codom f and f~*[f[S]] 2 S, and

(i) U]  dom f and f[f~\[U]] C U.

Proposition 3.4.8 (Properties of forward images). Let f be a function and
A, B be sets such that A, B C dom f. Then

(i) f[AUB] = f[A]U f[B],

(ii) AN B] C f[A]N fB], and
(iii) f[A\ B] 2 fIA]\ f[B].
Proposition 3.4.9 (Properties of inverse images). Let f be a function and
A, B be sets such that A, B C codom f. Then

(i) fHAUB] = fHAJ U B,
(i) fTHANB] = f'[Aln f![B], and
(i) f~A\B] = f7A]\ f7[B].
Proposition 3.4.10 (Forward and inverse images of compositions). Let f,

g be functions such that codom f = domg. Let A, B be sets such that
A Cdom f and B C codomg. Then

(1) (g0 f)A] = glf[A]], and
(ii) (9o f)~'[B] = f'{g~'[BI].
Proposition 3.4.11. Let f be a function. Then
(i) f isinjective <= for each set S, we have S C dom f = f~[f[S]] =

S, and
(i1) [ is surjective <= for each set U, we have U C codom f —

i =v.
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Axiom 3.15 (Sets of functions for given domains and codomains). Let X,
Y be sets. Then there exists a set Z such that for any object f, we have
feZ < f: X—>Y.

Remark 3.4.12. It follows that above holds with “exists” replaced with
“exists a unique”, “Z” replaced with “Z’” and “ <= " replaced with “ <= 7.
This allows to denote Z’ by Y. Axiom of substitution obeyed.

Lemma 3.4.13 (Power sets). Let X be a set. Then there exists a unique set
Z such that for any object Y, we have Y € 7 <— Y C X.

Remark 3.4.14. This allows to denote Z by 2%. Axiom of substitution
obeyed.

Lemma 3.4.15. Let X be a set. Then there exists a bijection f such that
f:{0,1}% — 2%,
Definition 3.4.16. For an object A, we write

(i) “Ais a set of sets” iff A is a set and for each object X, we have that
XeA = Xisaset, and
(i) “A is a nonempty set of sets” iff A is a set of sets and A # ().

Remark 3.4.17. Axiom of substitution satisfied.

Axiom 3.16 (Unions). Let A be a set of sets. Then there exists a set Z such
that for any object x, we have v € Z <= x € X for some set X € A.

Remark 3.4.18. It follows that above holds with “exists” replaced with
“exists a unique”, “Z” replaced with “Z’” and “ <= " replaced with “ <= 7.
This allows to denote Z" by | J A. Axiom of substitution obeyed.

Remark 3.4.19. Axiom 3.16 (unions) and Axiom 3.5 (ii) (pair sets) along
with Axiom 3.1 (sets) imply Axiom 3.6 (pairwise unions).

Corollary 3.4.20. |J0 = 0.

Lemma 3.4.21 (Intersections). Let A be a nonempty set of sets. Then there
exists a unique set Z such that for any object x, we have x € 7 <— x € X
for each set X € A.

Remark 3.4.22. This allows to denote Z by (| A. Axiom of substitution
obeyed.
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Definition 3.4.23 (Partial functions). For objects f, X, Y, we write “f
is a partial function from X to Y” iff there exist objects X', Y’ such that
X' CX,YCYand f: X' =Y.

Remark 3.4.24. Axiom of substitution obeyed.

Proposition 3.4.25 (Sets of partial functions). Let X, Y be sets. Then
there exists a unique set Z such that for any object f, we have f € 7 <=
f s a partial function from X toY.

Definition 3.4.26 (Families). For objects X, I, we write

(i) “{Xa}aer is a family”, or “X is a surjection on domain [” iff X is a
surjection and [ = dom X,
(i) “{Xaltaer is a family of sets” iff {X, }aer is a family and for each o € I,
X, is a set, and
(i) “{Xa}aer is a nonempty family of sets” iff {X,}aes is a family of sets
and [ is nonempty.

Remark 3.4.27. Axiom of substitution obeyed.

Remark 3.4.28. We are not positing families to be a distinct object type
and their equality need thus not be defined.

Lemma 3.4.29 (Unions and intersections of families of sets). Let A be a
surjection and J be a set such that {Aa}acdoma is a family of sets and J C
dom A. Then there exists a set unique Z such that for any object x, we have
x € Z < x €A, for some a € J. Furthermore, if J is nonempty, then
there exists a unique set Z' such that for any object x, we have x € Z' <
x € A, for each a € J.

Remark 3.4.30. This allows to denote Z and Z' by |J
respectively. Axiom of substitution obeyed.

Ay and (s Aa

acJ

Proposition 3.4.31. Let A be a surjection and I, J be sets such that
{As}acrug s a family of sets. Then
(i) (Uael Aa) U (UaEJ Aa) = UaeIUJ Aa, and
(1) If I, J are nonempty, then IUJ is nonempty and (ﬂael Aa)ﬂ(ﬂaej Aa) =
Naerus Aa-
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Lemma 3.4.32. Let A be a surjection and J, X be sets such that { Ay }acdom A
is a family of sets and J C dom A. Then there exists a unique set Z such
that for each object z, we have z € 7 <= =z € X \ A, for some o € J.
Further, if J is nonempty, then there exists a set Z' such that for any object
z, we have z € 7' <= z € X \ A, for each o € J.

Remark 3.4.33. This lets us denote Z and Z’ by . ,(X\Aq) and (., (X\
A,) respectively. Axiom of substitution obeyed.

Proposition 3.4.34 (De Morgan laws for families of sets). Let { Ay }acr be
a nonempty family of sets and X be a set. Then

(1) X\ (UQGIAQ) = Noer(X \ Aa), and
(i1) X\ (Naer Aa) = Uner (X \ Aa).

3.5 Cartesian products
May 20, 2021
Axiom 3.17 (Ordered pairs). Ordered pairs are objects.

Axiom 3.18 (Properties of the function symbol (z,y)). (i) Letx, y be ob-
jects. Then (x,y) is an ordered pair.
(i1) Let x, y, ', y be objects such that (z,y) = (2',y'). Then x = 2’ and
y=1v.
(i1i) Let p be an ordered pair. Then there exist objects x, y such that p =
(z,y).

Remark 3.5.1. The domain of the function symbol “(, )” is all objects in
both slots.

Remark 3.5.2. Consistency of equality for ordered pairs as an equivalence
relation depends on the equality of objects being consistent as equivalent
relations.

Lemma 3.5.3 (Components of ordered pairs). Let p be an ordered pair.
Then there ezist unique objects x, y such that p = (z,y).

Remark 3.5.4. This allows to denote x and y by p; and p, respectively.
Axiom of substitution obeyed.
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Corollary 3.5.5. Let p be an ordered pair. Then p = (p1,p2)-

Lemma 3.5.6. Let p be an ordered pair and x, y be objects. Then p = (x,y)
<~ x=p and y = ps.

Lemma 3.5.7 (Equality of ordered pairs). Let p, ¢ be ordered pairs. Then
pP=q <= p1=q and py = ¢

Lemma 3.5.8. Let P(p,x,y) be a property pertaining to any ordered pair p,
and any objects x, y. Then the following are equivalent:

(i) Let p be an ordered pair and x, y by objects such that p = (x,y). Then

P(p,x,y).
(11) Let p be an ordered pair. Then P(p,pi,p2).

Proposition 3.5.9 (Pairwise Cartesian products). Let X, Y be sets. Then
there exists a unique set Z such that for any object p, we have p € Z <=
p s an ordered pair with p1 € X and ps € Y.

Remark 3.5.10. This allows to denote Z by X x Y. Axiom of substitution
obeyed.

Lemma 3.5.11. Let X, Y be sets and x, y be objects. Then (z,y) € X XY
<— zrzecXandyeyY.

Alternate definition 3.5.12 (Making functions, ordered pairs). (i) For ob-

jects x, y, f, we write “OrdIn(zx,y; f)” iff f is an ordered pair and
(I7 y) € f2-
(ii) For objects f, X, Y, we write f: X — Y iff
(a) X, Y are sets and f is an ordered pair,
(b) fi=Y and fo C X x Y, and
(c) for each = € X, there exists a unique y such that OrdIn(z, y; f).
(iii) An object f is called a function iff there exist objects X, Y such that
f: X =Y.

Remark 3.5.13. Axiom of substitution obeyed by all.

Remark 3.5.14. This does the following:
(i) Functions now become ordered pairs and equality of functions becomes
equality of ordered pairs.
(ii) Axioms 3.11 to 3.14 become theorems.
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Alternate definition 3.5.15 (Making ordered pairs, sets). (i) For objects
z, y, we set (z,y) = {{z},{z,y}}. Alternatively, we could also set
(z,y) = {z,{z,y}}.

(ii) An object p is called an ordered pair iff there exist objects x, y such
that p = (z,y).

Remark 3.5.16. Axiom of substitution obeyed by both.
Remark 3.5.17. This does the following:

(i) Ordered pairs now become sets, and their equality becomes set equality.
(ii) Axioms 3.17 and 3.18 become theorems.

Proposition 3.5.18 (Pairwise Cartesian product distributes over set oper-
ations). Let A, B, C be sets. Then
(i) Ax(BUC) = (AxB)U(AxC) and (AUB)xC = (AxC)U(Bx (),
(i1) Ax(BNC) = (AxB)N(AxC) and (ANB)xC = (AxC)N(BxC),
and
(i1i)) Ax (B\C)=(AxB)\(AxC) and (A\B)xC = (AxC)\(BxC(C).
Proposition 3.5.19. Let A, B, C', D be sets. Then
(i) (Ax BYU(C x D) C (AUC) x (BUC(Q),
(1)) (Ax B)N(C'x D)= (ANC) x (BND), and
(i1i)) (A x B)\ (C x D)2 (A\C) x (B\D).

Proposition 3.5.20. Let A, B, C', D be sets. Then

(i) ACCand BCD = AxBCCxD.
(i) AX B£O and AXx BCCxD = ACC and BC D, and
(iii) Ax B#O and Ax B=CxD = A=C and B=D.

Lemma 3.5.21 (Coordinate functions). Let X, Y be sets. Then there exist
unique functions f, g such that f: X XY = X and g: X xY =Y so that
fl(z,y)) =2 and g((z,y)) =y for each x € X and for each y € Y. Further,
for any such functions f, g, we have (f(p),g(p)) =p for anyp € X xY

Remark 3.5.22. This allows to denote f and g by mxxy_x and Txxy_y
respectively. Axiom of substitution obeyed.

Lemma 3.5.23 (Direct sums of functions). Let f, g be functions such that

dom f = domg. Then there exists a unique function h such that h: dom f N

dOng — codom fXCOdOIng and Tcodom fxcodom g—)codomfoh = f and T'codom f xcodom g—codom g©
h = g. Further, for any such function h, we have h(z) = (f(2), g(2)) for any

z € dom f N'dom g.
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Remark 3.5.24. This lets us denote h by f @ g. Axiom of substitution
obeyed.

Lemma 3.5.25. Let I, J be sets and A, B be surjections such that I C
dom A, and J C dom B, and {A;}icdoma and {B;}icaomp are families of
sets. Then there exists a unique set Z such that for any object z, we have
2 €2 <= z¢€A,NBg for some a € A and for some 3 € B.

Remark 3.5.26. This allows to denote Z by U, s)e1x.(Aa N Bg). Axiom
of substitution obeyed.

Proposition 3.5.27. Let I, J be sets and A, B be surjections such that
I Cdom A, and J C dom B, and {A;}icdom a and {B;}icaom B are families of

sets. Then (U,e; Aa) N (UBEJ Bﬁ> = Uap)erxs(Aa N Bg).

Lemma 3.5.28 (Graph of a function). Let f be a function. Then there exists
a unique set Z such that for any object p, we have p € Z <= p = (z, f(x))
for some x € dom f.

Remark 3.5.29. This allows to denote Z be graph f. Axiom of substitution
satisfied.

Lemma 3.5.30 (Properties of graphs of functions). (i) Let f, g be func-
tions such that graph f = graph g. Then dom f = dom g.
(11) Let f be a function. Then graph f C dom f x codom f and dom f =

Tdom f xcodom f—dom f [graph f] .

Proposition 3.5.31 (Equality of functions via graphs). Let f, g be func-
tions. Then f =g <= codom f = codom g and graph f = graphg.

Proposition 3.5.32 (Determining functions from graphs and codomains).
Let X, Y, G be sets such that G C X XY and for each x € X there exists a
unique object y such that (x,y) € G. Then there exists a unique function f
such that codom f =Y and graph f = G. Further, for such an f, we have
dom f = X.

Remark 3.5.33. Lemma 3.4.13 (power sets) and other axioms imply Axiom
3.15 (sets of functions for given domains and codomains).

Remark 3.5.34. The following, from Definition 3.5.35 to Proposition 3.5.46,
except Corollary 3.5.43 which isn’t used elsewhere in the mentioned part,
requires only Axioms 2.1 and 2.2, and the set theory developed so far. So no
circularity:.
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Definition 3.5.35 (Cutting N at some N). For objects N, A, B, we’ll write
“N cuts N into A and B” iff N € N and A, B are sets, and the following
hold:

(i) AuUB=N.
i) ANB=10
(iii) 0 € A.

v) For every n € N, we have n € B =— n++ € B.

:
(iv) N++ € B.
(v)

(vi) For every n € N, we haven € A\ {N} — n € A.

Remark 3.5.36. Axiom of substitution satisfied.

Remark 3.5.37. (i)-(vi) are independent for each N € N\ {0}. For N =0,
(vi) is implied by the remaining (i)-(v), which are still, however, independent.

Lemma 3.5.38. Let N cut N into A and B. Then N ¢ A = n € A and
n # N for each n € N.

Corollary 3.5.39. Let N cut N into A and B. Then N € A.

Proposition 3.5.40 (Uniqueness of the N-cut on N). Let N € N. Then
there exist unique sets A, B such that N cuts N into A and B.

Remark 3.5.41. This allows to denote A by {0,..., N}. (We have B then
given by N\ {0,..., N}.) Axiom of substitution obeyed.

Lemma 3.5.42. (i) {0,...,0} = {0}.
(i1) Let N € N. Then {0,...,N4++} ={0,..., N} U{N++}.

Corollary 3.5.43. Letn € N. Then {1,...,n} ={i e N:i <n}.

Lemma 3.5.44. Let X be a set, ¢ € X and f be a function such that
f:NxX — X. Let N € N. Then there exists a unique function b such that
b: {0,...,N} = X so that b(0) = ¢ and for each n € {0,...,N} \ {N}, we
have b(n++) = f((n,b(n))).

