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Chapter I

Set theory

1 Fundamentals

Declaration 1. Set is an object type and “x ∈ A” is a binary relation symbol
obeying axiom of substitution.

Remark. We’ll shorten “X is an object of type Set” to “X is a set”.

Axiom 1. Let x, A be objects with x ∈ A. Then A is a set.

Axiom 2 (Extension). Let A, B be sets such that x ∈ A ⇐⇒ x ∈ B, for any
object x. Then A = B.1

Axiom 3 (Axiom schema of replacement). Let A be a set and P be a two-slot
property obeying axiom of substitution such that for each object x ∈ A, there exists
at most one object y such that P (x, y) holds. Then there exists a (unique2) set
{y : P (x, y) for some x ∈ A} =: X such that for any object y, we have that y ∈ X
⇐⇒ there exists an object x ∈ A such that P (x, y) holds.

Corollary 1.1 (Axiom schema of specification). Let A be a set and P be a one-slot
property obeying axiom of substitution. Then there exists a unique set {x ∈ A :
P (x)} =: X such that x ∈ X ⇐⇒ x ∈ A and P (x) holds, for any object x.

Pseudo-axiom 4. There exists a set.3

1Converse of this is a property of equality.
2Due to Axiom 2.
3This will follow from Axiom 13.

1
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Corollary 1.2 (Empty set). There exists a unique set ∅ that contains no object.

Pseudo-axiom 5 (Pairing). Let a, b be objects. Then there exists a set X such
that a ∈ X and b ∈ X.4

Corollary 1.3. For any objects a, b, there exists a unique set {a, b} which contains
precisely a and b.

Notation. In case of a single object a, we’ll use {a} to stand for {a, a}.

Axiom 6 (Unions). Let C be a set each of whose elements are sets. Then there
exists a set X such that x ∈ A for some A ∈ C =⇒ x ∈ C, for any object x.

Corollary 1.4. Let C be a set of sets. Then there exists a unique set
⋃
C such that

x ∈
⋃

C ⇐⇒ x ∈ A for some A ∈ C, for any object x.

Corollary 1.5 (Intersections). Let C be a nonempty set of sets. Then there exists a
unique set

⋂
C such that x ∈

⋂
C ⇐⇒ x ∈ A for each A ∈ C, for any object x.

Notation. For sets A and B, we’ll use A ∪B :=
⋃
{A,B} and A ∩B :=

⋂
{A,B}.

Corollary 1.6. Let a, b be objects. Then

{a} ∪ {b} = {a, b}.

Corollary 1.7 (Pairwise unions and intersections). Let A, B be sets. Then for any
object x, the following hold:

(i) x ∈ A ∪B ⇐⇒ x ∈ A or x ∈ B.

(ii) x ∈ A ∩B ⇐⇒ x ∈ A and x ∈ B.

Definition 1.8 (Disjoint sets). Sets A and B are called disjoint iff A ∩B = ∅.

Definition 1.9 (Subsets). Let A, B be sets. Then we write “A ⊆ B” iff for any
object x, we have that x ∈ A =⇒ x ∈ B.

Proposition 1.10. Any set of sets is (weakly) partially ordered by ⊆.5

4This will follow from Axiom 3 and the existence of any two element set, like 22
∅
which follows

from Axiom 11.
5We haven’t declared relations yet, let alone orders. But what matters here are the reflexive,

antisymmetric, and transitive properties which can be stated without enunciating the concept of
relations. Also see Theorem 6.2.
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Notation (Difference of sets). For sets A, B, we set

A \B := {x ∈ A : x /∈ B}.

Proposition 1.11 (Algebra of sets). Let A, B, C, X be sets. Then the following
hold:

A ∪ ∅ = A

A ∪X = X

A ∪ A = A

A ∪B = B ∪ A

A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ ∅ = ∅
A ∩X = A if A ⊆ X

A ∩ A = A

A ∩B = B ∩ A

A ∩ (B ∩ C) = (A ∩B) ∩ C

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

X \ (A ∪B) = (X \ A) ∩ (X \B)

X \ (A ∩B) = (X \ A) ∪ (X \B)

Proposition 1.12. Let A, B be sets. Then the following are equivalent:

(i) A ∪B = B.

(ii) A ⊆ B.

(iii) A ∩B = A.

Proposition 1.13. Let C be a nonempty set of sets and A, B be sets such that
A ⊆ X ⊆ B for each X ∈ C. Then

A ⊆
⋂

C ⊆
⋃

C ⊆ B.

Proposition 1.14 (Absorption laws). Let A, B be sets. Then

A ∪ (A ∩B) = A = A ∩ (A ∪B).

Proposition 1.15 (Partitions). Let A, B, X be sets. Then the following are equiv-
alent:

(i) {A,B} is a partition of X.

(ii) A = X \B and B = X \ A.
Also, {A \B, A ∩B, B \ A} is a partition of A ∪B.
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2 Functions

Declaration 2. Func is an object type, and “f : X → Y ” and “f : x 7→ y” are
ternary relation symbols obeying axiom of substitution.6

Axiom 7 (Properties of the relation symbol “f : X → Y ”).

(i) Let f be a function. Then there exist objects X, Y such that f : X → Y .

(ii) Let f , X, Y be objects such that f : X → Y . Then the following hold:

(a) f is a function and X, Y are sets.
(b) f : x 7→ y =⇒ x ∈ X and y ∈ Y , for any objects x, y.
(c) For each object x ∈ X, there exists a unique y such that f : x 7→ y.

(iii) Let f , X, Y , Y ′ be objects such that f : X → Y and f : X → Y ′. Then
Y = Y ′.

Axiom 8 (Equality of functions). Let f , g, X, Y be objects such that f : X → Y
and g : X → Y . For any objects x, y, y′, let f : x 7→ y and g : x 7→ y′ =⇒ y = y′.
Then f = g.

Axiom 9 (Functions via functional properties). Let X and Y be sets, and P be
a two-slot property obeying axiom of substitution such that for each x ∈ X, there
exists a unique y ∈ Y such that P (x, y) holds. Then there exists a function f such
that the following hold:

(i) f : X → Y .

(ii) f : x 7→ y =⇒ P (x, y), for any objects x, y.

Definition 2.1 (Domains and codomains). Let f be a function and X, Y be sets.
Then X is called a domain of f iff f : X → Y ′ for some set Y . We also call Y a
codomain iff f : X ′ → Y for some set X ′.

Proposition 2.2. Functions uniquely determine their domains and codomains.

Notation. For a function f and an object x in its domain, we’ll denote by f(x) or
fx, the unique y in its codomain for which f : x → y.

Remark. “f : X → Y is a function” stands for the fact that f is a function and X,
Y are sets such that f : X → Y .

6See §3.
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Proposition 2.3 (Equality of functions). Let f, g : X → Y be functions. Then f = g
⇐⇒ f(x) = g(x) for each x ∈ X.