Proposition 3.5.45 (Recursive definitions, rigorously). Let X be a set, ¢ €
X and f be a function such that f: N x X — X. Then there exists a unique
function a such that a: N — X so that a(0) = ¢ and for each n € N, we have

a(n++) = f((n,a(n))).
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Proposition 3.5.46 (Peano axioms are categorical). Let Azioms 2.1 (nat-
ural numbers), 2.2 (Peano axioms) and 3.9 (infinity) hold for another type
of objects, with O replaced with 0" and ++ replaced with ++', and let the set
containing all and only objects of this new type be denoted N'. Then there
exists a unique function f such that f: N — N such that f(0) = 0" and
f(n++) = f(n)++ for each n € N. Further, any such f is a bijection.

Remark 3.5.47. Now, we can freely use all the properties of N developed
so far.

Remark 3.5.48. We write “let x € A” to abbreviate “let x be an object
and A be a set such that x € A”.

Lemma 3.5.49 (Initial segments of naturals). Let n € N. Then there exists
a unique set X such that for any object m, we have m € X <= m € N
and 1 <m <n.

Remark 3.5.50. This lets us denote X by {1,...n}. Axiom of substitution
obeyed.

Lemma 3.5.51. (i) {1,...,0} = 0.
(i1) Let n € N. Then {1,...,n+1} ={1,...,n} U{n+ 1}.

Lemma 3.5.52. Let m,n € N such that {1,...,m} = {1,...,n}. Then
m = n.

Definition 3.5.53 (Ordered n-tuples). For objects n, X, we write “X is an
ordered n-tuple” iff n € N and X is a surjection on domain {1,...,n}.

Remark 3.5.54. Axiom of substitution obeyed.

Proposition 3.5.55 (Empty tuple). There exists a unique object P such
that P 1s an ordered O-tuple.

Remark 3.5.56. This allows to denote P by ().

Proposition 3.5.57 (n-fold Cartesian products). Let n € N and X be a
surjection on domain {1,...,n} such that X; is a set for each 1 < i < n.
Then there exists a unique set Z such that for any object P, we have P € Z
<= P is an ordered n-tuple such that P; € X; for each 1 <1 <n.

Remark 3.5.58. This allows to denote Z by [/, X;. Axiom of substitution
obeyed.
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Proposition 3.5.59. Let X be a surjection on domain {1,...,0}. Then X;
is a set for each 1 <i <0 and [[_, X; = {0}.

Lemma 3.5.60. Let A be a set and x be an object. Then there exists a
unique function [ such that f: A — {x}.

Proposition 3.5.61. Let n € N and X be a set. Then there exists a unique
set Z such that for any object P, we have P € Z <= P is an ordered
n-tuple such that P; € X for each 1 < i <n.

Remark 3.5.62. This allows to denote Z by [[_; X, or X". Axiom of
substitution obeyed.

Proposition 3.5.63. Let X be a set. Then X° = {()}.
May 27, 2021

Lemma 3.5.64 (Finite choice). Let n € N and X be a surjection on domain
{1,...,n} such that n > 1 and X; is a nonempty set for each 1 < i < n.
Then ], X; is nonempty.

Proposition 3.5.65. Let n € N and X be a surjection on domain {1,...,n}
such that X; is a set for each 1 < i < n. Then H?Zl Xi=0 << X, =10
for some 1 < i <n.

Proposition 3.5.66 (Generalized recursive definitions). Let X be a set, and
c € X and {gn}tnen be a family such that g, is a function for each n € N
such that g,: X" — X. Then there exists a unique function h: N — X
such that h(0) = ¢ and for each n € N, and for any function P such that P
is an ordered (n+ 1)-tuple P so that P41 = h(i) for each 0 < i < n, we have
h(n+1) = g.(P).

Further, for any n € N, such a function P is unique.

Remark 3.5.67. The primitive object types so far:
(i) Natural numbers
(ii) Sets
(iii) Functions
(iv) Ordered pairs

Remark 3.5.68. Primitive relations and function symbols and constants so
far:
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(i
(ii
(i
(iv

, ++, equality for naturals
€, equality for sets
f: X =Y, OrdIn, equality for functions
(x,y), equality for ordered pairs

— — N

Remark 3.5.69. Using Alternate definitions 3.5.12 and 3.5.15, we can elim-
inate the last two items in both lists above.

3.6 Cardinality of sets

June 2, 2021

Definition 3.6.1 (Equal cardinalities). For objects X, Y, we write “X and
Y have equal cardinality” iff X, Y are sets and there exists a bijection f such
that f: X — Y.

Remark 3.6.2. Axiom of substitution obeyed.

Proposition 3.6.3 (N, odds, and evens are equinumerous). (1) N and {2n :
n € N} have equal cardinality.
(i) N and {2n + 1 : n € N} have equal cardinality.

Proposition 3.6.4 (“Equal cardinality” is an equivalence relation). Let X,
Y, Z be sets. Then
(i) (reflexivity) X and X have equal cardinality,
(1) (symmetry) X and Y have equal cardinality —> Y and X have equal
cardinality, and
(111) (transitivity) X and Y have equal cardinality, andY and Z have equal
cardinality = X and Z have equal cardinality.

Definition 3.6.5 (Sets having n elements). For objects X, n, we write “X
has n elements” or “X has cardinality n” iff n € N, and X and {1,...,n}
have equal cardinality.

Definition 3.6.6 (Finite sets). An object X is called a finite set iff there
exists an object n such that X has n elements.

Remark 3.6.7. Axiom of substitution obeyed by both.

Lemma 3.6.8. Let X be a set. Then X =0 <= X has 0 elements.
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Lemma 3.6.9. Let n € N. Then {i € N:i <n} hasn elements.

Lemma 3.6.10. (i) {ie N:i <0} =0.
(i1) Letn € N. Then {ie N:i<n+1}={ieN:i<n}U{n}.

Lemma 3.6.11. Let X, Y be sets having equal cardinality. Let xqg € X and
yo €Y. Then X \ {zo} and Y \ {yo} have equal cardinality.

Proposition 3.6.12. Let m,n € N, and {1,...,m} and {1,...,n} have
equal cardinality. Then m = n.

Corollary 3.6.13. Letn € N, X be a set having n+1 elements and xq € X.
Then X \ {xo} has n elements.

Corollary 3.6.14 (Cardinality of finite sets). Let X be a finite set. Then
there exists a unique n € N such that X has n elements.

Remark 3.6.15. This allows to denote n by #(X). Axiom of substitution
obeyed.

Definition 3.6.16. An object X is called an infinite set iff X is a set and
X is not a finite set.

Remark 3.6.17. Axiom of substitution obeyed.

Lemma 3.6.18 (Finite sequences in N are bounded). Let n € N and f be
a function such that f: {1,...,n} — N. Then there ezists an M € N such
that f(i) < M for each 1 <1i < n.

Corollary 3.6.19 (Finite subsets of N are bounded). Let X be a finite set
such that X C N. Then there exists an M € N such that M > i for each
1€ X.

Theorem 3.6.20. N s an infinite set.

Lemma 3.6.21. Let P(n,Y") be a property pertaining to any n € N and any
set Y. Then the following are equivalent:

(i) Let n € N and X be a set having n elements. Then P(n,X).
(ii) Let X be a finite set. Then P(#(X), X).

Lemma 3.6.22. Let X, Y be sets with equal cardinality such that X is finite.
Then'Y s also finite and #(X) = #(Y).
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Proposition 3.6.23 (Properties of cardinalities of finite sets). (i) Let X
be a finite set and xo ¢ X. Then XU{xo} is a finite set and #(X U {xo}) =
#(X) + 1.
(i) Let X, Y be finite sets. Then X UY and X NY are finite sets and
B(XUY)+ (X NY) = #(X) + #(V).
(111) Let X be a finite set and Y C X. Then'Y is finite and #(Y) < #(X).

Lemma 3.6.24. Let X be a set and f be a function such that dom f = X
and f 1s not injective. Let xg € X and f o ix\(z9}»x be injective. Then

(o) € FIX\ {zo}].

Proposition 3.6.25 (Cardinalities of images of finite domains). Let X be a
finite set and f be a function such that dom f = X. Then f[X] is a finite
set and

(i) f is an injection = #(f[X]) = #(X), and

(11) f is not an injection = #(f[X]) < #(X).

Lemma 3.6.26. Let X be a set and a be an object. Then X and {a} x X
have equal cardinality.

Proposition 3.6.27 (Cardinalities of Cartesian products of finite sets). Let
X, Y be finite sets. Then X XY is a finite set with #(X x Y) = #(X)#(Y).

Lemma 3.6.28 (Cardinality of singletons). Let a be an object. Then {a} is
a finite set with #({a}) = 1.

Lemma 3.6.29. Let X, Y be sets and xo € X. Then YX and YX\M#0} x vV
have equal cardinality.

Proposition 3.6.30 (Cardinalities of function sets for finite domains and
codomains). Let X, Y be finite sets. Then Y is a finite set with #(YX) =
#(y)FH.

Proposition 3.6.31. Let A, B, C be sets. Then
(i) A x B and B x A have equal cardinality,

(i) (CB)A and CP*4 have equal cardinality, and
(iii)) ANB =0 = OB x C4 and CPY have equal cardinality.

Lemma 3.6.32. Let myn € N. Set X ={i e N:m+1<i<m-+n}.
Then
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(i) X has n elements, and
(i) {1,....m}NX=0.

Remark 3.6.33. One can prove the obviously corresponding properties of
naturals using the above.

Definition 3.6.34 (Less or equal cardinalities). For objects X and Y, we
write “X has cardinality less than or equal to that of Y” iff there exists an
injection f such that f: X — Y.

Remark 3.6.35. Axiom of substitution obeyed.

Proposition 3.6.36. Let X, Y be finite sets. Then X has cardinality less
than or equal to that of Y <= #(X) < #(Y).

Proposition 3.6.37. Let A, B be sets such that A # () and A has cardinality
less than or equal to that of B. Then there exists a surjection g such that
g: B— A.

-----

.....

Proposition 3.6.39 (Pigeonhole principle). Let n € N and A be a surjection
on domain {1,...,n} such that A; is a finite set for each 1 < i <mn. Then
(i) Ul A; is finite, and
(ii) #(U, Ai) >n = #(A;) > 2 for some 1 < i <n.



Chapter 4

Integers and rationals

4.1 The integers
June 3, 2021
Axiom 4.1 (Integers). Integers are objects.

Axiom 4.2 (Properties of the function symbol a—=b). (i) Let a,b € N.
Then a—1>b is an integer.
(11) Let a,b,c,d € N. Then a—b =c—d <= a+d=c+0.
(111) Let p be an integer. Then there exist a,b € N such that p = a—1Db.

2

Remark 4.1.1. The domain of the function symbol “ — 7 is naturals in

both slots.

Lemma 4.1.2 (Consistency of equality of integers as an equivalence rela-
tion). Let a,b,c,d,e, f € N. Then

(i) (reflexivity) a—b = b—a,

(it) (symmetry) a—0b = c—d = c¢—d = a—1Db, and

(111) (transitivity) a—b=c—d and c—d =e—f = a—b=e—f.

Definition 4.1.3 (Equivalence relations on sets). For objects R and X, we
write “R is an equivalence relation on X7 iff X is a set, R C X x X, and for
each z,y, z € X, we have
(i) (reflexivity) (x,x) € R,
(ii) (symmetry) (z,y) € R = (y,z) € R, and
(iii) (transitivity) (z,y),(y,2) € R = (z,2) € R.

32
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Definition 4.1.4 (Equivalence relations). An object R is called an equiv-
alence relation iff there exists an object X such that R is an equivalence
relation on X.

Remark 4.1.5. Axiom of substitution obeyed by both.

Lemma 4.1.6 (Domains of equivalence relations). Let R be an equivalence
relation. Then there exists a unique set X such that R is an equivalence
relation on X.

Remark 4.1.7. This allows to denote X by dompg. Axiom of substitution
obeyed.

Lemma 4.1.8. Let P(R, X) be a property pertaining to any sets R, X. Then
the following are equivalent:
(i) Let R, X be sets such that R is an equivalence relation on X. Then
P(R,X).
(ii) Let R be an equivalence relation. Then P(R,domg).

Lemma 4.1.9. Let R be an equivalence relation. Then dompg = {p; : p € R}.

Lemma 4.1.10 (Equivalence classes). Let R be an equivalence relation and
x € dompg. Then there exists a unique set Z such that for any object z, we
have z € Z <= (z,z) € R.

Remark 4.1.11. This allows to denote Z by [z]g. Axiom of substitution
obeyed.

Lemma 4.1.12. Let R be an equivalence relation and x,y € domg. Then
[z]lr =ylr = (z,y) € R.

Definition 4.1.13 (Partitions of sets). For objects C, X, we write “C' is a
partition on X” iff X is a set and
(i) ¢ C 2%\ {0},
(i) JC = X, and
(iii) for all sets A, B € C', we have A# B = AN B = .

Remark 4.1.14. Axiom of substitution obeyed.

Lemma 4.1.15 (Partitions induced by equivalence relations). Let R be an
equivalence relation. Then there exists a unique set Z such that for any object
A, we have A € Z <= A = [z]|g for some x € dompg. Further, such a set
Z is a partition of dompg.
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Remark 4.1.16. This allows to denote Z by party. Axiom of substitution
obeyed.

June 4, 2021

Lemma 4.1.17 (Equivalence relation for integers). There exists a unique set
Z such that for any object p, we have p € Z <= p € (N xN) x (N x N)
and (p1)1 + (p2)2 = (p2)1 + (p1)2. Further, such a set Z is an equivalence
relation on N x N.

Remark 4.1.18. This allows to denote Z be Ry.

Alternate definition 4.1.19 (Making integers, sets). (i) For any a,b €
N, we set a—>b = [(a, b)]r,.
(ii) An object p is called an integer iff p = a—2> for some a,b € N.

Remark 4.1.20. Axiom of substitution satisfied by both.

Remark 4.1.21. This does the following:

(i) Integers become sets, and their equality is now set equality.
(ii) Axioms 4.1 and 4.2 now become theorems

Lemma 4.1.22 (Set of integers). There exists a unique set X such that for
any object x, we have x € X <= x is an integer.

Remark 4.1.23. This allows to denote X by Z.
June 16, 2021

Lemma 4.1.24 (Addition on Z). Let p,q € Z. Then there ezists a unique
r € Z such that there exist a,b,c,d € N such that p = a—>0b, and ¢ = c—d
andr = (a+c)—(b+d).

Remark 4.1.25. Because of Axiom 4.2, the above lemma is equivalent to

this: Let p,q € Z. Then there exists a unique r € Z such that for each

a,b,c,d € N, we have that p=a—band g=c—d = r=a+c—b+d.
Similar remarks for others.

Remark 4.1.26. This allows to denote r by p + ¢. Axiom of substitution
obeyed.
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Lemma 4.1.27. Let a,b,c,d,d’ |V, c,d € N such that a—b = o'—10V and
c—d = —d'. Then (ac+ bd)—(ad + bc) = (d'c+Vd)—(d'd+b'c) =
(d/d +bd)—(dd + V).

Lemma 4.1.28 (Multiplication on Z). Let p,q € Z. Then there exists a

unique v € 7Z such that there exist a,b,c,d € N such that p = a—0>b, and
q=c—d and r = (ac + bd)— (ad + bc).

Remark 4.1.29. This allows to denote r by pg. Axiom of substitution
obeyed.

Lemma 4.1.30 (Negation on Z). Let p € Z. Then there exists a unique
q € Z such that there exist a,b € N so that p = a—>b and ¢ = b—a.

Remark 4.1.31. This allows to denote ¢ by —p. Axiom of substitution
obeyed.

Corollary 4.1.32. Let a,b,c,d € N. Then

(1) (a—>b) + (c—d) = (a + ¢)—(b+ d),
(it) (a—1>b)(c—d) = (ac + bd)— (ad + bc), and
(i1i) —(a—>b) = b—a.

Proposition 4.1.33 (Z forms a commutative ring). Let p,q,r € Z. Then

p+q=q+p,
(p+q)+r=p+(g+r),
p+(0—0) =p,
p+(=p) =0—0,
pq = qp,
(pg)r = plqr),
p(1—0) = p, and
plg+7)=pg+pr.

Remark 4.1.34. For any p,q € Z, we set p — q = p + (—¢q). Negation
precedes over subtraction.

Corollary 4.1.35. Let a,b € N. Then a—>b = (a—0) — (b—0).

Lemma 4.1.36. Let p,q € Z. Then
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(i) —p = (=(1—0))p,

(i) =(p+q) =—-p—aq,

(iir) —(pq) = (=p)q, and

(iv) —(=p) =p.

Proposition 4.1.37 (Z has no zero divisors). Let p,q € Z such that pqg =
0—0. Then p=0—~0 or ¢ = 0—0.

Corollary 4.1.38 (Cancellation law for multiplication on Z). Let p,q,r € Z
such that r # 0—0 and pr = qr. Then p = q.

Definition 4.1.39 (Positive and negative integers).
(i) An object p is called a positive integer iff p = n—0 for some positive
natural n.
(ii) An object p is called a negative integer iff p = 0—n for some positive
natural n.

Remark 4.1.40. Axiom of substitution obeyed.
Corollary 4.1.41 (Characterizing positive and negative integers). Let p €
Z. Then

(i) p is a positive integer <= —p is a negative integer, and

(i1) p is a negative integer <= —p is a positive integer.

Proposition 4.1.42 (Sums and products of positives are positive). Let p, q
be positive integers. Then p + q and pq are positive integers.

Proposition 4.1.43 (Trichotomy for Z). Let p € Z. Then ezactly one of
the following holds:

(i) p is a positive integer.
(ii) p = 0—0.
(11i) p is a negative integer.
Definition 4.1.44 (Order on Z). For objects p, q, we write
(i) “p>¢q”, or “g<p”,iff p,q € Z and p — ¢, is a positive integer, and
(ii) “p>¢q", or “¢ <p”,iff p,q € Z and p — g = n—0 for some n € N.

Remark 4.1.45. Axiom of substitution obeyed. Strictly, a different symbol
should’ve been used.

Corollary 4.1.46 (Characterizing “ > " and “>"). Let p,q € Z. Then
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(i) p>q < p>qorp=q.
(i) p>q < p>qandp+#q.

Lemma 4.1.47. Let p,q € Z. Thenp < q <= p+ (1—0) <q.

Corollary 4.1.48 (Order properties for Z). Let p,q,r € Z. Then
(1) (transitivity) p >q and ¢ >r = p>r,
(i1) (addition preserves order) p >q¢ = p+r >q+r,
(117) (multiplication by positives preserves order) p > ¢ and r is a positive
integer = pr > qr,
(iv) (negation reverses order) p > q¢ — —p < —q, and
(v) (trichotomy) ezxactly one of these holds: p < q, p =gq, or p > q.

Proposition 4.1.49 (Embedding N in Z). There exists a unique function f
such that f: N — Z so that f(n) = n—0 for each n € N. Further, for such
a function f, for all m,n € N, we have

(1) m=n <= f(m) = f(n),

(i) f(0) =0—0, and

(iit) f(m4+) = f(m) + f(04+).

Remark 4.1.50. This allows to set ng := f(n) for each n € N.

Corollary 4.1.51 (Properties of embedding). Let m,n € N and p € Z.
Then

(i) (m+n), =mgz+ng,

(it) (mn), = mzng,

(11i) m 1is a positive natural <= my is a positive integer,

(iv) m >n <= mg > ng,

(v) m>n < mg > ng, and

(vi) there exists a unique a € N such that p = az or p = —(az).

Remark 4.1.52. This allows to throw off, in a sense, the symbol “ —
since m—n = my — ny (Corollary 4.1.35).

Definition 4.1.53 (Even and odd integers). An object p is called

(i) an even integer iff there exists a ¢ € Z such that p = 25¢, and
(ii) an odd integer iff there exists a ¢ € Z such that p = 259 + 15.

Remark 4.1.54. Axiom of substitution obeyed.
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Proposition 4.1.55 (Embedding consistent with odds and evens). Letm,n €
N. Then

(i) m is an odd natural <= f(m) is an odd integer, and
(1)) m is an even natural <= f(m) is an even integer.

Proposition 4.1.56 (Properties of odds and evens). Let p € Z. Then

(i) p is an odd integer =—> p+ 1z and p — 1z are even integers,
(i1) p is an even integer —> p+ 1z and p — 1z are odd integers, and
(111) p is an even integer or an odd integer, but not both.

Proposition 4.1.57 (Well-ordering principle for Z). Let S be a set such
that S C Z, and S # () and there exists an m € Z such that m < x for each
x € S. Then there exists a unique p € S such that p < x for each x € S.

Remark 4.1.58. This allows to denote p by min(.S). Axiom of substitution
obeyed.

Lemma 4.1.59 (Embedding consistent with min). Let S be a set such that
SCNand S #0 and set ' :=={ng :n € S}. Then ' CZ, and S" # () and
there exists an m € 7Z such that m < x for each x € S’, and we also have

min(S), = min(S’).

4.2 The rationals

June 19, 2021
Axiom 4.3 (Rationals). Rationals are objects.

Axiom 4.4 (Properties of the function symbol “a//b”). (i) Let a,b € Z
such that b # 0z. Then a//b is a rational.
(11) Let a,b,c,d € Z such that b,d # 0z. Then a//b= c//d <= ad = cb.
(111) Let r be a rational. Then r = a//b for some a,b € Z such that b # 0.

Remark 4.2.1. The domain of the function symbol “ // 7 is integers in the
first slot and non-zero integers in the second slot.

Lemma 4.2.2 (Consistency of equality of rationals as an equivalence rela-
tion). Let a,b,c,d, e, f € Z such that b,d, f # 0z. Then

(i) (reflexivity) a//b = a//b,
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(i1) (symmetry) a//b=c//d = c¢//d = a//b, and

(111) (transitivity) a//b=c//d and c//d =e//f — a//b=¢]/f.
Lemma 4.2.3 (Equivalence relation for rationals). There exists a unique set
X such that for any object p, we have p € X <= p € (Z x (Z\ {0z}) x

(Z % (Z\ {02})) and (po)(p2)> = (p)a(pr)a. Further, such a set X is an
equivalence relation on Z x (Z \ {0z}).

Remark 4.2.4. This allows to denote X by Rg.

Alternate definition 4.2.5 (Making rationals, sets). (i) For any a € Z,

any b € Z\ {0z}, we set a//b = [(a,b)]r,-
(ii) An object r is called a rational iff » = a//b for some a € Z and some

beZ\ {0z}
Remark 4.2.6. Axiom of substitution obeyed.

Remark 4.2.7. This does the following:

(i) Rationals become sets, and their equality becomes set equality.
(ii) Axioms 4.3 and 4.4 now become theorems.

Lemma 4.2.8 (Set of rationals). There exists a unique set X such that for
any object r, we have r € X <= r is a rational.

Remark 4.2.9. This allows to denote X by Q.

Lemma 4.2.10 (Addition on Q). Let r,s € Q. Then there exists a unique
t € Q such that there exist a,b,c,d € Z, so that b,d,bd # 0z, and r = a//b,
and s = c¢//d and t = (ad + ¢b)//(bd).

Remark 4.2.11. This allows to denote ¢ by » + s. Axiom of substitution
obeyed.

Lemma 4.2.12 (Multiplication on Q). Let r,s € Q. Then there exists a
unique t € Q such that there exist a,b,c,d € 7Z, so that b,d,bd # 0z, and
r=a//b, and s = c//d and t = (ac)//(bd).

Remark 4.2.13. This allows to denote t by rs. Axiom of substitution
obeyed.

Lemma 4.2.14 (Negation on Q). Let r € Q. Then there exists a unique
s € Q such that there exist a,b € 7Z so that b # 0z, and r = a//b and

s = (—a)//b.
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Remark 4.2.15. This allows to denote s by —r. Axiom of substitution
obeyed.

Lemma 4.2.16. Let a,b € Z and b # 0z. Then a//b=0z//17 <= a = 0.

Lemma 4.2.17 (Reciprocation on Q). Let r € Q such thatr # 0z//1z. Then
there exists a unique s € Q such that there exist a,b € Z so that a,b # 0y,
and r =a//b and s = b//a.

Remark 4.2.18. This allows to denote s by r~!. Axiom of substitution
obeyed.

Corollary 4.2.19. Let a,b,c,d € Z and b,d # 0z. Then bd # 0z, and
(1) (a//b) + (¢//d) = (ad + cb)//(bd),
(i) (a//b)(c//d) = (ac)//(bd),
(iii) —(a//b) = (—a)//b, and
(iv) a # 0z = a//b# 0z//1z and (a//b)~' =b//a.

Proposition 4.2.20 (Q forms a field). Let r,s,t € Q. Then

r+s=s+4r,
(r+s)+t=r+(s+1t),
r+(0z//1z) =,
r+ (=r) = 0z//1z,
rs = sr,
(rs)t =r(st),
r(1z//1z) = r,
et =1z//1z if r # 0z//1z, and
r(s+t)=rs+rt.

Remark 4.2.21. For any r,;s € Q, we set r — s := r + (—s). Further, if
s # 0z//1z, we set r/s = rs L.

Corollary 4.2.22. Let p,q € Z such that q¢ # 0z. Then q//1z # 03//15 and
p/la=(p//12)/(a//1z).

Lemma 4.2.23. Let r,s € Q. Then the analogue of Lemma 4.1.36 holds.
Further, if r,s # 0z//1z, then rs, —r,r=1 # 04//1z, and

(i) (rs)=' =r~ts7t
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(i) (—r)~t = —(r"), and
(iii) (r~H~t=r.
Definition 4.2.24 (Positive and negative rationals).
(i) An object r is called a positive rational iff » = p//q for some positive
integers p, q.

(ii) An object r is called a negative rational iff r = a//b for some negative
integer a and some positive integer b.

Remark 4.2.25. Axiom of substitution obeyed.

Corollary 4.2.26 (Characterization of positive and negative rationals). The
analogue of Corollary 4.1.41 holds.

Proposition 4.2.27 (Sums and products of positives are positive). Let r, s
be positive rationals. Then r 4+ s and rs are positive rationals.

Proposition 4.2.28 (Trichotomy for Q). Let r € Q. Then ezactly one of
the following holds:

(i) 7 is a positive rational.

(ii) r = 0z//12.

(111) r is a negative rational.

Definition 4.2.29 (Order on Q). For objects r, s, we write
(i) “r>s",or “s<r” iff r,s € Q and r — s is a positive rational, and
(i) “r > 8", or “s <", iff r;s € Q and r — s = p//q for some positive
integer ¢ and some integer p > 0y.

Remark 4.2.30. Axiom of substitution obeyed. Again a different symbol
should have been used.

Corollary 4.2.31 (Characterizing “ > " and “ > 7). The analogue of Corol-
lary 4.1.46 holds.

Corollary 4.2.32 (Order properties for Q). Let r,s,t € Q. Then along with
the analogue of Corollary 4.1.48, the following hold:

(1) (reciprocation preserves positiveness) r is a positive rational =—>
r # 0z//1z and ' is a positive rational.

(71) (positive reciprocation reverses order) r > s > 0z//1; = r,s #
Oz//lz and s~ > r71 > Oz//lz
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Proposition 4.2.33 (e-characterization of “ < 7). Let z,y € Q. Thenx <y
< z <y+e¢ for each € > Og.

Proposition 4.2.34 (Embedding Z into Q). There ezists a unique function
f such that f: Z — Q so that f(p) = p//1z for each p € Z. Further, for such
an f, for any p,q € Z, we have

(i) p=q <= f(p) = fla),
(i) f(p+q) = f(p) + f(q), and
(iii) f(pq) = f(p)f(q)-

Remark 4.2.35. This allows to set pg = f(p) for each p € Z.

Proposition 4.2.36 (Properties of embedding). Let p,q € Z and r € Q.
Then

(i) (~p)gy = —par
(it) (p — Qg = Py — Qs
(ii1) p is a positive integer <= pg is a positive rational,
(iv) p is a negative integer <= pg s a negative rational,
(v) p>q = py > q,
(vi) p > q <= pgy > qu, and
(vii) there exist a,b € Z such that b # Oy and r = ag /by .

Remark 4.2.37. This allows to throw off, in a sense, the symbol “ // 7 since
p//q = py /qu for non-zero ¢ (Corollary 4.2.22).

Remark 4.2.38. For each n € N, we set ng = (nz)g. The common prop-
erties hold.

4.3 Absolute value and exponentiation
June 23, 2021

Remark 4.3.1. This section will hold for all the ordered fields and not just
Q. (We can’t conclude anything for C for instance.)

Lemma 4.3.2 (Some further order properties for Q). Let z,y,z,w € Q.
Then

(i) t<yand z<w = z+z<y+w, and
(i) Op <z <y and Op < z <w = 0g < xz < Yw.
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Lemma 4.3.3 (Absolute value for Q). Let z € Q. Then there exists a unique
y € Q such that one of the following holds:

(1) x is positive and y = x.