Proposition 2.4 (Functions via functional properties). Let X, Y be sets and P be
a two-slot property obeying axiom of substitution such that for each x ∈ X, there
exists a unique y ∈ Y such that P (x, y) holds. Then there exists a unique function
f : X → Y such that P (x, f(x)) holds for each x ∈ X.

Proposition 2.5 (Function compositions). Let f : X → Y and g : Y → Z be func-
tions. Then there exists a unique function g ◦ f : X → Z such that

(g ◦ f)(x) = g(f(x)).

Proposition 2.6. Function composition is associative.

Definition 2.7 (Injections, surjections and bijections). Let f : X → Y be a function.
Then f is called

(i) injective iff f(x) = f(y) =⇒ x = y.

(ii) surjective iff codomain of f is Y .

(iii) bijective iff f is injective and surjective, both.

Proposition 2.8. Let f : X → Y and g : Y → Z be functions. Then the following
hold:

(i) f , g are injective (respectively surjective) =⇒ g ◦ f is injective (respectively
surjective).

(ii) g ◦ f is injective =⇒ f is injective.

(iii) g ◦ f is surjective =⇒ g is surjective.

Proposition 2.9 (Cancellation). Let f, f̃ : X → Y and g, g̃ : Y → Z be functions
with f surjective and g injective. Then the following hold:

(i) g ◦ f = g ◦ f̃ =⇒ f = f̃ .

(ii) g ◦ f = g̃ ◦ f =⇒ g = g̃.

Proposition 2.10 (Inclusion functions). Let X be a set and Y ⊆ X. Then there
exists a unique function ιX←Y : Y → X such that ιX←Y : y 7→ y for each y ∈ Y .

Notation (Identity functions). For a set X, we set idX := ιX←X .

Corollary 2.11.
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(i) For sets X, Y , Z such that Z ⊆ Y ⊆ X, we have

ιZ←Y ◦ ιY←X = ιZ←X .

(ii) For a function f : X → Y , we have

f ◦ ιX←X = f = ιY←Y ◦ f .

Definition 2.12 (Invertible functions). A function f : X → Y is called invertible iff
there exists a function g : Y → X such that g ◦ f = idX and f ◦ g = idY .

Corollary 2.13. Inverse of a function, if existent, is unique.

Proposition 2.14. A function is invertible ⇐⇒ it is bijective.

Proposition 2.15. Let f : X → Y and g : Y → Z be invertible. Then f−1 and g ◦ f
are also invertible with

(f−1)−1 = f , and

(g ◦ f)−1 = f−1 ◦ g−1.

Lemma 2.16 (Pasting functions). Let f : X → Z and g : Y → Z be functions such
that they agree on X ∩ Y . Then there exists a unique function h : X ∪ Y → Z such
that

h(x) =

{
f(x), x ∈ X

g(x), x ∈ Y
.

Definition 2.17 (Families). Let f be a function with domain I. Then we write that
“{fα}α∈I is a family”.

Proposition 2.18 (Generalized distributivity and De Morgan). Let X, A be sets
and {Bα}α∈I be a nonempty family of sets. Then the following hold:7

A ∪
(⋂
α∈I

Bα

)
=

⋂
α∈I

A ∪Bα

A ∩
(⋃
α∈I

Bα

)
=

⋃
α∈I

A ∩Bα

X \
(⋃
α∈I

Bα

)
=

⋂
α∈I

X \Bα

X \
(⋂
α∈I

Bα

)
=

⋃
α∈I

X \Bα.

7
⋂

α∈I X \Bα is the set
⋂
{X \Bα : α ∈ I}, which exists due to replacement. Similarly, others.
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3 Images and inverse images

Definition 3.1 (Forward images). Let f : X → Y be a function and S ⊆ X. Then
we set8

f(S) := {f(x) : x ∈ S}.

Remark. There is a possible collision: What if x is both, an element and a subset
of the domain of f? We will be cautious.

Corollary 3.2. A function f : X → Y is surjective ⇐⇒ f(X) = Y .

Lemma 3.3. Let f : X → Y be a invertible and U ⊆ Y . Then

f−1(U) = {x ∈ X : f(x) ∈ U}.

Definition 3.4 (Inverse images). Let f : X → Y be a function and U ⊆ Y . Then
we set

f−1(U) := {x ∈ X : f(x) ∈ U}.

Remark. Lemma 3.3 guarantees no notational collision: Definition 3.4 extends the
notation compatibly.

Proposition 3.5. Let f : X → Y be a function, S, T ⊆ X and U, V ⊆ Y . Let
{Aα}α∈I and {Bβ}β∈J be families of subsets of X and Y respectively. Then the
following hold:9

f
(⋃
α∈I

Aα

)
=

⋃
α∈I

f(Aα)

f
(⋂
α∈I

Aα

)
⊆

⋂
α∈I

f(Aα) if I ̸= ∅

f(S \ T ) ⊇ f(S) \ f(T )

f−1
(⋃
β∈J

Bβ

)
=

⋃
β∈J

f−1(Bβ)

f−1
(⋂
β∈J

Bβ

)
=

⋂
β∈J

f−1(Bβ) if J ̸= ∅

f−1(U \ V ) = f−1(U) \ f−1(V )

f−1(f(S)) ⊇ S

f(f−1(U)) ⊆ U
8The right-hand-side actually stands for the set {y : y = f(x) for some x ∈ S}, which exists due

to replacement. We’ll omit such mentions later.
9
⋃

α∈I f(Aα) is the set
⋃
{f(Aα) : α ∈ I}, which exists due to replacement. Similarly, others.
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Proposition 3.6. Let f : X → Y and g : Y → Z be functions. Let S ⊆ X and
U ⊆ Z. Then

(g ◦ f)(S) = g(f(S)), and

(g ◦ f)−1(U) = f−1(g−1(U)).

Proposition 3.7 (Characterizing injections and surjections via images). For a func-
tion f , the following hold:

(i) f is injective ⇐⇒ f−1(f(S)) = S for any S ⊆ X.

(ii) f is surjective ⇐⇒ f(f−1(U)) = U for any U ⊆ Y .

4 Cartesian products

Declaration 3. OrdPair is an object type and “(x, y)” is a bivariate function symbol
obeying axiom of substitution.10

Axiom 10 (Properties of the function symbol “(x, y)”).

(i) Let x, y be objects. Then (x, y) is an ordered pair.

(ii) Let x, y, x′, y′ be objects such that (x, y) = (x′, y′). Then x = x′ and y = y′.

(iii) Let p be an ordered pair. Then there exist objects x, y such that p = (x, y).

Corollary 4.1 (Coordinates of an ordered pair). Let p be an ordered pair. Then
there exist unique objects x, y such that p = (x, y).

Proposition 4.2 (Pairwise Cartesian products). Let X, Y be sets. Then there exists
a unique set X ×Y which contains precisely the ordered pairs (x, y) such that x ∈ X
and y ∈ Y .