(it) x = 0g and y = Og.
(111) x is negative and y = —x.

Further, for any y € Q, at most one of the above holds.

Remark 4.3.4. This allows to denote y by |z|. Axiom of substitution
obeyed.

Proposition 4.3.5 (Properties of absolute values). Let z,y,z € Q. Then
(1) (non-negativity) |z| > Og,
(11) (non-degeneracy) |z| = 0p <= x = 0g, and
(11i) (absolute values of products) |zy| = |z||y|, and
(iv) (triangle inequality) |z + y| < |z| + |y|.

Corollary 4.3.6 (Further properties of absolute values). Let x,y,e € Q.
Then

(i) (absolute values of negations) |—x| = |z|,

(ii) (absolute values of reciprocals) = # 0g = |z| # 0g and |z7!| = |z|~"
(iii) ||| = [yl < |z +yl,

() |x —y| < 3§ for each 6 > 0g <= x =1y,

(v) y>lz| <= —y<z<y,

(vi) y > |z| <= —y <ax <y and hence, —|z| < z < |z|,
(vii) |z —y| <e <= y—e<ax<y-+e, and
(viii) v —y| <e <= y—e<ax<y+e.

Remark 4.3.7. For any z,y € Q, we set d(x,y) = |z — y|.

Corollary 4.3.8 (Properties of distances). Let ,y,z € Q. Then
(1) (non-negativity) d(z,y) > Og,
(i1) (non-degeneracy) d(z,y) =0g¢ <= x =y, and

(117) (triangle inequality) d(z, z) < d(z,y) + d(y, 2).

Remark 4.3.9. We'll abbreviate “let ¢ € Q such that € > 0g” by “let
e > 0g” for the results, not for axioms or definitions. (Extensible to other
possible generalizations.)

Proposition 4.3.10 (Further properties of distances on Q). Let x,y, z,w €
Q and e,0 > 0g. Then the following hold:
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(i) d(z,y) <& for each € >0y <= x=y.

(ii) d(z,y) <e and d(y,z) <0 = d(z,z) <e+0.
(111) d(z,y) <e and d(z,w) <0 = d(z+z,y+w) <e+0.

() d(z,y) <e = d(zz,yz) <e|z|.

(v) d(z,y) < e and d(z,w) <§ = d(zz,yw) < e|z| + 0|z| + £4.
(vi) d(y,z),d(z,2) <eandy <w <z = d(w,z) <e.

Lemma 4.3.11 (Exponentiation of rationals by naturals). Let x € Q. Then
there exists a unique function f: N — Q such that f(0) = 1g and f(n+1) =
f(n)x for each n € N.

Remark 4.3.12. This allows to denote f(n) by 2" for each n € N. Axiom
of substitution obeyed.

Proposition 4.3.13. Let n € N such that n > 1. Then
(i) (a) nis odd = (—1g)" = —1g,
(b) n is even = (—1g)" = lg,
(ZZ) (OQ)” = OQ, and
(1i7) (1g)" = lg.

Proposition 4.3.14 (Properties of exponentiation by naturals). Let x,y, z €
Q such that z # 0g. Let myn € N and k > 1. Then 2" # Oqg
(1) (xy)" = a"y",
(i1) ™" = gma",
(iii) 2™ = («™)",
() (a) nisodd = (—z)" =—=x
(b) nis even = (—x)" ="
(o) (=) = (=),
(vi) (a) 2" =0¢ <= x=0g andn >0,
(b) x is a positive rational = x™ is a positive rational,
(vii) >y > 0p = 2F > y* > 0g, and
(viii) |z|" = |z"|.

n
)
)

Corollary 4.3.15.
(i) Let x,y > Og and n be a positive natural such that " = y". Then
r=1y.
(i1) Let x € Q and m,n € N such that m < n. Then
(a) Og <z <1lg = 2™ > 2" and,
(b) v >1g = 2" >a™.
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Lemma 4.3.16 (Exponentiation of non-zero rationals by integers). Let x €
Q and p € Z such that x # Og. Then there exists a unique y € Q such that
there exists a positive natural n so that one of the following holds:

(i) p=mngz and y = z".

(ii) p =0z and y = 1g.
(iii) p = —ngz, and 2" # 0g and y = (x™)~ 1.
Further, for any z,y € Q, for any p € Z and for any positive natural, at
most one of the above holds.

Remark 4.3.17. This allows to denote y by zP. Axiom of substitution
obeyed.

Corollary 4.3.18. Let z € Q and n € N such that v # 0g. Then
(i) " =", and
(ii) " # Og and x™"% = (z")~', and in particular, x='2 = 2™,

Proposition 4.3.19. Let p € Z. Then
(i) (a) pis odd = (—1g)? = —1g,
(b) pis even = (—1g)? = lg, and
(ii) (1g)" = 1g-
Lemma 4.3.20. Let x € Q and p € Z such that x # 0g. Then xP # Og.

Proposition 4.3.21 (Properties of exponentiation of non-zero rationals by
integers). Let x,y € Q, and p,q € Z and n € N such that x,y # Og. Then
zy, 2P, —x, x|, 2" # Og, and
(i) ey = 22y,
(ii) xPT1 = xPzl,
(111) xP1 = (xP)9,
(i) (a) pisodd = (—z)’ = —aP,
(b) pis even = (—x)P = 2P,
(v) (z71)P = (") =277,
(vi) x is a positive rational = P is a positive rational,
(vii) p> 0z and x >y > 0g = 2P > y? > (g,
(viii) |z’ = |aP|, and
(ir) (") = (aP)" = x"P.

Corollary 4.3.22. (i) Let x,y > Og, and p € Z such that p # 0z, and
2P =yP. Then x =y.
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(1i) Let x € Q and p,q € Z such that p < q. Then
(a) Op <z <1lg = 2P > 27 and,
(b) v >1g = x> aP.
Lemma 4.3.23 (Embedding consistent with exponentiation). Let m,n € N.
Then (mg)" = (m")q.
Lemma 4.3.24. Let n € N. Then 2" > n.
Corollary 4.3.25. Let N € Z such that N > 0z. Then (2¢)" > Ny

4.4 (Gaps in the rational numbers

June 23, 2021

Lemma 4.4.1 (Rationals surrounded by rationals). Let z € Q and ¢ > 0Og.
Then there exist r;s € Q such thatr < x < s and s —r < .

Lemma 4.4.2 (Q is unbounded). Let x > Og. Then there ezists a y > Og
such that x < y.

Lemma 4.4.3 (N is cofinal in Q). Let r € Q. Then there exists an N € N
such that r < Ng.

Corollary 4.4.4. (i) (Archimedean property of Q). Let € > 0g and N €
N. Then there exists an M € N such that Mge > Ng.
(ii) Let r > Og. Then there exists an N > 1 such that Ng # 0Og and
r> 1Q/N@ > OQ.
(111) (Floor function for Q). Let r € Q. Then there ezists a unique p € Z
such that poy <1 < (p+1z)q-
(iv) (Rationals between rationals). Let x,y € Q such that x < y. Then
there ezists an r € Q such that v < r < y.

Remark 4.4.5. (iii) allows to denote p by |r|. Axiom of substitution obeyed.
Lemma 4.4.6. Let r > —1g and m € N. Then (1g + )™ > 1g + mgqr.

Corollary 4.4.7 (Archimedean property for natural exponentiation on Q).
Let r > 1g and N € N. Then there exists an m € N such that r™ > Ng.

Proposition 4.4.8 (Square of no rational equals 2). Let r € Q. Then
7“2 7é 2@.

Proposition 4.4.9 (Squares of rationals get arbitrarily close to 2). Let € >
Og. Then there exists a non-negative rational r such that r* < 2g < (r+¢)?.



Chapter 5

The real numbers

5.1 Cauchy sequences

June 30, 2021

Definition 5.1.1 (Sequences of rationals). (i) For any objects a, m, n,

we write “(a;)™,, is a sequence of rationals” iff m,n € Z and a: {i €
Z:-m<i<n}— Q.

(ii) For any objects a, m, we write “(a;)

meZanda:{i€Z:i>m}— Q.

o
=m

is a sequence of rationals” iff

Remark 5.1.2. Axiom of substitution obeyed by both.

Definition 5.1.3 (Cauchy sequences of rationals). For any objects a, m, we
write “(a;)$2,, is a Cauchy sequence of rationals” iff (a;)$°,, is a sequence
of rationals and for each € > 0g, there exists an N > m such that for all
i,j > N, we have |a; — a;| <e.

o0
=m

Remark 5.1.4. Axiom of substitution obeyed.

Proposition 5.1.5 ((1/n)°, is a Cauchy sequence). There exists a unique
function a such that (a;)72,, is a sequence of rationals and for each i > 1z,
we have iy # Og and a; = (igy)™*. Further, for any such a, we have that

(ai)2,, is a Cauchy sequence of rationals.

Definition 5.1.6 (Bounded sequences). (i) For any objects a, m, n, we
write “(a;),. is a bounded sequence of rationals” iff (a;)
quence of rationals and there exists an object M such that for each
m < i <mn, we have |a;| < M.

n

., 1s a se-

47
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(ii) For any objects a, m, we write “(a;)$2,, is a bounded sequence of ra-

tionals” iff (a;)$2,, is a sequence of rationals and there exists an object
M such that for each i > m, we have that |a;| < M.

Remark 5.1.7. Axiom of substitution obeyed by both.

Lemma 5.1.8. Let a be a function, m € Z and n € N such that (a;)7=" is

=m
a sequence of rationals. Then (a;)["" is a bounded sequence of rationals.

Corollary 5.1.9 (Finite sequences of rationals are bounded). Let a be a
function and m,n € Z such that (a;)?_,, is a sequence of rationals. Then

(a;)},, is a bounded sequence of rationals.

Lemma 5.1.10 (Cauchy sequences of rationals are bounded). Let a be a
function and m € 7Z such that (a;)32,, is a Cauchy sequence of rationals.

Then (a;)2,, is a bounded sequence of rationals.

i=m

5.2 Equivalent Cauchy sequences

Definition 5.2.1 (Equivalent sequences of rationals). For objects a, b, m, n,
we write “(a;)2,. and (b;)$2, are equivalent sequences of rationals” iff (a;)22,,
and (b;)52,, are sequences of rationals, and m = n, and for each € > Og, there
exists an N > m,n such that for each ¢ > N, we have that |a; — b;| < e.

Remark 5.2.2. Axiom of substitution obeyed.

Lemma 5.2.3 (Rational sequences that finitely differ are equivalent). Let a,
b be functions and m € Z such that (a;)$2,,, (b;)$2,, are sequences of rationals

and there exists an N > m such that for each 1 > N, we have a; = b;. Then
(a;)$2,, and (b;)2,, are equivalent sequences of rationals.

1=m =m

Proposition 5.2.4. Let x,y € Q such that |y| > lg. Then there exist
unique functions a, b such that (a;);2, , (b:;)§2,, are sequences of rationals
and a, =x+y" and b, = x —y™" for each n > 1z. Further, for any such
functions a, b, we have that (a;);2,, and (b;)2,, are equivalent sequences of

rationals.

Proposition 5.2.5 (Properties of equivalent sequences of rationals). Let a, b
be functions and m € Z such that (a;)$2,, and (b;)2,, are equivalent sequences
of rationals. Then
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(1) (a;)$2,, is a Cauchy sequence of rationals <= (b;)32,, is a Cauchy
sequence of rationals, and
(11) (a;)2,, is a bounded sequence of rationals <= (b;)$2,, is a bounded

sequence of rationals.

5.3 The construction of the real numbers

Axiom 5.1 (Reals). Reals are objects.

Axiom 5.2 (Properties of the function symbol “LIM,, .« a,”). (i) Leta be
an object such that (a;);2,, is a Cauchy sequence of rationals. Then
LIM, o an s a Teal.

(ii) Let a, b be objects such that (a;);2,, and (b;)72,, are Cauchy sequences
of rationals. Then LIM,, o @ = LIMy 00 by <= (a3)2,, and (b;)§2,,
are equivalent sequences of rationals.

(i1i) Let x be a real. Then v = LIM, ., a, for some object a such that

o .
(a;i)2,, is a Cauchy sequence of rationals.

Remark 5.3.1. Domain of the function symbol “LIM,, ,. ,” is any function
a such that (a;)72,, is a Cauchy sequence of rationals.

Lemma 5.3.2 (Consistency of the equality of reals as an equivalence rela-
tion). Let a, b, ¢ be functions such that (a;)2,,, (b:)32,,, (¢:)2, are Cauchy
sequences of rationals. Then
(i) (reflexivity) LIM,, o a, = LIM,, o ay,
(#1) (symmetry) LIM,, o a,, = LIM,, ;oo b, = LIM,, o0 b, = LIM,, o @y,
and
(111) (transitivity) LIM, o @, = LIM,, o0 by and LIM,, o0 by, = LIM,, 00 ¢4,
— LIM, o a, = LIM,, o0 ¢p

Remark 5.3.3. Weset A := {a € QUEZ212} : (g;)22, is a Cauchy sequence of rationals}
to be used in Lemma 5.3.4 and Alternate Definition 5.3.6.

Lemma 5.3.4 (Equivalence relation for reals). There exists a unique set X
such that for any object p, we have p € X <= p € Ax A and ((p1);)24,,
((p2);)i21, are equivalent sequences of rationals. Further, such a set X is an
equivalence relation on A.

Remark 5.3.5. This allows to denote X by Rg.
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Alternate definition 5.3.6 (Making reals, sets). (i) For any a € A, we
set LIM,, 00 @, = [a] Ry
(ii) An object z is called a real iff z = LIM,,_,, a,, for some a € A.

Remark 5.3.7. Axiom of substitution obeyed.
Remark 5.3.8. This does the following:

(i) Reals become sets, and their equality becomes set equality.
(ii) Axioms 5.1 and 5.2 now become theorems.

Lemma 5.3.9 (Set of reals). There exists a unique set X such that for any
object x, we have x € X <= x is a real.

Lemma 5.3.10 (Beginning integers of rational sequences). Let a be a func-
tion such that there exists an m € 7Z such that (a;)2,, is a sequence of

rationals. Then there exists a unique n € Z such that (a;)2, is a sequence
of rationals.

Remark 5.3.11. This allows to denote n be Seqlntg a. Axiom of substitu-
tion obeyed.

Lemma 5.3.12 (Sums and products of sequences of rationals). Let a, b be
functions such that there exists an m € Z so that (a;)2,, and (b;)2,, are

i=m i=m

sequences of rationals. Then Seqlntga = Seqlntg b and there exist unique
functions ¢, d such that (¢;)2seqintgar (di)iseqmntga @7 SqUENces of rationals

and for each i > Seqlntg a, we have ¢; = a; +b; and d; = a;b;.

Remark 5.3.13. This allows to denote ¢ and d by a + b and ab respectively.
Axiom of substitution obeyed.

Lemma 5.3.14 (Negation of sequences of rationals). Let a be a function
such that there exists an m € Z so that (a;)2,, is a sequence of rationals.

Then there exists a unique function c such that (Ci)?iseqlm(@a is a sequence of

rationals and for each i > Seqlntg a, we have ¢; = —(a;).

Remark 5.3.15. This allows to denote ¢ by —a. Axiom of substitution
obeyed.

Lemma 5.3.16 (Reciprocation of non-zero sequences of rationals). Let a be
a function such that there exists an m € Z such that (a;)2,, is a sequence

i=m
of rationals and for each i > m, we have a; # Og. Then there exists a
unique function ¢ such that (¢;)Zgeqmiga 15 @ Sequence of rationals and for

each i > Seqlntg a, we have ¢; = (a;)™".
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Remark 5.3.17. This allows to denote ¢ by a~!. Axiom of substitution
obeyed.

Remark 5.3.18. (i) If a, b are functions such that there exists an m € Z
so that (a;)$2,,, (b:)32,, are sequences of rationals, then we set a — b =
a+(—b).

(ii) If a, b are functions such that there exists an m € Z so that (a;)$2, .,
(b;)s2,, are sequences of rationals and for each i > m, we have b; # Oq,

then we set a/b = ab™".

Proposition 5.3.19 (Sums, products and negations of Cauchy sequences of
rationals are Cauchy). Let a, b be functions and m € Z such that (a;)2,,,
(b;)22,, are Cauchy sequences of rationals. Then ((a+0b),)2,,, ((ab),)2,,,
((—a),)2,, are Cauchy sequences of rationals.

Definition 5.3.20 (Sequences of rationals bounded away from zero). For
any objects a, m, we write “(a;)32,, is a sequence of rationals bounded away
from zero” iff (a;)$2,, is a sequence of rationals and there exists a ¢ > 0Og

such that for every i > m, we have |a|;, > c.
Remark 5.3.21. Axiom of substitution obeyed.

Remark 5.3.22. We'll abbreviate “(a;):2,, is a Cauchy sequence of rationals
and (a;)$2,, is a sequence of rationals bounded away from zero” by “(a;)2,,
is a Cauchy sequence of rationals bounded away from zero”.

Proposition 5.3.23 (Reciprocation of Cauchy sequences of rationals bounded
away from zero are Cauchy). Let a be a function and m € Z such that (a;)$2,,

is a Cauchy sequence of rationals bounded away from zero. Then a; # Oq for

any i >m, and ((a™),)2,, is a Cauchy sequence of rationals bounded away

from zero.

Lemma 5.3.24 (Addition on R). Let z,y € R. Then there exists a unique
z € R such that there exist functions a, b such that (a;)32,,, (bs)i2y,, ((a + b)),
are Cauchy sequences of rationals, and x = LIM,, o @y, and y = LIM,,_, b,

and z = LIM,,_,o (a + D),

Remark 5.3.25. This allows to denote z by x 4+ y. Axiom of substitution
obeyed.
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Lemma 5.3.26 (Multiplication on R). Let z,y € R. Then there exists a
unique z € R such that there exist functions a, b such that (a;)§2, , (b:)§2,,,
((ab);)2,, are Cauchy sequences of rationals, and v = LIM,, ;00 @y, and y =

LIM,, o0 by, and z = LIM,,_, (ab),,.

Remark 5.3.27. This allows to denote z by zy. Axiom of substitution
obeyed.

Lemma 5.3.28 (Negation on R). Let x € R. Then there exists a unique
y € R such that there exists a function a such that (a;)i2,,, ((—a);)i2,, are

Cauchy sequences of rationals, and x = LIM,,_,o a, and y = LIM,,_,o (—a),,.

Remark 5.3.29. This allows to denote y by —z. Axiom of substitution
obeyed.

Lemma 5.3.30 (The constant sequences of 1g’s and Og’s). There exist
unique functions a, b such that (a;)2,,, (b;)i2,, are sequences of rationals

such that for each i > 1z, we have a; = Og and b; = 1g. Further, any such
a, b are Cauchy sequences of rationals.

Remark 5.3.31. This allows to denote a and b by o and 1 respectively.

Lemma 5.3.32 (Characterizing non-zero reals). Let x € R. Then x #
LIM, 00 0n <= there exists a function a such that (a;);2,, is a Cauchy
sequence of rationals bounded away from zero and x = LIM,, o ay,.

Lemma 5.3.33 (Reciprocation on R). Let x € R such that x # LIM,,_,o 0,,.
Then there ezists a unique y € R such that there exists a function a such
that (a;)2,, is a Cauchy sequence of rationals bounded away from zero, and
((a™1),)22y, is a Cauchy sequence of rationals, and v = LIM, . a, and

y =LIM, o (a71), .

Remark 5.3.34. This allows to denote y by z7!. Axiom of substitution
obeyed.

Corollary 5.3.35. Let a, b be functions such that (a;)i2, , (b;)i,, are
Cauchy sequences of rationals. Then ((a +0),)2,,, ((ab),)2,,, ((—a);),,
are Cauchy sequences of rationals with

(i) (LM, 00 @n) + (LIM, o0 b)) = LIM,, o0 (@ + b), |

(i) (LM o0 @) (LIMy o0 ) = LIM, o0 (ab), |
(i) —(LIM, o a,) = LIM, s (—a),,, and
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(w) (a;)2,, is a sequence of rationals bounded away from zero = ((a™1),)2,,

is a Cauchy sequence of rationals, and LIM,, . a, # LIM, . 0, and
(LIMy, 00 @)~ = LIM,, 00 (a™1),,

Proposition 5.3.36 (R forms a field). Let z,y,z € R. Then
rTty=y+uzx,
(r+y)+z=z+(y+2),
v+ <LIM on> —z,
n—oo
x+ (—x) =LIMo,,
n—oo

Ty = Yz,
(zy)z = x(y2),
x(LIM 1n> _—
n—oo
rz ' =LIM1, if v # LIMo,,, and
n—oo n—oo

x(y +2) =ay + xz.

Remark 5.3.37. For any z,y € R, we set ©+ —y = x + (—y). Further, if

y # LIM,, o0 O, We set z/y = xy L.

Lemma 5.3.38. Analogue of Lemma 4.2.23 holds.

Proposition 5.3.39 (LIM,, o, 1/n = LIM,,,», 0). Let a be the function for
which Proposition 5.1.5 holds. Then LIM,, o a, = LIM,, .o Op.

5.4 Ordering the reals

July 1, 2021

Definition 5.4.1 (Sequences of rationals positively and negatively bounded
away from zero). For any objects a, m, we write

(i) “(a;)$2,, is a sequence of rationals positively bounded away from zero”
iff (a;)$2,, is a sequence of rationals and there exists a ¢ > Og such that
for each 7 > m, we have a; > ¢, and

(i1) “(a;)$2,, is a sequence of rationals negatively bounded away from zero”
iff (a;)2,, is a sequence of rationals and there exists a ¢ < Og such that
for each 7 > m, we have a; < c.
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Remark 5.4.2. Axiom of substitution obeyed by both.

Remark 5.4.3. We'll abbreviate “(a;)$2,, is a Cauchy sequence of rationals
and (a;)$2, is a sequence of rationals positively bounded away from zero”

=m
by (a;)$2,, is a Cauchy sequence of rationals positively bounded away from
zero, etc.

Definition 5.4.4 (Positive and negative reals).
(i) An object = is called a positive real iff there exists an object a such
that (a;)72,, is a Cauchy sequence of rationals positively bounded away
from zero and x = LIM,,_,o @y,.
(ii) An object z is called a negative real iff there exists an object a such
that (a;)72,, is a Cauchy sequence of rationals negatively bounded away
from zero and x = LIM,,_,o ay,.

Remark 5.4.5. Axiom of substitution obeyed.

Corollary 5.4.6 (Characterization of positive and negative reals). The ana-
logue of Corollary 4.1.41 holds.

Proposition 5.4.7 (Sums and products of positives are positive). Let x, y
be positive reals. Then x + y and xy are positive reals.

Proposition 5.4.8 (Trichotomy for R). Let x € R. Then exactly one of the
following holds:
(i) x is a positive real.
(ii) © = LIM, . 0.
(111) x is negative real.

Definition 5.4.9 (Order on R). For any objects z, y, we write

(i) “e>y”,or “y <z’ iff x;y € R and x — y is a positive real, and
(i) “e>y”,or “y<a” iff x >yor (r€Rand z =y).

Remark 5.4.10. Axiom of substitution obeyed. Different symbol should
have been used.

Corollary 5.4.11 (Characterizing “ > ” and “ > 7, and order properties for
R). The analogues of Corollaries 4.2.31 and 4.2.32, and Proposition 4.2.33
hold.
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Lemma 5.4.12 (Constant rational sequences are Cauchy). Let r € Q. Then
there exists a unique function a such that (a;){2,, is a sequence of rationals
and a; = r for each i > 1z. Further, for such an a, we have that (a;)2,, is
a Cauchy sequence of rationals.

Remark 5.4.13. This allows to denote a by Seqg r. Axiom of substitution
obeyed.

Lemma 5.4.14 (Embedding Q into R). There exists a unique function f
such that f: Q — R such that f(r) = LIM,_« (Seqqr), for each r € Q.
Further, for such an f, for any r,s € Q, we have

(i) r=s <= f(r)=f(s),
(i) f(r+s)= f(r)+ f(s), and
(ii1) f(rs) = f(r)f(s).

Remark 5.4.15. This allows to set rg» == f(r) for each r € Q. Also, we set
pr = (pg )gn for each p € Z and ng = (ng)g, for each n € N.

Corollary 5.4.16 (Properties of embedding). Let r,s € Q. Then
P —
(ZZ) (T’ — S)R” = Trr — Srv,
(iti) r # 0g = rrw # LIM, 000, and (r™1)g, = (rgv) ™7,
() s # 0gp = spr # LIM, 00 0, and (1/8)gn = TR/ Sw7,
(v) T is a positive rational <= Trr is a positive real,
(vi) r is a negative rational <= TRy s a negative real
(vii) > s <= rgy > Spr, and
(’UZZZ) r Z S <& Trv Z SR/ .

Corollary 5.4.17. (i) Let n € N. Then (nz)g = ng.
(i1) Let p,q € Z and q # 0z. Then qr # Or, and qu # Og and pr//qr =
(Pe /a0 )ge-

Remark 5.4.18. We still need to develop limits for reals and discard the
LIM,, .o n» scaffolding. Also, when we develop exponentiation, absolute val-
ues, sequences, etc. for reals, we’ll need to again verify this embedding.

Lemma 5.4.19 (Absolute value on R, and exponentiation of reals by nat-
urals and integers). Analogues of all the results about absolute value and
exponentiation, from Lemma 4.53.3 to Corollary 4.5.25 hold.
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Lemma 5.4.20 (Embedding is consistent with absolute value and exponen-
tiation). Let r,s € Q, and n € N and p € Z. Then

(i) |rlgs = lres|,
(ii) d(r,s)gn = d(rrr, Spr),
(iii) (r"™)gn = (rrr)", and
(ZU) r 7& OQ - TR 7& Or and (TP)R,, = (TRN)p.

Lemma 5.4.21 (Cauchy sequences of non-negative rationals form non-neg-
ative reals). Let a be a function such that (a;)i2,, is a Cauchy sequence of
rationals such that a; > Oq for each i > 1z. Then LIM,,_,« a,, > Og.

Corollary 5.4.22. Let a, b be functions such that (a;)i2, , (b;)i,, are

=1y
Cauchy sequences of rationals and there exists an N > 1z such that a; > b;
for each i > N. Then LIM,, o a, > LIM,, ;o b,,.

Lemma 5.4.23 (A positive real is greater than a positive rational). Let
x > Or. Then there exists an r > Og such that x > rry.

Proposition 5.4.24 (Rationals between reals). Let x,y € R such that x < y.
Then there exists an r € Q such that v < rgn < y.

Lemma 5.4.25 (Reals surrounded by rationals). Let x € R and ¢ > 0g.
Then there exist r,s € Q such that rgry < x < sgr and s —r < €.

Proposition 5.4.26. Analogues of results from Lemma /.4.1 to Corollary
4.4.7 hold.

Remark 5.4.27. The analogue of Corollary 4.4.4 (iii) allows to denote p by
|z] for the case of reals. Axiom of substitution obeyed.

Lemma 5.4.28 (Embedding is consistent with floor). Let r € Q. Then

) = Lrso.

Proposition 5.4.29. Let x € R and a be a function such that (a;)i2,, is a
Cauchy sequence of rationals. Then

(1) there exists an N > 1z such that © > (a;)gn for each i > N =
x > LIM,, o a,, and

(i) there exists an N > 1z such that x < (a;)g, for each i > N =
r < LIM,,_ o ap.
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5.5 The least upper bound property

July 11, 2021

Definition 5.5.1 (Upper bounds and least upper bounds). For any objects
M, E, we write
(i) “M is an upper bound for E” iff M € R, and F C R and « < M for
each z € F/, and
(ii) “M is a least upper bound for E” iff M is an upper bound for £ and
for any object M’, we have that M’ is an upper bound for £ —
M > M.

Remark 5.5.2. Axiom of substitution obeyed by both.

Remark 5.5.3. From now on, we may omit (only) the redundant specifica-
tion of object types, which might be implied by the relations that follow.

Lemma 5.5.4. Let M, M’ € R and E C R such that M is an upper bound
for E and M' > M. Then M’ is a least upper bound for E.

Lemma 5.5.5 (At most one least upper bound). Let E C R. Then there
exists at most one M € R such that M s an upper bound for E.

Proposition 5.5.6. (i) Let M € R. Then M is an upper bound for ().
(ii) There is no M € R such that M is the least upper bound for ().
(111) There is no M € R such that M is an upper bound for {x € R : x >
Or}.
(iv) 1g is a least upper bound for {x € R: Og <z < 1g}.

Lemma 5.5.7 (Creating a sequence of rational upper bounds for an upper
bounded set). Let E C R, and n > 1z and K, L € Z such that Ky /ng: is
not an upper bound for E, but Lg//ng/ is an upper bound for E. Then there
exists a unique m € Z such that (m — 1z)g, /nw is not an upper bound for
E, but mg//ng: is an upper bound for E.