Proposition 4.3. Let A, C, D be sets, and {Bα}α∈I be a nonempty family of sets.
Then the following hold:

A×
(⋃
α∈I

Bα

)
=

⋃
α∈I

(A×Bα)

A×
(⋂
α∈I

Bα

)
=

⋂
α∈I

(A×Bα)

A× (C \D) = (A× C) \ (A×D)

There are corresponding statements for the other side.
10See §3.
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Proposition 4.4. Let A, B, C, D be sets. Then the following hold:

(A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D)

(A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D)

(A×B) \ (C ×D) ⊇ (A \ C)× (B \D)

Proposition 4.5 (Coordinate functions). Let X, Y be sets. Then there exist unique
functions πX : X ×Y → X11 and πY : X ×Y → Y such that for any (x, y) ∈ X ×Y ,
we have12 (

πX(x, y), πY (x, y)
)
= (x, y).

Further, these coordinate functions are surjective.

Proposition 4.6 (Direct sum of two functions). Let f : X → Y and g : X → Z be
functions. Then there exists a unique function h : X → Y × Z such that

h : x 7→ (f(x), g(x)).

This function is also characterized by the fact that h : X → Y × Z, and

(πY ◦ h, πZ ◦ h) = (f, g),

where πY , πZ are coordination functions from Y × Z onto Y , Z.

Proposition 4.7. Let I, J be nonempty sets and {Aα,β}(α,β)∈I×J be a family of sets.
Then the following hold:13⋃

α∈I

(⋃
β∈J

Aα,β

)
=

⋃
(α,β)∈I×J

Aα,β =
⋃
β∈J

(⋃
α∈I

Aα,β

)
⋂
α∈I

(⋂
β∈J

Aα,β

)
=

⋂
(α,β)∈I×J

Aα,β =
⋂
β∈J

(⋂
α∈I

Aα,β

)
Also, ⋃

α∈I

(⋂
β∈J

Aα,β

)
⊆

⋂
β∈J

(⋃
α∈I

Aα,β

)
.

Axiom 11 (Power sets). Let A be a set. Then there exists a set X such that
S ⊆ A =⇒ S ∈ X, for any object S.

11This notation is bad.
12Strictly, we should write πX((x, y)).
13Strictly speaking, the left-hand-side is constructed via two instances of replacement.
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Corollary 4.8. Let A be a set. Then there exists a unique set 2A which contains
precisely the subsets of A.

Definition 4.9 (Partial functions). Let X, Y be sets. Then a partial function from
X to Y is a function with a subset of X being its domain, and a subset of Y , its
codomain.

Proposition 4.10 (Set of functions). The following are equivalent:

(i) Axiom 11.

(ii) Let X, Y be sets. Then there exists a unique set Y X containing precisely the
functions from X to Y .

(iii) Let X, Y be sets. Then there exists a unique set containing all the partial
functions from X to Y .

5 Natural numbers

Declaration 4. Nat is an object type, and we have a constant symbol 0, and a
function symbol “x++” obeying axiom of substitution.

Axiom 12 (Peano axioms).

(i) 0 is a natural number.

(ii) n++ is a natural number for each natural number n.

(iii) n++ ̸= 0 for any natural number n.

(iv) m++ = n++ =⇒ m = n for any natural numbers m, n.

(v) Let P be a one-slot property such that P (0) holds and P (n) holds =⇒ P (n++)
holds for any natural number n. Then P (n) holds for all natural numbers n.

Axiom 13 (Infinity). There exists X such that n is a natural number =⇒ n ∈ X,
for each object n.14

Corollary 5.1. There exists a unique set N that contains precisely the natural num-
bers.

Remark. We’ll use “x0, x1, . . . is a family” to mean that {xi}i∈N is a family.

Notation. We’ll use 1 := 0++, etc.

14See Proposition 7.6 for why this is called so.
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Proposition 5.2 (Natural cuts). Let N ∈ N. Then there exist unique sets {0, . . . , N} =:
A, and B such that the following hold:

(i) {A,B} is a partition of N.
(ii) 0 ∈ A.

(iii) N++ ∈ B.

(iv) n ∈ A \ {N} =⇒ n++ ∈ A.

(v) n ∈ B =⇒ n++ ∈ B.

Further, we also have the following:

(i) N ∈ {0, . . . , N}.
(ii) {0, . . . , N++} = {0, . . . , N} ∪ {N++}.

Proposition 5.3 (Recursion). Let X be a set and c ∈ X. Let f0, f1, . . . be functions
X → X. Then there exists a unique function g : N → X such that

g(0) = c, and

g(n++) = fn(g(n)) for n ∈ N.

Proposition 5.4 (“Uniqueness” of N). Have primed versions of Declaration 4, Ax-
iom 12, and Axiom 13, with N′ containing all the primed naturals. Then there exists
a unique function f : N → N′ such that

f(0) = 0′, and

f(n++) = f(n)++′ for each n ∈ N.

Further, any such f is a bijection.

Proposition 5.5 (Addition). Let n ∈ N. Then there exists a unique function
N → N, denoted m 7→ m+ n, such that

0 + n = n, and

(m++) + n = (m+ n)++ for m ∈ N.

Corollary 5.6. For each n ∈ N, we have

n++ = n+ 1.

Proposition 5.7 (Multiplication). Let n ∈ N. Then there exists a unique function
N → N, denoted m 7→ mn, such that

0n = 0, and

(m++)n = mn+ n for m ∈ N.
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Proposition 5.8 (Algebra in N). Let a, b, c ∈ N. Then the following hold:

a+ b = b+ a,

(a+ b) + c = a+ (b+ c),

a+ 0 = a,

ab = ba,

(ab)c = a(bc),

a1 = a,

a(b+ c) = ab+ ac, and

(a+ b)c = ac+ bc.

Proposition 5.9 (No zero addends or zero divisors). Let a, b ∈ N. Then the follow-
ing hold:

(i) a+ b = 0 =⇒ a = 0 = b.

(ii) ab = 0 =⇒ a = 0 or b = 0.

Proposition 5.10 (Cancellation for addition). Let a, b, c ∈ N. Then

a+ c = b+ c =⇒ a = b.

Definition 5.11 (Order and positivity). Let m,n ∈ N. Then we write

(i) m ≤ n iff n = m+ p for some p ∈ N;15 and,

(ii) m < n iff m ≤ n and m ̸= n.

We also say that m is positive iff m > 0.

Proposition 5.12. Let m,n ∈ N. Then

m < n ⇐⇒ m+ 1 ≤ n.

Proposition 5.13. ≤ is a total order on N.

Proposition 5.14 (Behaviour with addition and multiplication). Let a, b, c ∈ N.
Then the following hold:

(i) a < b =⇒ a+ c < b+ c.

(ii) a < b and c > 0 =⇒ ac < bc.

15Clearly, n ≤ n and hence Theorem 6.2 applies.
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Corollary 5.15 (Cancellation for multiplication). Let a, b, c ∈ N and c ̸= 0. Then

ac = bc =⇒ a = b.