Theorem 5.5.8 (Least upper bound property of R). Let E C R such that
E # 0 and there exists an M € R such that M is an upper bound for E.
Then there exists a unique S € R such that S is a least upper bound for E.

Definition 5.5.9 (Lower bounds and greatest lower bounds). For any ob-
jects M, E, we write
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(i) “M is a lower bound for E” iff M € R, and £ C R and x > M for
each z € F/, and

(ii) “M is a greatest lower bound for E” iff M is a lower bound for F
and for any object M’, we have that M’ is a lower bound for £ —
M < M.

Remark 5.5.10. For any set E C R, we set —E = {—xz:x € E}.
Lemma 5.5.11. Let E CR. Then —E CR and —(—E) = E.

Lemma 5.5.12 (Relating upper and lower bounds). Let M € R and E C R.
Then

(i) (a) M is an upper bound for E <= —M is a lower bound for —F,
(b) M is a lower bound for E <= —M is an upper bound for —E,
(1)) (a) M is a least upper bound for E <= —DM s a greatest lower
bound for —E, and
(b) M is a greatest lower bound for E <= —M is a least upper
bound for —F.

Corollary 5.5.13 (Greatest lower bound property for R). Let E C R such
that E # () and there exists an M € R such that M is a lower bound for E.
Then there ezists a unique S € R such that S is a greatest lower bound for

E.

Proposition 5.5.14 (Square root of 2). There exists a unique x > Og such
that 22 = 25.

Remark 5.5.15. The proof of the above uses just the least upper bound
property, in addition to ordered field axioms. Therefore, Q does not obey
least upper bound property.

Definition 5.5.16 (Irrationals). An object x is called an irrational iff z € R
and there does not exist any r € QQ such that x = rg».

Remark 5.5.17. Axiom of substitution obeyed.

Lemma 5.5.18 (There are irrationals between reals). Let x,y € R such that
x < y. Then there exists an irrational z such that x < z < y.
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5.6 Real exponentiation, part I

July 13, 2021

Lemma 5.6.1 (n-th roots of non-negative reals). Let x > Og and n > 1.
Then there exists a unique z € R such that z is the least upper bound for
{yeR:y" <z}

Remark 5.6.2. This allows to denote z by z'/". Axiom of substitution
obeyed.

Proposition 5.6.3. Let n > 1. Then
(Z) (OR)I/H = O]R, and
(ii) (1g)Y" = 1g.

Lemma 5.6.4. Let x > Og, and n € N and € > Or. Then
(i) e <lg = (x+e)" <a"+ ((1g + x)" — 2™)e, and
(i) e<z = (x—¢e)" >a"— ((lg +2)" — a")e.

Lemma 5.6.5. Let x,y > Og and n € N. Then

(i) 2" <y = (z+¢e)" <y for some Og < e < 1g, and
(i) 2" >y and x> 0gp = (x —&)" >y for some Ogp < & < .

Proposition 5.6.6 (n-th power cancels the n-th root). Let x > Or and

n > 1. Then (z"/™)* = z. In particular, z'/* = .

Corollary 5.6.7. Let z,y > Ogr and n > 1. Then
(Z) xl/n > OR:
(i) 2" > Og and (2™)V/" =z, and

(iii) y" =z = y=at/".

Proposition 5.6.8 (Properties of n-th roots of non-negative reals). Let
x,y > Og and z > Og. Let myn > 1 and k € N. Let p € Z. Then
xy, vt/™ 271 x|, 2k, 2P > Og, and /™ # Og and mn > 1, and
(i) (xy)t/" = at/ryt/n,
(i) /() — (g1im
(iti) (2= )" = ("),
(iv) (a) v =0p < z'/" = O,
(b) x is a positive real <= x'/
(v) x>y >0k = /"> yl/" > O,

" is a positive real,
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(’U'L) ‘.’L"l/n — |x1/n| — xl/n7
(vii) ()™ = (V™) and
(viii) (2P)V/" = (/)P

Corollary 5.6.9.
(i) Let x,y > Og and n > 1 such that £/ = y*/™. Then x = y.
(ii) Let x € R and 1 < m <mn. Then
(a) Op <z < 1g = 2¥/" > 2¥/™ and
(b) > 1g = z'/m > gt/n,

Lemma 5.6.10 (Exponentiation of positive reals by rationals). Let z > Og
and r € Q. Then there exists a unique y € R such that there exist an m € 7
and an n > 1 such that r = mg /ng, and '/ # Og and y = (x¥/™)™.

Remark 5.6.11. This allows to denote y by z". Axiom of substitution
obeyed.

Corollary 5.6.12. Let x > Og and r € Q. Then x" > Og.

Corollary 5.6.13. Let x > Og, andn € N and m € Z. Then
(i) n>1 = zY" 40 and 2w/ = (g!/m)m,
(ii) x"e = z™,
(iii) x # 0g and 2 = ™, and in particular, 710 =z~
(iv) n>1 = zle/ne = gl/n,

1 and

Corollary 5.6.14. Let x > Or. Let m,n € N such that n > 1. Let p € Z.
Then x'/™ # O and
(i) (t/mym = ameine,
(ii) ™ = z™e,
(iii) P = 2P, and in particular, '@ = 2~
(iv) x'/m = rle/ne,

L and

Proposition 5.6.15. Let r € Q. Then (1g)" = 1g.

Proposition 5.6.16 (Properties of exponentiation of positive reals by ratio-
nals). Let x,y > Og and r,s € Q. Let n,m € N such that m > 1. Let p € Z.
Then zy,x", 27, x|, 2™, /™ > Og and

(1) (xy)" ="y,
(i1) x"° = x"x®,



5.6. REAL EXPONENTIATION, PART I

(i) x7 = (2")*,
(iv) 1 > O, and 2" # Og and (z7')" = (2") "t =27,
(v) =" is a positive real,
(vi) r>0g and x >y >0 = 2" > y" > O,
(vii) ol = |a| = a7,
(viii) (a7 = (27" = 27,
(iz) (2P)" = (a")P = 2P, and
(z) (&) = (a")t/" = av/me.

Corollary 5.6.17.

(i) Let x,y > Og and q € Q such that g # 0 and z? = y°.

(11) Let x € R and r,s € Q such that r < s. Then
(a) Op <z < 1lg = 2" > 2°, and
(b) v >1g = 2° > a’.

Then x = y.
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Chapter 6

Limits of sequences

6.1 Convergence and limit laws

July 15, 2021

Definition 6.1.1 (Sequences of reals). (i) For any objects a, m, n, we
write “(a;)",. is a sequence of reals” iff m,n € Z and a: {i € Z :
m<i<n}—R.

(ii) For any objects a, m, we write “(a;)$2,, is a sequence of reals” iff m € Z

and a: {i €Z:i>m} — R.
Remark 6.1.2. Axiom of substitution obeyed by both.

Lemma 6.1.3 (Beginning integers of real sequences). Let a be a function
such that there exists an m € Z such that (a;)$2,, is a sequence of reals.

Then there ezists a unique n € Z such that (a;)52,, is a sequence of reals.

Remark 6.1.4. This allows to denote n by SeqIntg a. Axiom of substitution
obeyed.

Lemma 6.1.5. Let a be a function such that there exists an m € Z so that
(a;)$2,, is a sequence of rationals. Then there exists a unique function b
such that (b;)Zseqmiga 15 @ Sequence of reals such that b; = (a;)g. for each
i > Seqlntga. Further, for such a function b, we have that Seqlntg b =

Seqlntg a.

Remark 6.1.6. This allows to denote b by ags. Axiom of substitution
obeyed.

62
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Definition 6.1.7 (Cauchy sequences of reals). For any objects a, m, we
write “(a;)2,, is a Cauchy sequence of reals” iff (a;)32,,. is a sequence of reals
and for every € > Og, there exists an N > m such that for all i, > N, we
have |a; — a;| < e.

Remark 6.1.8. Axiom of substitution obeyed.

Lemma 6.1.9 (Embedding consistent for Cauchy sequences). Let (a;)2,,
be a sequence of rationals. Then (a;)2,. is a Cauchy sequence of rationals
= ((am);)Z

X 15 a Cauchy sequence of reals.

Lemma 6.1.10 (Characterization of Cauchy sequences of reals using rational
e’s). Let (a;)2,, be a sequence of reals. Then (a;)2,, is a Cauchy sequence

of reals <= for every € > Oq, there exists an N > m such that for each
i,j > N, we have |a; — a;| < epr.

Definition 6.1.11 (Sequences converging in R). For any objects a, m, L,
we write “(a;)2,, converges to L in R” iff (a;)$2,, is a sequence of reals, and
L € R and for each € > Og, there exists an N > m such that for each i > N,
we have |a; — L| < e.

Remark 6.1.12. Axiom of substitution obeyed.

Lemma 6.1.13 (Characterization of sequences converging in R using ratio-
nal €’s). Let (a;)2,, be a sequence of reals and L € R. Then (a;)2,, converges
to L in R <= for each € > Og, there exists an N > m such that for each
i > N, we have |a; — L| < egn.

Proposition 6.1.14. Let © € R such that |x| > 1g. Then there exists a
unique function a such that (a;)52,, is a sequence of reals so that for each
1 > 1z, we have x # Or and a; = x=". Further, for such an a, we have that
(a;)§2,, converges to Og in R.

Definition 6.1.15 (Convergent sequences of reals). For any objects a, m,
we write “(a;)2,, is a convergent sequence of reals” iff there exists an object
L such that (a;)2,, converges to L in R.

Remark 6.1.16. Axiom of substitution obeyed.

Proposition 6.1.17 (Limits of convergent sequences). Let a be a function
such that there exists an m € Z so that (a;)52,, be a convergent sequence of

reals. Then there exists a unique L € R such that (a;)Zgeqmi, o cONVETges to
L in R.
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Remark 6.1.18. This allows to denote L by lim,_,., a,. Axiom of substi-
tution obeyed.

Proposition 6.1.19 (Convergent sequences are Cauchy). Let (a;)2,, be a
convergent sequence of reals. Then (a;)2,, is a Cauchy sequence of reals.

Proposition 6.1.20 (Getting rid of “LIM,, 00 »"). Let (a;)2,, be a Cauchy

sequence of rationals. Then ((arr),)$<,, is a convergent sequence of reals with
lim,, o0 (arr),, = LIM; 00 @

Corollary 6.1.21 (lim, o 1/n = 0). There exists a unique function a such
that (a;)§2,, is a sequence of reals so that for each i > 1z, we have ix # O
and a; = (ig')~'. Further, for any such a, we have that (a;)32,, converges to

OR mn R.

Proposition 6.1.22 (Limits are independent of finite initial conditions). Let
(@;)$2,,, (b;)$2,, be convergent sequences of reals and let one of the following
hold:
(i) There exists an N > m,n such that for each i > N, we have a; = b;.
(ii) There exists a k > n —m such that for each i > m, we have i +k > n
and a; = b;yi.

Then lim,,_,o a,, = lim,,_,oo b,,.

Definition 6.1.23 (Divergent sequences of reals). For any objects a, m, we
write “(a;)$2,, is a divergent sequence of reals” iff (a;)$2,, is a sequence of
reals such that (a;)$°,, is not a convergent sequence of reals.

Remark 6.1.24. Axiom of substitution obeyed.

Definition 6.1.25 (Bounded sequences of reals).

(i) For any objects a, m, n, we write “(a;),, is a bounded sequence of

reals 7 iff (a;),, is a sequence of reals and there exists an object M
such that for each m < i < n, we have |a;| < M.

(ii) For any objects a, m, we write “(a;)$2,, is a bounded sequence of reals”
iff (a;)$2,, is a sequence of reals and there exists an object M such that

for each i > m, we have |a;| < M.

Remark 6.1.26. Axiom of substitution obeyed.

[e.o]
=m

Lemma 6.1.27 (Embedding consistent for bounded sequences). Let (a;)
be a sequence of rationals. Then (a;)$2,. is a bounded sequence of rationals

i=m

= ((awr),)2,, is a bounded sequence of rationals.

=m
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Lemma 6.1.28 (Cauchy sequences of reals are bounded). Analogues of re-
sults from Lemma 5.1.8 to Lemma 5.1.10 hold.

Corollary 6.1.29 (Convergent sequences are bounded). Let (a;)2,. be a

=m
convergent sequence of reals. Then (a;)2,, is a bounded sequence of reals.

Definition 6.1.30 (Equivalent sequences of reals). For any objects a, b, m,
n, we write “(a;)2,, and (b;)$2,, are equivalent sequences of reals” iff (a;)$°, .,
(b;)32,, are sequences of reals, and m = n and for each € > Og, there exists

an N > m,n such that for each ¢ > N, we have |a; — b;| < e.
Remark 6.1.31. Axiom of substitution obeyed.

Lemma 6.1.32 (Embedding consistent for equivalent sequences). Let (a;)2,,
and (b;)2,, be sequences of rationals. Then (a;)2,, and (b;)$2,, are equiva-

lent sequences of rationals <= ((arr);),, and ((brr),)2, are equivalent
sequences of reals.

Lemma 6.1.33 (Characterizing equivalent sequences of reals using rational
e’s). Let (a;)32,, and (b;)2, be sequences of reals. Then (a;)$2,  and (b;)2,

are equivalent sequences of reals <= m = n and for each ¢ > 0Oq, there
exists an N > m,n such that for each i > N, we have |a; — b;| < egn.

Proposition 6.1.34 (Properties of equivalent sequences of reals). Let (a;)2,,
and (b;)2,, be equivalent sequences of reals and L € R. Then

(1) the analogues of (i) and (ii) of Proposition 5.2.5 hold, and

(11) (a;)2,, converges to L in R <= (b;)2,, converges to L in R.
Lemma 6.1.35 (Sums, products, negations and reciprocations of real se-

quences). The analogues of results from Lemma 5.3.12 to Remark 5.3.18
hold.

Lemma 6.1.36 (Embedding consistent for operations on sequences). (i)
Let a, b be functions such that there exists an m € Z so that (a;)$2,,,
(b;)32,, are sequences of rationals. Then there exists an m € Z such
that ((awrr),)2,,, ((brv);)52,, are sequences of reals, and

(i) (a -+ bl = azr + b,
(ii) (ab)R,, = aRann, and
(

(iti) (~a)gy = —(azs).
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Further, if a is such that there ezists an m € Z so that (a;)2,, is a
sequence of rationals and for each i > m, we have a; # Og, then there
ezists an m € Z such that ((arr),)2,, is a sequence of reals, and for

each i > m, we have (agr); # Og, and (a™ '), = (agr) ™.

Remark 6.1.37. It easily follows that the difference and quotient of se-
quences is also consistent in the above fashion.