Proposition 5.16 (Equivalent forms of induction). The following are equivalent.

(i) The usual induction as in Axiom 12.

(ii) (Induction from nonzero base case). Let m0 ∈ N and P be a one-slot property
such that P (m0) is true, and P (m) =⇒ P (m + 1) for each m ≥ m0. Then
P (m) holds for each m ≥ m0.

(iii) (Strong induction). Let m0 ∈ N and P be a one-slot property such that for
each m ≥ m0, if P (n) holds for each m0 ≤ n < m, then P (m) holds. Then
P (m) holds for each m ≥ m0.

(iv) (Backwards induction). Let m0 ∈ N and P be a one-slot property such that
P (m0) holds, and P (m + 1) =⇒ P (m) for each m < m0. Then P (m) holds
for each m ≤ m0.

(v) (Principle of infinite descent). Let P be a one-slot property such that for every
n ∈ N, if P (n) holds, then there exists an m < n such that P (m) holds. Then
P (n) is false for each n ∈ N.

(vi) (Well-ordering). Let S ⊆ N be nonempty. Then there exists a least element in
S.

Proposition 5.17 (Euclid’s division lemma). Let m,n ∈ N such that n ̸= 0. Then
there exist unique q, r ∈ N such that 0 ≤ r < n and

m = nq + r.

Miscellany

Definition 5.18 (Exponentiation). Let n ∈ N. Then there exists a unique function
N → N, denoted m 7→ nm, such that

n0 = 1, and

nm++ = nm n for m ∈ N.

Remark. The properties of exponentiation are proven in Result 7.13.

Definition 5.19 (Odd and even naturals). An n ∈ N is called
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(i) even iff n = 2m for some m ∈ N; and,
(ii) odd iff n = 2m+ 1 for some m ∈ N.

Result 5.20. Odds and Evens partition N.

6 n-fold Cartesian products

Lemma 6.1. Let n ∈ N. Then we have

{0, . . . , n} = {i ∈ N : 0 ≤ i ≤ n}.

Definition 6.2 (Intervals in N). Let m,n ∈ N. Then we define

{m, . . . , n} := {i ∈ N : m ≤ i ≤ n}, and
{m,m+ 1, . . .} := {i ∈ N : i ≥ m}.

Proposition 6.3. Let m,n ∈ N. Then

{1, . . . ,m} = {1, . . . , n} =⇒ m = n.

Definition 6.4 (n-tuples). Let n ∈ N. Then an n-tuple is a function with domain
{1, . . . , n}.

Notation. We will also use the “(x1, . . . , xn)” notation for n-tuples.
We denote the unique 0-tuple by “()”.

Definition 6.5 (n-fold Cartesian products). Let n ∈ N and X1, . . . , Xn be sets.
Then we define16

n∏
i=1

Xi :=

{
x ∈

( n⋃
i=1

Xi

){1,...,n}
: xi ∈ Xi for 1 ≤ i ≤ n

}
.

Corollary 6.6. For a set X, and an n ∈ N, we have

X{1,...,n} =
n∏

i=1

X.

16If we had defined n-tuples to be surjections, then the modified
∏

i Xi would have to be specified
from the set of partial functions from {1, . . . , n} to

⋃
i Xi.
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Notation. In this case, we denote X{1,...,n} by Xn.

Result 6.7 (Generalized recursion). Let X be a set and c ∈ X. Let f0, f1, . . . be
functions with fi : X

i+1 → X. Then there exists a unique function g : N → X such that

g(0) = f0(c), and

g(n+ 1) = fn(g(0), . . . , g(n)) for n ∈ N.

Proposition 6.8 (Finite choice). Let n ∈ N and X1, . . . , Xn be sets. Then the
following are equivalent:

(i)
∏n

i=1Xi ̸= ∅.
(ii) Each Xi is nonempty.

7 Cardinality of sets

Definition 7.1 (Equal cardinalities). Sets will be said to have equal cardinalities,
or be equinumerous, iff there exists a bijection between them.

Proposition 7.2. Being equinumerous is an equivalence relation on any set of sets.

Example 7.3. N, odds, evens are all equinumerous.

Definition 7.4 (Finite sets). A set X is said to

(i) have n elements iff X and {1, . . . , n} are in bijection for some n ∈ N; and,
(ii) be finite iff X has n elements for some n ∈ N; and,
(iii) be infinite iff it is not finite.

Proposition 7.5. Let X be a finite set. Then there exists a unique |X| such that X
has |X| elements.

Proposition 7.6. N is infinite.

Lemma 7.7. Let X be a finite set and a /∈ X. Then

|X ∪ {a}| = |X|+ 1.

Proposition 7.8. Let X, Y be finite sets. Then X ∪ Y , X ∩ Y are also finite with

|X ∪ Y |+ |X ∩ Y | = |X|+ |Y |.
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Proposition 7.9 (Subsets of finite sets). Let X be a finite set and Y ⊊ X. Then Y
is finite and

|Y | < |X|.

Proposition 7.10 (Images of finite sets). Let f : X → Y be a function with X finite.
Then the following hold:

(i) f(X) is finite.

(ii) f is an injection =⇒ |f(X)| = |X|.
(iii) f is not an injection =⇒ |f(X)| < |X|.

Proposition 7.11. Let X, Y be finite sets. Then X × Y and Y X are finite with

|X × Y | = |X| |Y |, and
|Y X | = |Y ||X|.

Proposition 7.12. Let X, Y , Z be sets. Then the following pairs have equal cardi-
nalities:

(i) ZY ∪X and ZY × ZX , if Y ∩X = ∅.
(ii) ZY×X and (ZY )X .

(iii) (Z × Y )X and ZX × Y X .

Result 7.13 (Properties of natural exponentiation). Let a, b, c ∈ N. Then the following
hold:

ab+c = ab ac

abc = (ab)c

(ab)c = ac bc

Proposition 7.14. Let X, Y be sets. Then the following are equivalent:17

(i) There is an injection X → Y .

(ii) If X ̸= ∅, then there is a surjection Y → X.

Definition 7.15 (Comparing arbitrary cardinalities). A set X is said to have car-
dinality less than that that of a set Y iff there exists an injection X → Y .

17Going from second to first requires AC. See ??
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Proposition 7.16 (Consistency with finite sets). Let X, Y be finite sets. Then X
has cardinality less than that of Y ⇐⇒ |X| ≤ |Y |.

Result 7.17 (Pigeonhole principle). Let n ∈ N and A1, . . . , An be finite sets. Then the
following hold:

(i) |
⋃n

i=1Ai| > n =⇒ some |Ai| > 1.

(ii) |
⋃n

i=1Ai| < n =⇒ each |Ai| ≤ 1.

sec 3: 19, 20, exponentiation



Chapter II

The number systems

We start with integers, having already discussed naturals in §5.

1 The integers

1.1 Axiomatizing existence

Axiom 14 (Integers). There exists a totally ordered integral domain1 with the non-
negatives being well-ordered.2

Definition 1.1 (Sets of integers). We call any ring as in Axiom 14, a set of integers.
We also define positive and negative integers via comparison with zero.

Remark. We’ll not fuss about the abuse of notation when we use the same notation
for addition multiplication, etc. for naturals, integers, etc.

Lemma 1.2. In a set of integers, there are no integers between 0 and 1, and hence
we have

m < n ⇐⇒ m+ 1 ≤ n.

Proposition 1.3 (Inductive sets in Z). The nonnegatives and nonpositives in a set
of integers obey Peano axioms.

1We can in fact weaken it to just a nonzero ring with identity, or even have Peano-like axioms
and then define operations and order.

2For us, rings will be sets along with binary operations, not another object type.

18

https://math.stackexchange.com/a/311280/673223
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Corollary 1.4 (Simple induction for Z). Let Z be a set of integers and P be a one-
slot property such that P (0) holds, and P (n) =⇒ P (n + 1), for all n ≥ 0, and
P (n) =⇒ P (n− 1) for all n ≤ 0. Then P (n) holds for each n ∈ Z.

Corollary 1.5 (Simple recursion for Z). Let Z be a set of integers, and N be the set
of nonnegative integers. Let fn, gn : X → X be functions for n ∈ N and c ∈ X. Then
there exists a unique function h : Z → X such that

h(0) = c,

h(n+ 1) = fn(h(n)) for n ≥ 0, and

h(n− 1) = gn(h(n)) for n ≤ 0.

Proposition 1.6 (“Uniqueness” of Z). There exists a unique ring isomorphism be-
tween any two sets of integers, which further preserves order too.

Proposition 1.7 (Embedding N into Z). From a set of naturals3 to a set of integers,
there exists a unique injection that preserves addition and multiplication. Order also
gets preserved as a byproduct.

Notation. For the rest of the notes, we’ll fix a concrete such set, and denote it by
Z. Also, we’ll identify N with the nonnegative integers.

Proposition 1.8 (Euclid’s lemma). Let m,n ∈ Z with n ̸= 0. Then there exist
unique q, r ∈ Z such that4 0 ≤ r < |n|, and

m = nq + r.

Proposition 1.9 (Inductive sets in Z). Let S ⊆ Z such that S ̸= ∅,Z and for each
i ∈ Z, we have

i ∈ S =⇒ i+ 1 ∈ S (respectively i− 1 ∈ S).

Then S contains least (respectively greatest) element.

3By “a set of naturals”, we mean a set along with an object “zero” and a “successor” function
that together obey Peano axioms. Hence, N is a set of naturals.

4Absolute value is defined in the usual way.
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1.2 Constructing integers from naturals

Proposition 1.10 (The equivalence relation). The following defines an equivalence
relation on N× N:

(a, b) ∼ (c, d) iff a+ d = c+ b.

Notation. We’ll call the equivalence classes as “differences”, and use

a−− b := [(a, b)], and

Z := {a−− b : a, b ∈ N}.

Theorem 1.11 (Ring structure of Z). We can define the following operations on
Z:

(a−− b) + (c−− d) := (a+ c)−− (b+ d)

(a−− b)(c−− d) := (ac+ bd)−− (ad+ bc)

Further, Z forms an integral domain with these operations. We have:

zero = 0−− 0

−(a−− b) = b−− a

identity = 1−− 0

Theorem 1.12 (Order on Z). The following is a well-defined total order on Z:

a−− b ≤ c−− d iff a+ d ≤ c+ b.

Further, this order is compatible with the ring operations of Z, and well orders
the set of nonnegative differences.

2 The rationals

Definition 2.1 (Sets of rationals). A set of rationals is a smallest5 totally ordered
field. We also define positive and negative rationals via comparison with zero.

5That is, if K is any totally ordered field, then K contains an isomorphic image of the mentioned
field.



CHAPTER II. THE NUMBER SYSTEMS 21

Proposition 2.2 (Z insideQ). Let Q be a set of rationals,6 and Z be a set of integers.
Then there exists a unique injective homomorphism ϕ : Z → Q. Further, ϕ preserves
order, and

Q = {ϕ(m)ϕ(n)−1 : m,n ∈ Z, n ̸= 0}

Proposition 2.3 (Ordering the field of fractions). Let Q be the field of fractions of
Z. Then7

a/b < c/d iff ad < cb for b, d > 0

is a well-defined order on Q that makes it a totally ordered field.

Corollary 2.4. There exists a set of rationals.

Proposition 2.5 (“Uniqueness” of rationals). There is a unique injective homo-
morphism from any set of rationals to any totally ordered field which also preserves
order.

In particular, between any two sets of rationals, there exists a unique isomor-
phism, which further preserves order too.

Notation. For the rest of the text, we’ll fix a concrete set of rationals, Q. We’ll
also identify integers with with their copy in Q.

Proposition 2.6. Every rational can be written as a ratio of coprime integers.

Proposition 2.7 (Gaps in rationals). There exists no rational whose square is 2.
But for each rational ε > 0, there exists a rational r ≥ 0 such that r2 < 2 <

(r + ε)2.

3 The reals

Definition 3.1 (Reals). An ordered complete field is called a set of reals.

Proposition 3.2 (“Uniqueness” of reals). Between any two sets of reals, there exists
a unique isomorphism which also preserves order.

Remark. We’ll fix a concrete such set R, and continue the identification ritual.

Proposition 3.3. n-th (and hence rational) roots8 of positive reals exist.

Corollary 3.4. Rationals violate the least-upper-bound property.
6The first statement holds for any totally ordered field Q.
7a/b := [(a, b)].
8Cf. §5.
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3.1 Constructing reals from rationals

Definition 3.5 (Rational-Cauchy sequences). A sequence of rationals (ai)
∞
i=1 is

called rational-Cauchy9 iff for every rational ε > 0, there exists an integer N ≥ 1
such that for all integers i, j ≥ N , we have

|ai − aj| < ε.

Proposition 3.6 (The equivalence relation). The following defines an equivalence
relation on the set of rational-Cauchy sequences starting from 1:

(ai)
∞
i=1 ∼ (bi)

∞
i=1 iff

there exists an integer N ≥ 1 such that

|ai − bi| < ε

for each integer i ≥ N

Remark. We call the equivalence classes as “reals”, and use

LIM
i→∞

ai := [(ai)
∞
i=1], and

R := {LIM
i→∞

ai : (ai)
∞
i=1 is a Cauchy sequence of rationals}.