Lemma 6.1.38 (min and max functions). There exist unique functions f,
g such that f,g: R X R — R so that for each p € R X R, exactly one of the
following holds:

(a) pr < p2, and f(p) = px and g(p) = p1.
(b) p1 > pa2, and f(p) = p1 and g(p) = po.

Remark 6.1.39. This allows to denote f and g be max and min respectively.

Corollary 6.1.40 (Properties of min and max). Let z,y € R. Then
(i) x <y = max((z,y)) =y and min((x,y)) = x,
(i) x >y = max((z,y)) =z and min((z,y)) =y,
(i) min((z,y)) < z,y < max((z,y)),
(iv) max((z,y)) = —min((—xz, —y)), and
(v) min((z,y)) = —max((—z, —y)).

Lemma 6.1.41 (min and max operations on sequences). Let a, b be functions
such that there exists an m € Z such that (a;)2,,, (b)), are sequences
of reals. Then Seqlntg a = Seqlntg b, and there exist unique functions c,
d such that (¢;)Pseqintgar (di)iseqiniza a7¢ Sequences of reals and for each
i > Seqlntg a, we have ¢; = max((a;, b;)) and d; = min((a;, b;)).

Remark 6.1.42. This allows to denote ¢ and d by max((a, b)) and min((a, b))
respectively. Axiom of substitution obeyed.

Lemma 6.1.43. Let (a;)2,,, (b;)2,, be sequences of reals. Then

(i) max((a,b)) = —min((—a, —b)), and
(#i) min((a, b)) = — max((—a, —b)).

Lemma 6.1.44 (Absolute sequences of reals). Let a be a function such that
there exists an m € Z such that (a;)$2,, is a sequence of reals. Then there
exists a unique function ¢ such that (¢;)seqmiy o 18 @ sSequence of reals so that
for each i > m, we have ¢; = |a,|.
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Remark 6.1.45. This allows to denote ¢ by |a|]. Axiom of substitution
obeyed.

Theorem 6.1.46 (Limit laws). Let (a;)2,, and (b;)$2,, be convergent se-

=m

quences of reals. Then ((a+ b)), (a),)Z,,. (min((a,5)),)Z,, ((~a),)2,..
(lal,)s2,, are convergent sequences of reals with

lim (a+b), = lim a, + lim b,,

n—o0 n—oo n—oo

lim (ab), = <1im an> ( lim bn>,
n—00 n—o0 n—00

Y (00, = i, o Ji o)

lim (—a), = —lim a,, and
n—oo n—oo
lim |a|, = ‘ lim a,|.
n—oo n—oo

Further, if lim, .. a, # Or and for each i > m, we have a; # Or, then
((a™1),)52,, is a convergent sequence of reals with

li = (i -1

A5, (07 = (g an)
Corollary 6.1.47. Let (a;)2,,, (b:)2,, be convergent sequences of reals.

Then ((a —b),)2,,, ((min((a,b))),)2,, are convergent sequences of reals with

lim (e —b), = lim a, — lim b,, and
n—oo n—oo n—oo

lim (min((a,b))), = m1n<hm ap, lim b >
n—o0 n—o0 n—oo

Further, if lim, . b, # Ogr and for each © > m, we have b; # Ogr, then
((a/b),):2,, is a convergent sequence of reals with

lim

( a ) lim,, o0 @y,
n—00 n -

b

Lemma 6.1.48 (Raising real sequences to powers). Let a be a function,
ne€N, peZ andr € Q such that there exists an m € Z so that (a;)32,, is a
sequence of reals. Set K = Seqlntg a. Then

(i) there exists a unique function b such that (b;)° . is a sequence of reals
so that b; = a! for each 1 > K,
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(11) a; # Og for any i > K = there exists a unique function ¢ such that
(€)% is a sequence of reals so that ¢; = a for each i > K,

(111) a; > Og for each i > K andn > 1 = there ezists a unique function
d such that (d;)2, is a sequence of reals so that d; = az/" for each
1> K, and

(iv) a; > Og for each i > K = there exists a unique function e such that
(€;)2  is a sequence of reals and e; = al for each i > K.

Remark 6.1.49. This allows to denote b, ¢, d, e by a”, a?, a'/™, a" respec-
tively. Axiom of substitution obeyed.

Corollary 6.1.50 (Continuity for natural and integer exponentiation). Let

(a;)$2,, be a convergent sequence of reals, and n € N and p € Z. Then
(1) ((a™),)32,, is a convergent sequence of reals with

i=m

lim (a"), = (hm ai> , and

71— 00 1— 00

(i) a; # Or for any ¢ > m, and lim;,ca; # Op = ((a?),)2,, s @
convergent sequence of reals with

Jim (o), = ((Jim a;)"

Lemma 6.1.51. Let n > 1 and (a;)2,, converge to 1g in R and a; > Og for

i=m

each i > m. Then ((a'/™),)2,, also converges to 1g in R.

=m

Corollary 6.1.52 (Continuity of exponentiation by n-th roots and ratio-

nals). Let (a;)2,, be a convergent sequence of reals, and n > 1 and r € Q.
Then

(i) a; > Og for each i > m = lim, o a, > O and ((a'/™),)2,, is a
convergent sequence of reals with

1/n
lim (a'/™), = (hm ai> , and
1—00 1— 00

(it) a; > Or for each i > m, and lim, ,a, > Op = ((a)",)2,, is a
convergent sequence of reals with

fim (), = (tim )’
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Lemma 6.1.53. Let (a;)32,, be a sequence of reals such that a; # Og for any
i > m. Let (a;)3,, converge to Og in R. Then ((a™'),)2,, is a divergent

i=m =m

sequence of reals.

Definition 6.1.54 (Strictly increasing sequences of reals). For any objects a,
m, we write “(a;)2,, is a strictly increasing sequence of reals” iff for (a;)2,,
is a sequence of reals and for each i > m, we have i + 17 > m and a;+1, > a;.

Remark 6.1.55. Axiom of substitution obeyed.

Lemma 6.1.56 (Characterization of strictly increasing sequences of reals).

Let (a;)$2,, be a sequence of reals. Then (a;)$2,, is strictly increasing <=

=m

foralli,j > m, we have that ¢ < j = a; < aj.

6.2 The extended real number system

July 19, 2021

Axiom 6.1 (Infinities).

(i) Infinities are objects.
(ii) 4+00, —00 are infinities.
(iii) +00, —00 ¢ R.

(iv) +00 # —o0.

Remark 6.2.1. We set R* := RU {+00, —00}.

Lemma 6.2.2 (Negation on R*). Let x € R*. Then there exists a unique
y € R* such that one the following holds:

(i) x =—00 and y = +o0.
(ii)) x € R and y = —x.
(111) © = +o0 and y = —o0.

Lemma 6.2.3. Let x € R. Then z € R*, and for any y € R* such that one
of the above holds, y = —x.

Remark 6.2.4. Lemmas 6.2.2 and 6.2.3 allow to denote y of Lemma 6.2.2
by —z. Axiom of substitution obeyed.

Corollary 6.2.5. —(+00) = —00 and —(—o0) = +00.
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Lemma 6.2.6 (Double negation). Let z € R. Then —x € R* and —(—x) =
T.

Definition 6.2.7 (Order on R*). (i) For any objects z, y, we write “x <
y”, or “y > x”, iff one of the following holds:
(a) z = —oo and y € R*\ {—o0}.
(b) z € Rand z < y.
(¢) z € R*\ {+o00} and y = +o0.
(ii) For any objects z, y, we write “x < y”, or “y > 2", iff x <yor (z €RR
and z = y) or (z is an infinity and = = y).

Remark 6.2.8. Axiom of substitution obeyed. Again, a different symbol
should’ve been used.

Lemma 6.2.9 (Characterizing “ < ” on R*). Let z,y € R*. Then x <y
<= one of the following holds:

(i) x = —0c0.

(1)) x,y € R and x < y.

(1) y = +00.

Proposition 6.2.10 (Properties of order on R*). Let x,y,z € R*. Then

(i) (transitivity) z <y andy < z = x < z,
(71) (negation reverses order) z <y — —x > —y, and
(111) (trichotomy) ezactly one of these holds: x <y, v =y, orx > y.

Lemma 6.2.11 (Suprema of subsets of R*). Let E C R*. Then there ezists
a unique y € R* such that one of the following holds:
(1)) E=0 and y = —oo.
(ii) E# 0 and
(a) +o0 € E and y = +o0.
(b) 400 ¢ E and
(I) —c € E and
(A) E\{—occ} =0 and y = —c0.
(B) E\{—oc} # 0 and
(1) there exists an M € R such that M is an upper bound
for E\ {—o0}, and y is the least upper bound for E\

{—oo}.
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(2) there exists no M € R such that M is an upper bound
for E\ {—occ}, and y = 4+o0.
(II) —oco ¢ E and
(A) there exists an M € R such that M is an upper bound for
E, and y s the least upper bound for E.
(B) there exists no M € R such that M is an upper bound for
E, and y = +o0.
Further, for any y € R*, exactly one of the above holds.

Remark 6.2.12. This allows to denote y by sup(E). Axiom of substitution
obeyed.

Lemma 6.2.13 (Infima of subsets of R*). Let E C R*. Then there exists a
unique y € R* such that one of the following holds:
(i) E=10 and y = +oc.
(ii) E # 0 and
(a) —c0 € E and y = —c0.
(b) —oc0 ¢ E and
(I) 400 € E and
(A) E\ {+o0} =0 and y = +0o0.
(B) E\ {+oc0} # 0 and
(1) there exists an M € R such that M is a lower bound
for E\ {4+00}, and y is the greatest lower bound for
E\ {+o0}.
(2) there exists no M € R such that M is a lower bound
for E\ {+o0}, and y = —oc.
(II) 400 ¢ E and
(A) there exists an M € R such that M is a lower bound for
E, and y s the greatest lower bound for E.
(B) there exists no M € R such that M is an lower bound for
E, and y = —oc.
Further, for any y € R*, exactly one of the above holds.

Remark 6.2.14. This allows to denote y by inf(£). Axiom of substitution
obeyed.

Remark 6.2.15. Remark 5.5.10 allows to set —F = {—x : x € E} for any
subset £ C R*.



72 CHAPTER 6. LIMITS OF SEQUENCES

Lemma 6.2.16. Let E CR*. Then —E CR* and —(—F) = E.

Lemma 6.2.17 (Relating suprema and infima). Let E C R*. Then
(i) sup(E) = —inf(—F), and
(11) inf(E) = —sup(—F).

Proposition 6.2.18. (i) Set E .= {—ig :i > 1}U{—0o0}. Thensup(E) =
—1g and inf(F) = —occ.
(ii) Let r > 1g and set F == {r™ :n > 1z}. Then sup(F) = r~! and
ll’lf(F) = OR.
(111) Set G := {ng : n > 1}. Then sup(E) = +oo and inf(E) = 1.
(iv) sup(P) = —oco and inf(()) = +oo.

Theorem 6.2.19 (Properties of suprema and infima). Let £ C R* and
M € R*. Then

(i) for each x € E, we have inf(E) < x < sup(E),
(ii)) x < M for eachx € E = M > sup(F), and
(1ii)) x > M for each x € E = M < inf(F).

Corollary 6.2.20. Let E C R* such that sup(E) < inf(E). Then E = 0.

Lemma 6.2.21. Let E C R*. Then
(i) sup(E) = —o00 <= E =0 or E = {—o00}, and
(ii) inf(E) = 400 <= E =0 or E = {+o0}.

Lemma 6.2.22 (Nonempty bounded subsets of R have real sup’s and inf’s).
Let E C R such that E # 0 and there exists an M > Og such that |x| < M
for each x € E. Then sup(E),inf(E) € R.

Lemma 6.2.23 (sup’s and inf’s of subsets). Let A, B C R* such that A C B.
Then sup(A) < sup(B) and inf(A) > inf(B).

6.3 Suprema and infima of sequences

July 26, 2021

Remark 6.3.1. Let (a;)$°,, be a sequence of reals. Then we set sup (a;):2,, ==
sup({a; : ¢ > m}) and inf (a;)32,, = inf({a; : ¢ > m}).
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Proposition 6.3.2. (i) There exists a unique function a such that (a;);<,,

is a sequence of reals so that a; = (—1g)" for each i > 1z. Further, for

any such a, we have sup (a;)i2,, = 1g and inf (a;)2,,

(i) There exists a unique function b such that (b;)32,, is a sequence of reals
so that b; = (ig/)™t for each i > 1z. Further for any such b, we have

sup (b;)2,, = 1g and inf (b;)2, = Og.

i=1g,
(i4i) There exists a unique function c such that (c;){2,, is a sequence of reals

so that ¢; = ig for each i > 1z. Further for any such ¢, we have

sup (Ci)?ilz = 400 and 1nf (ci>?ilz = ]-R-

= —1g.

Lemma 6.3.3 (Bounded sequences of reals have real sup’s and inf’s). Let
(a;)$2,, be a bounded sequence of reals. Then sup (a;)$2, ,inf (a;)2, € R.

i=m’

Proposition 6.3.4 (Properties of sup and inf of sequences of extended reals).
Let (a;)2,, be a sequence of reals and M € R*. Set x = sup (a;)2,, and
y = inf (a;)2,,. Then

(i) x > a; >y for alli > m,

(i) a; < M foralli>m — M >z,

(i1i) a; > M foralli>m — M <y,

(iv) M <z = a; > M for some i >m, and

(v) M >y = a; <M for somei> M.

Definition 6.3.5 (Increasing, decreasing and monotone sequences of reals).
For any objects a, m, we write
(i) “(a;)$2,, is an increasing sequence of reals” iff (a;)$°,, is a sequence of
reals and for each ¢ > m, we have ¢ + 1z > m and a;11, > a;,
(i) “(@;)$2,, is a decreasing sequence of reals” iff (a;)°,, is a sequence of
reals and for each ¢ > m, we have ¢ + 17 > m and a;41, < a;, and
(iii) “(a;)2,, is a monotone sequence of reals” iff (q;)22, . is an increasing

sequence of reals, or (a;)$2, is s decreasing sequence of reals.
Remark 6.3.6. Axiom of substitution obeyed by all.

Lemma 6.3.7 (Characterization of increasing and decreasing sequences).
Let (a;)$2,, be a sequence of reals. Then

(i) the following are equivalent:
(a) (a;)2,, is an increasing sequence of reals;
(b) for each i,j > m, we have thati < j = a; < a;;
(c) ((—a);),, is a decreasing sequence of reals; and

=m
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(11) the following are equivalent:
(a) (a;)$2,, is a decreasing sequence of reals;
(b) for each i,j > m, we have thati < j = a; > a;;
(c) ((—a),)2,, is an increasing sequence of reals.

i=m

Proposition 6.3.8 (Monotone bounded sequences converge). (i) Let (a;)$2,,
be an increasing sequence of reals and M € R such that a; < M
for each i > m. Then (a;)2,, is a convergent sequence of reals, and
sup (a;)2,, € R and lim,,_, a, = sup (a;)2,, < M.