Theorem 3.7 (Field structure of R). The following are well-defined operations on
R, which make it into a field:10

LIM
i→∞

ai + LIM
i→∞

bi := LIM
i→∞

(ai + bi)

(LIM
i→∞

ai)(LIM
i→∞

bi) := LIM
i→∞

(aibi)

Further, we have the following:11

zero = LIM
i→∞

0

−(LIM
i→∞

ai) = LIM
i→∞

(−ai)

identity = LIM
i→∞

1

(LIM
i→∞

ai)
−1 = LIM

i→∞
a−1i if LIM

i→∞
ai ̸= LIM

i→∞
0 and each ai ̸= 0

9With no reals being previously defined, they are a priori different from Cauchy sequences.
10Implicitly is implied that the sequences on the right-hand-sides are rational-Cauchy.
11See Footnote 10.



CHAPTER II. THE NUMBER SYSTEMS 23

Theorem 3.8 (Order on R). The following is a well-defined total order on R:

LIM
i→∞

ai < LIM
i→∞

bi iff

there exists an integer N ≥ 1

and a rational c > 0 such that

bi − ai > c

for each integer i ≥ N

Further, this order is compatible with the field operations on R and has the least
upper bound property.

3.2 Extended reals

Definition 3.9. We define extended reals to be the set R ∪ {+∞,−∞} such that
the following hold:

(i) −∞,+∞ /∈ R are distinct.

(ii) The order of R is extended to {−∞} ∪ R ∪ {+∞} as:

(a) −∞ < x < +∞ for all x ∈ R.
(b) −∞ < +∞.

(iii) The negation on R is extended to {−∞} ∪ R ∪ {+∞} as:

(a) −(−∞) := +∞.
(b) −(+∞) := −∞.

Proposition 3.10 (Order and negation).

(i) The extended reals are totally ordered.

(ii) Double negation is identity.

(iii) Negation reverses order.

Proposition 3.11 (l.u.b. property). Every subset of extended reals has a least upper
bound and a greatest lower bound.

Remark. Unless stated otherwise, we’ll be considering −∞, +∞ for bounds of
subsets of R.



Chapter III

Limits of sequences

R forms a metric space with d(x, y) = |x− y|.

1 Convergence and limit laws

Definition 1.1 (Convergence). A sequence of reals (xi)
∞
i=m is said to converge to an

L ∈ R, denoted
xi → L,

iff for each real1 ε > 0, there exists an integer N ≥ m such that for each integer
i ≥ N , we have

|xi − L| < ε.

Proposition 1.2. A real sequence converges to at most one point.

Notation. This allows to use limi→∞ ai notation. (Note that the starting index is
already “in” a.)

Definition 1.3 (Cauchy sequences of reals). A sequence of reals (xi)
∞
i=m is said to

be Cauchy iff for each real ε > 0, there exists an integer N ≥ m such that for all
integers i, j ≥ N , we have

|xi − xj| < ε.

Proposition 1.4 (Characterizing boundedness). Let E ⊆ R. Then E is bounded
⇐⇒ there exists a real M such that |x| ≤ M for each x ∈ E.

1Or equivalently, rational. We’ll not mention this again.

24
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Definition 1.5 (Blindness to initial conditions). A one-slot property P is said to be
blind to initial conditions iff for any sequence (xi)

∞
i=m, and for any integers n, k, N

with n ≥ m and N ≥ 0, the following are equivalent:

(i) P holds for (xi)
∞
i=m.

(ii) P holds for (xi+N)
∞
i=m.

(iii) P holds for (xi)
∞
i=n.

(iv) P holds for (xi−k)
∞
i=m+k.

Notation. This allows us to be imprecise about the starting index of the sequence
from notations: For instance, in limi 1/n, the sequence could begin with any positive
integer.

Proposition 1.6. Convergence, Cauchy-ness and boundedness of real sequences are
blind to initial conditions.

Proposition 1.7. For real sequences,

convergence =⇒ Cauchy-ness =⇒ boundedness.

Result 1.8 (Some standard limits). In R, as i → ∞, we have the following limits:

1/i → 0

xi → 0 if for |x| < 1

xri → 1 if ri → 0 in Q, for x > 0

Theorem 1.9 (Limit laws). Let ai → L and bi → M in R. Then the following hold:

ai + bi → L+M

ai bi → LM

−ai → −L

a−1i → L−1 if L ̸= 0 and each ai is nonzero

min(ai, bi) → min(L,M)

max(ai, bi) → max(L,M)

|ai| → |L|
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Let n ∈ Z and r ∈ Q. Then we also have the following:

ani → Ln if n ≥ 0

ani → Ln if each ai is nonzero and L ̸= 0

ari → Lr if each ai > 0 and L > 0

Theorem 1.10 (Monotone convergence). A monotone sequence of reals is convergent
if and only if it is bounded.

Miscellany

Proposition 1.11. Let (ai) be a sequence of reals and (af(k)), (ag(l)) be its subse-
quences such that the ranges of f , g cover the domain2 of a. Then the following are
equivalent:

(i) ai → L in R.
(ii) af(k) → L and ag(l) → L in R.

2 lim sup, lim inf and limit points

Definition 2.1 (Limit points of sequences). An L ∈ {−∞} ∪ R ∪ {+∞} is said to
be a limit point of a sequence (xi)

∞
i=m of reals iff one of the following holds:

(i) L = −∞ and (xi) is unbounded below.

(ii) L = +∞ and (xi) is unbounded above.

(iii) L ∈ R and for each real ε > 0 and each integer N ≥ m, there exists an integer
i ≥ N such that

|xi − L| < ε.

Definition 2.2 (lim inf and lim sup). Let (xi)
∞
i=m be a real sequence. Then we define

lim inf
i→∞

xi := sup
N≥m

(
inf
i≥N

xi

)
, and

lim sup
i→∞

xi := inf
N≥m

(
sup
i≥N

xi

)
Proposition 2.3. Limit points, lim sup and lim inf’s are blind to the initial condi-
tions.

2Or a final segment thereof.
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Theorem 2.4. Let (xi) be a sequence of reals, L− := lim infi→∞ xi and L+ :=
lim supi→∞ xi. Then the following hold:

(i) L−, L+ are limit points of (xi).

(ii) If L ∈ R is a limit point of (xi), then L− ≤ L ≤ L+.

(iii) Limit points of a sequence of limit points of (xi) are limit points of (xi).

(iv) If (xi) is convergent, then its limit is its only limit point.

(v) Let L ∈ R. Then xi → L ⇐⇒ L− = L = L+.

(vi) If (yi) is another sequence of reals such that each xi ≤ yi, then

lim inf
i→∞

xi ≤ lim inf
i→∞

yi, and

lim sup
i→∞

xi ≤ lim sup
i→∞

yi.

Corollary 2.5 (Squeeze test). Let xi, zi → L in R. Let (yi) ∈ R such that

min(xi, zi) ≤ yi ≤ max(xi, zi)

for all i. Then yi → L as well.

Corollary 2.6 (Zero test). In R, we have

ai → 0 ⇐⇒ |ai| → 0.

Theorem 2.7 (R is complete). Every Cauchy sequence of reals is convergent.

Proposition 2.8 (On subsequences). Let (xi) be a sequence of reals, and (xf(i)) be
its subsequence. Then the following hold:

(i) If xi → L, then xf(i) → L too.

(ii) L is a limit point of (xi) ⇐⇒ (xi) has a subsequence converging to L.

Theorem 2.9 (Bolzano-Weierstraß). Every bounded real sequence has a convergent
subsequence.

3 Real exponentiation

Lemma 3.1. Every real is the limit of some convergent sequence of rationals.

Notation. R−, R+ will stand for negative, and respectively positive reals.
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Proposition 3.2 (Defining real exponentiation). Let x ∈ R+ and α ∈ R. Then there
exists a unique xα ∈ R+ such that for any rational sequence (ri) such that ri → α,
we have

xri → xα.

Remark. There’s no notational collision with the rational powers already defined
for R+.

Proposition 3.3 (Algebraic properties). Let x, y, α, β ∈ R with x, y > 0. Then the
following hold:

xα+β = xα xβ

xαβ = (xα)β

(xy)α = xα yα

Proposition 3.4 (Order properties).

(i) t 7→ tγ is strictly increasing (respectively decreasing) if γ > 0 (respectively
γ < 1).

(ii) γ 7→ tγ is strictly increasing (respectively decreasing) if t > 1 (respectively
t < 1).

Proposition 3.5 (Continuity).

(i) Let xi → L in R+ and α ∈ R. Then

xα
i → Lα.

(ii) Let x > 0 and ai → α in R. Then

xai → xα.



Chapter IV

Series

1 Finite series

Definition 1.1 (Convergence of series). Let (ai)
∞
i=m be a sequence of reals and

m0 ≥ m be an integer. Define

SN :=
N∑

i=m0

ai

for each N ≥ m0. Then series
∑∞

i=m0
ai is said to be (conditionally) convergent iff

(SN) is convergent, in which case, we also write

∞∑
i=m0

ai := lim
N→∞

SN .

If (SN) is divergent, then the series
∑∞

i=m0
ai is said to be divergent.

We also say that
∑∞

i=m0
ai is absolutely convergent iff

∑∞
i=m0

|ai| is convergent.

Proposition 1.2 (Characterizing convergent series). Let (ai)
∞
i=m ∈ R. Then

∑∞
i=m ai

is convergent ⇐⇒ for each ε > 0, there exists an N ≥ m such that for all p, q ≥ N ,
we have ∣∣∣ q∑

i=p

ai

∣∣∣ < ε.

Corollary 1.3 (Zero test). Let (ai)
∞
i=m ∈ R. Then

∞∑
i=m

ai converges =⇒ ai → 0.

29
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Proposition 1.4. Let (ai)
∞
i=m ∈ R with

∑∞
i=m converging absolutely. Then

∑∞
i=m ai

converges conditionally as well, with∣∣∣ ∞∑
i=m

ai

∣∣∣ ≤ ∞∑
i=m

|ai|.

Proposition 1.5 (Series algebra). Let (ai)
∞
i=m, (bi)

∞
i=m ∈ R with

∑∞
i=m ai and

∑∞
i=m bi

being convergent. Then1 the following hold:

∞∑
i=m+k

ai−k =
∞∑

i=m

ai for any k ∈ Z

∞∑
i=n

ai =
∞∑

i=m

ai −
n−1∑
i=m

ai for any integer n ≥ m

∞∑
i=m

(ai + bi) =
∞∑

i=m

ai +
∞∑

i=m

bi

∞∑
i=m

cai = c
∞∑

i=m

ai for any c ∈ R

Proposition 1.6 (Alternating series). Let (ai)
∞
i=m ∈ R+ ∪ {0} be monotonically

decreasing. Then
∞∑

i=m

(−1)i ai is convergent ⇐⇒ ai → 0.

Proposition 1.7 (Telescoping series). Let (ai)
∞
i=m ∈ R with ai → L. Then

∞∑
i=m

(ai − ai+1) = am − L.

1Implied is the fact all the said series converge.
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Appendix A

Basics

1 Regularity

Axiom 15 (Regularity). Let A be a nonempty set. Then there exists an object
x ∈ A such that x is not a set, or x is a set with x ∩ A = ∅.

Proposition 1.1 (No “∈-cycles” allowed!). Let A1, . . . , An be sets for n ≥ 1. Then
th following is false:

A1 ∈ A2 · · · ∈ An ∈ A1.

2 Russel’s paradox

Only in this section will we use the following axiom. We will however continue to
use the previous axioms.

Bad axiom (Unrestricted comprehension). Let P be a one-slot property. Then
there exists a set X such that P (x) holds =⇒ x ∈ X, for any object x.

Corollary 2.1. Let P be a one-slot property. Then there exists a unique set {x :
P (x)} =: X such that x ∈ X ⇐⇒ P (x) holds, for any object x.

Corollary 2.2. Axioms 3, 6, 11, 13, all become theorems.

Corollary 2.3 (A contradiction!). Let

X := {x : x /∈ x}.

Then X ∈ X ⇐⇒ X /∈ X!

32
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Corollary 2.4 (Collision with regularity!). Let1

Ω := {x : x is an object}.

Then Ω ∈ Ω!

3 Set theoretic formulation of different objects

Definition 3.1 (Making functions, ordered pairs).

(i) For objects x, y, f , write “f : x 7→ y” iff there exist objects f, Y such that
f = (f, Y ) and (x, y) ∈ f.

(ii) For objects x, y, f , we write “f : X → Y ” iff the following hold:

(a) X, Y are sets.
(b) There exists an object f such that f = (f, Y ) and f ⊆ X × Y .
(c) For each x ∈ X, there exists a unique object y such that f : x 7→ y.

(iii) An object f is called a function iff there exist objectsX, Y such that f : X → Y .

Proposition 3.2. Axioms 7 to 9, as well as the obedience of axiom of substitution
in Declaration 2 become theorems.

Definition 3.3 (Making ordered pairs, sets).

(i) For objects x, y, we set (x, y) := {{x}, {x, y}}.2

(ii) An object p is called an ordered pair iff there exist objects x, y such that
p = (x, y).

Proposition 3.4. Axiom 10 and the obedience of axiom of substitution in Declara-
tion 3 become theorems.

4 Finite products and sums

Definition 4.1 (Exponentiation). Let S be a set with a binary operation, and x ∈ S.
Then we define

x1 := x, and

xn+1 := xn x for x ≥ 1.

1We could also have taken Ω = {x : x is a set}.
2Alternatively, we could also use {x, {x, y}}.
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If S has an identity3 e, we also define

x0 := e,

and if the operation is associative and x invertible, then we also define

x−n := (x−1)n for n ≥ 1.

Remark. There’s no notational collision for x−1.

Proposition 4.2 (Properties of exponentiation). Let S be a set with an associative
binary operation. Then the following hold:

xmn = (xm)n

xm+n = xm xn

These hold for all m,n ≥ 1. If S has an identity, then these hold for m,n ≥ 0, and
if x is invertible too, then true for m,n ∈ Z. If the operation is further commutative,
then the same statements hold for

(xy)m = xm ym.