(11) Let (a;)2,, be a decreasing sequence of reals and M € R such that
a; > M for each i > m. then (a;)2,, is a convergent sequence of reals,

and inf (a;)32,. € R and lim,,_,, a,, = inf (a;)2,, > M.

Corollary 6.3.9. Let (a;)$2,, be a monotone sequence of reals. Then (a;)2,,
is a convergent sequence of reals <= (a;)$2,, is a bounded sequence of reals.

Lemma 6.3.10 (Constant sequences of reals converge). Let x € R and
m € Z. Then there exists a unique function a such that (a;)2,, is a sequence
of reals such that a; = x for each i > M. Further, for any such a, we have
that (a;)$2,. converges to x in R.

i=m

Remark 6.3.11. This allows to denote a by Seqr m2. Axiom of substitution
obeyed.

Lemma 6.3.12 (Consistency with embedding for constant sequences). Let
r € Q. Then Seqg g, = Seqr,1,Tw -

Proposition 6.3.13. (i) (0 <z <1 = lim, 2" =0). Let O <
x < 1g. Then there exists a unique function a such that (a;),, is a
sequence of reals so that a; = x' for each 1 > 1z. Further, for any
such a, we have that (a;)2,, is a convergent sequence of reals with
lim,,_,o a,, = Og.

(1)) (x >1 = (2™)5, diverges). Let x > 1g. Then there exists a unique
function a such that (a;);2,, is a sequence of reals so that a; = !
for each i > 1z. Further, for any such a, we have that (a;);2,, is a
divergent sequence of reals.

6.4 Limsup, liminf and limit points

July 31, 2021
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Definition 6.4.1 (Limit points of real sequences). For any objects x, a, m,
we write “z is a limit point of (a;)$2,.” iff (a;)2,, is a sequence of reals, and
one of the following holds:
(i) * = —c0 and inf (a;)$2,, = —o0.
(ii) = € R and for every € > Og and for every N > m, there exists an ¢ > N
such that |a; — x| < e.
(iii) = +o0 and sup (a;)$2,, = +00.

Remark 6.4.2. Axiom of substitution obeyed.

Proposition 6.4.3 (Limit of a convergent sequence is its only limit point).
Let (a;)2,, be a convergent sequence of reals and L € R. Then L is a limit
point of (a;)2,, <= L =1lim, - ay.

i=m

Remark 6.4.4. Let a be a function such that there exists an m € Z such
that (a;):2,, be a sequence of reals. Then for each N > Seqlntg a, we set

ay =sup({a; : i > N}), and
ay = inf({a; : i > N}).

Further, we set

limsup a,, = inf({a} : N > SeqIntg a}), and

n—o0

liminf a,, == sup({ay : N > Seqlntg a}).
n—oo

Lemma 6.4.5. Let (a;)32,, be a sequence of reals and M, N > m. Then
ay, < ajl and ay > ay.

Proposition 6.4.6 (Limit points, limsup’s and liminf’s are insensitive to
finite initial conditions). Let (a;)$2,,, (a;)2,, be sequences of reals, and x €
R* and let one of the following holds:
(i) There exists an N > m,n such that a; = b; for each i > N.
(i1) There exists a k > 0z such that for each i > m, we have i+ k > n and
a; = bigp.
Then

(1) x is a limit point of (a;)2,, <= x is a limit point of (b;)2,,,

(i) limsup,,_, . a, = limsup,,_. .. b,, and
(111) liminf, . a, = liminf, . b,.
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Lemma 6.4.7. Let (a;)2,, be a bounded sequence of reals. Thenlimsup,,_, . @y, liminf, . a, ¢

R.
Proposition 6.4.8 (Properties of lim sup’s and lim inf’s). Let (a;)32,, be a se-
quence of reals, and x € R* and set L := sup (a;)$2,, and L™ = inf (a;)$2,,
Then
(i) (a) x > LT = there exists an N > M such that a; < = for each
i> N,
(b) © < L= = there exists an N > m such that a; > x for each
i> N,
(ii)) (a) © < LT = for each N > m, there exists an i > N such that
a; > I,
(b) © > L~ = for each N > m, there ezists an i > N such that
a; < I,

(ii1) inf (a;)2,, < L™ < LT <sup (a;)2,,,
(v) = is a lzmzt point of (a;)2,, = L~ <z <Lt
(v) LT, L™ are limit points of (a;)$2,,, and
(vi) x € R = the following are equivalent:
(a) (a;)$2,, converges to x in R.
(b) L-=x=1L" .
Proposition 6.4.9 (Limit points of real limit points are limit points). Let

(@;)$2,,, (b:)2,, be sequences of reals such that b; is a limit point of (a;)$2, .
for each i > m. Let ¢ be a limit point of (b;)32,.. Then c is also a limit point

Of (al)z:m'
Lemma 6.4.10 (Comparison principles). Let (a;)2,., (b;)2,, be sequences
of reals such that a; < b; for each i > m. Then

(i) for each N > m, we have aj}; < by and ay < by,
(i) limsup,, . a, < limsup,_, . b,, and
(#3i) liminf, . a, < liminf, . b,.

i=m"

Corollary 6.4.11 (Squeeze test). Let (a;)$2,,, (0;)2,,, (¢;)2,, be sequences
of reals such that (a;)$2,., (¢;)$2,, are convergent sequences of reals, and
lim,, o0 @, = lim,, 0 b, and, min(a;, ¢;) < b; < max(a;,¢;) for each i > m.
Then (b;)$2,, is a convergent sequence of reals with lim,, . a, = lim,,_, b, =

lim,, oo Cpy.-

Corollary 6.4.12 (Zero test). Let (a;)2,, be a sequence of reals. Then

(a;)22,, converges to Og in R <= (|al,)2,, converges to Og.
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Theorem 6.4.13 (Completeness of R). Let (a;)2,, be a sequence of reals.
Then (a;)2,, is a convergent sequence of reals <= (a;)2,, is a Cauchy

sequence of reals.

6.5 Some standard limits

August 4, 2021

Proposition 6.5.1 (lim,, ., 1/n'/% = 0 for natural k > 1). Let k > 1. Then
there exists a unique function a such that (a;);2,, s a sequence of reals so
that a; = ((ig )~)Y* for each i > 1y. Further, for any such function a, we
have that (a;)i2,, converges to Og in R.

Proposition 6.5.2 (Convergence of (z)32, for z € R). Let x € R. Then
there exists a unique function a such that (a;);2,, is a sequence of reals so
that for each v > 14, there exists an 7 > 1 such that i = jz and a; = 27.
Further, for any such function a, we have that

(i) |z| <1g = (a;)2,, converges to Og in R,

(ii) |x| > 1pg = (a;)2,, is a divergent sequence of reals,

(i) v = 1g = (a;)i2,, converges to 1g in R, and

(iv) v = —1g = (a;)i2,, is a divergent sequence of reals.

Proposition 6.5.3 (lim,_,. #'/® = 1 for real + > 0). Let + > Og. Then
there exists a unique function a such that (a;);2,, is a sequence of reals so
that a; = '/ for each i > 1. Further, for any such function a, we have
that (a;)2,, converges to 1g in R.

Remark 6.5.4. The case when = = Og is simple.

Proposition 6.5.5 (lim, , 1/n? = 0 while (n9)7°, diverges for rational
q>0). Let ¢ > 0g. Then there exist unique functions a, b such that (a;)2,
(bi)2,, are sequences of reals so that for each i > 1z, we have a; = ((ir) ")
and b; = (ig)?. Further, for any such functions a, b, we have that (a;);2,,
converges to Og in R, while (b;)72,, is a divergent sequence of reals.

6.6 Subsequences

August 7, 2021
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Definition 6.6.1 (Strictly increasing functions on initial segments of Z).
For any bjects f, m, n, we write “f is a strictly increasing function from
{ieZ:i>myto{i€Z:i>n} ifmneZ and f: {i €Z:i>m} —
{i € Z :i>n} and for each i > m, we have i+ 1z > m and f(i+1z) > f(3).

Remark 6.6.2. Axiom of substitution obeyed.

Lemma 6.6.3 (Characterizing strictly increasing functions on initial seg-
ments on Z). Let m,n € Z and f: {i € Z:i>m} - {i€Z:i>n}. Then
f is an increasing function from {i € Z :i > m} to{i € Z :1 > n} <
for each i,j5 > m, we have that i > j — f(i) > f(j)-

Lemma 6.6.4. Let f be a strictly increasing function from {i € Z : i > m}
to{i€Z:i>n} and let N € N. Then f(m+ Nz) > n+ Nz.

Definition 6.6.5 (Subsequences of real sequences). For any objects a, b,
m, n, we write “(a;)$2,, is a subsequence of (b;)2, in R” iff (a;)$2,,, (b;)2,
are sequences of reals and there exists an object f such that f is a strictly
increasing function from {¢ € Z : i > m} to {i € Z : i > n} such that for

each i > m, we have f(i) > n and a; = by.
Remark 6.6.6. Axiom of substitution obeyed.

Proposition 6.6.7. Let (a;)2,, be a sequence of reals such that for each
M € R, there exists an i > m such that |a;| > M. Then there exist b, n such
that (b;)2,, is a subsequence of (a;)2,, in R so that b; # Or for each i > n,

and ((b71),)32,, converges to Og in R.
Lemma 6.6.8 (“is a subsequence of” is reflexive and transitive). Let (a;)2,.,
(0:)$2,,, (€)%, be sequences of reals. Then
(i) (reflexivity) (a;)$2,, is a subsequence of (a;)32,, in R, and
(11) (transitivity) (a;)52, is a subsequence of (b;)2, in R and (b;)2,, is a
subsequence of (¢;)2, in R = (a;)2,, is a subsequence of (¢;)2,. in

R.

Proposition 6.6.9 (Subsequences and limits). Let (a;)2,, be a sequence of
reals and L € R. Then the following are equivalent:
(i) (a;)2,, converges to L in R.
(11) For any b, n, we have that (b;)2,, is a subsequence of (a;)2,, in R =
(b;)$2,, converges to L in R.

=n
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Proposition 6.6.10 (Subsequences and limit points). Let (a;)2,, be a se-
quence of reals and L € R. Then the following are equivalent:
(1) L is a limit point of (a;)$2,,.
(i) There exist b, n such that (b;)2, is a subsequence of (a;)2,, in R and
(b;)$2,, converges to L in R.

i=n

Theorem 6.6.11 (Bolzano-Weierstrass). Let (a;)2,, be a bounded sequence
of reals. Then there exist b, n such that (b;)2,, is a subsequence of (a;)2,,
in R and (b;)$2

>, 1S a convergent sequence of reals.

6.7 Real exponentiation, part II

August 17, 2021

Lemma 6.7.1 (Raising reals to rational sequences). Let © > Og and a be a
function such that there ezists an m so that (a;)2,, be a sequence of rationals.
Then there exists a unique function b such that (b;) is a sequence of
reals and b; = x* for each © > Seqlntg a.

00
i=Seqlntg a

Remark 6.7.2. This allows to denote b by z¢. Axiom of substitution obeyed.

Lemma 6.7.3. Let x > Og and (a;)2,, be a Cauchy sequence of rationals.
Then ((z%),)2,, is a convergent sequence of reals with lim,, o (%), > Og.

i=m

Lemma 6.7.4. Let v > 0 and (a;);2,, be a Cauchy sequence of rationals
such that LIM,,_,o0 ap, = Og. Then lim,,_,, (2°), converges to 1g in R.

Corollary 6.7.5 (Raising positive reals to real exponents). Let x > Og and
a € R. Then there exists a unique y € R such that there exists a function a
so that (ai);’ilz 18 a Cauchy sequence of rationals such that LIM,, .o a, = «,

and ((2),)72,, converges to y in R.

Remark 6.7.6. This allows to denote y by z% Axiom of substitution
obeyed.
Corollary 6.7.7. Let x > Og and o € R. Then x® > Og.

Corollary 6.7.8. Let x > Or, andn € N, and p € Z and r € Q. Then
(i) e = an
(ii) x # Og and 2P® = 2P, and in particular, v='% = 71,
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(iii) n>1 = x> 0g and 2=/ = 2¥/"_ and
() x> Og and ™" = z".

Proposition 6.7.9. Let o € R. Then (1g)* = 1g.

Proposition 6.7.10 (Properties of exponentiation of positive reals by reals).
Let x,y > Og and o, 5 € R. Then
(i) xy > Og and (zy)* = x*y°,
(i1) x°HF = xoa2P,
(i) ' > Og, and * # Og and (z™H)* = (z%) ' =27,
(iv) x% is a positive real, and
(v) |z| > Or and |z|* = |z°%| = =*.

Lemma 6.7.11. Let x > Og and (a;)2,, converge to Og inR. Then ((x),)52,,
converges to 1g in R.

oo
=m

Corollary 6.7.12 (Continuity of the real exponent). Let x > Og and (a;)
be a convergent sequence of reals. Then ((x%),)2,, s a convergent sequence
of reals with

lim (z%) = glimnoedn,

n—oo n

Lemma 6.7.13. Let x > 1z and o > Og. Then z% > 1p.

Proposition 6.7.14 (Further properties of exponentiation of positive reals
by reals). Let x,y > Og and o, 3 € R. Then
(i) >0 and x>y >0 = z%>y* > 0O,
(ii) %P = (z)P,
(iii) for each n € N, we have that x" > O and (z")* = (2%)" = zlang),
(iv) for each p € Z, we have that 2P > Og, and z* # Og and (zP)* = ()" =
xosz/;
(v) for each n > 1, we have that z*/™ > Og, and z* > Og and (z'/™)* =
(z)/" = 22/ and
(vi) for eachr € R, we have that " > Og, and z* > Og and (2")* = (z*)" =

TR

Corollary 6.7.15. (i) Let z,y > Og and a € R such that z® = y*. Then
r=y.
(ii) Let x € R and o, € R such that o < 3. Then
(a) Op <z < 1g = 2% > 2, and
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(b) v >1g = 2° > 2°.

Lemma 6.7.16 (Embeddings consistent with exponentiation). Let r € Q,
andn € N and p € Z. Then

('L) (TR//)n = (TH)R,,, and

(ii) r # 0g = 1R # Or and (rge)? = (17)gu.
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