Definition 4.3 (General products). Let X be a set with a binary operation having
an identity.4 Let n ∈ N and a1, . . . , an ∈ X. Then we define:

For k ∈ Z:

k∏
i=1

ai :=


e, k < 1

(
∏k−1

i=1 ai) ak, 1 ≤ k ≤ n∏n
i=1 an, k > n

For 1 ≤ α ≤ β ≤ n:

β∏
i=α

ai :=

β−α+1∏
i=1

bi

3There will be at most one identity.
4This identity will be unique.
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where b : {1, . . . , β − α + 1} → X is defined by bi := ai+α−1

For k, l ∈ Z:
l∏

i=k

ai :=

{
e, n < 1, or k > l, or k > n, or l < 1∏min(l,n)

i=max(1,k) ai

Remark. In the above, there are no notational collisions.

Theorem 4.4 (Splitting products). Let X have an associative binary operation with
identity. Let n ∈ N and a1, . . . , an ∈ X. Then for any integers k − 1 ≤ m ≤ l, we
have

l∏
i=k

ai =
m∏
i=k

ai

l∏
i=m+1

ai.

Proposition 4.5 (Products over finite sets). Let X be a set with an associative and
commutative binary operation with identity. Let S be a finite set and a : S → X.
Let T ⊆ S. Then there exists a unique

∏
t∈T at ∈ X such that for any bijection

f : {1, . . . , n} → T for n ∈ N, we have∏
t∈T

at =
n∏

i=1

af(i).

Theorem 4.6 (Substitution decompositions and Fubini). Let X be a set with asso-
ciative and commutative binary operation with identity. Let S, T be finite sets. Then
the following hold:

(i) Let f : S → T be a bijection and a : T → X be a function. Then∏
s∈S

af(s) =
∏

t∈f(S)

at.

(ii) Let S, T be disjoint and a : S ∪ T → X. Then∏
u∈S∪T

au =
∏
s∈S

as
∏
t∈T

at.

(iii) Let a, b : S → X. Then ∏
s∈S

asbs =
∏
s∈S

as
∏
s∈S

bs.
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(iv) Let a : S × T → X. Then∏
(s,t)∈S×T

as,t =
∏
s∈S

(∏
t∈T

as,t

)
=

∏
t∈T

(∏
s∈S

as,t

)
=

∏
(t,s)∈T×S

as,t.

Lemma 4.7 (Binomial coefficients). Let n, r ∈ N with r ≤ n. Then the number of
subsets of {1, . . . , n} having r elements is5

n!

r!(n− r)!
.

Proposition 4.8 (Binomial theorem). Let X be a set with two binary operations:
(a, b) 7→ a + b, ab. Let both the operations be commutative and associative with
multiplication having an identity and distributing over addition. Then for any n ∈ N,
we have

(x+ y)n =
n∑

i=0

n!

i!(n− i)!
xi yn−i.

5 n-th roots and rational exponents

Definition 5.1 (n-th roots). Let G be a group and x, y ∈ G. Let n ∈ Z \ {0}. Then
we say that y is an n-th root6 of x iff

y = xn.

Notation. If the roots are unique, then we’ll use x1/n notation. Note that 1-th and
−1-th roots always exist (they are unique too!) with x1/1 = x and x1/−1 = x−1, so
no notational collision happens.

Corollary 5.2 (Properties of n-th roots). Let G be a group and m,n ∈ Z \ {0}.
Then the following hold:

(i) If G is abelian, and α, β respectively are m-th roots of x, y, then αβ is an m-th
root of xy.

(ii) If α is an mn-th root of x, then αn is an m-th root of x.

5Implicitly is being stated that the the denominator divides the numerator.
6A sufficient condition for uniqueness (not existence!) of n-th roots is the injectivity of x 7→ xn

functions.
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(iii) If α is an m-th root of x, then αn is an m-th root of xn.

If the roots are unique (and existent), then these facts become:

(xy)1/m = x1/m y1/m

x1/mn = (x1/m)1/n

(xn)1/m = (x1/m)n

Definition 5.3 (Rational exponentiation). Let G be a group such that the maps
x 7→ xn are injective7 for n ∈ Z \ {0}. Let p, q ∈ Z with q ̸= 0. Then a y ∈ G is
called a (p/q)-th power of an x ∈ G iff y is a q-th root of xp.

If existent, a rational power is unique.

Notation. We denote this by xp/q. There is no collision with xn and x1/n.

Proposition 5.4 (Properties of rational powers). Let G be a group with injective
x 7→ xn maps for n ∈ Z \ {0}. Then the following hold:

(i) If r-th and s-th powers of x exist, then8

xr+s = xr xs.

(ii) If r-th power of x exists, and s-th power of xr exists, then

xrs = (xr)s.

(iii) If G is abelian, and r-th powers of x, y exist, then

(xy)r = xr yr.

6 Order

Definition 6.1 (Binary relations). A binary relation on a set X is a subset of X×X.

Remark. We will use the usual “xRy” notation for relations.

7Injectivity is required for this to be well-defined.
8Implicitly stated is the fact that (r + s)-th root of x exists, etc.
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Theorem 6.2 (Strict and weak orders). Let X be a set and ≤ and < be two binary
relations on it. Then the following pairs of equivalent statements:9

(i) (a) a ≤ b and a ̸= b =⇒ a < b; and a ≤ a.
(b) a < b or a = b =⇒ a ≤ b; and a ≮ a.

(ii) If (both of) the above statements hold, then we also have the following pairs:

(a) (1) a ≤ b ≤ c =⇒ a ≤ c; and a ≤ b ≤ a =⇒ a = b.
(2) a < b < c =⇒ a < c.

(b) (1) a ≤ b or a ≥ b; and a ≤ b ≤ a =⇒ a = b.
(2) Exactly one of a < b, a = b, a > b holds.

Proposition 6.3 (Facts on l.u.b. and g.l.b.). Let R be a relation on a set X. Thenthe
following hold:

(i) X satisfies the lest-upper-bound property ⇐⇒ is satisfies the greatest-lower-
bound property.10

(ii) Let ui’s and li’s respectively be l.u.b.’s and g.l.b.’s of subsets Si ⊆ X. Then the
following hold:

(a) If u is a l.u.b. of ui’s, then u is a l.u.b. of ∪iSi.
(b) If l is a g.l.b. of li’s, then l is a g.l.b. of ∩iSi.

(iii) If R is anti-symmetric, then any subset of X has at most one l.u.b. and at
most one g.l.b.

6.1 Ordered groups

Definition 6.4 (Ordered groups). A group together with a total order such that

a < b =⇒ ac < bc

is called a right-ordered group. Similarly, there are left-ordered and bi-ordered
groups.

Remark. Unless stated otherwise, an ordered group will be a right-ordered group.

Example 6.5. Positive rationals form an ordered group, whereas nonzero rationals don’t.

9Statements separated by “;” are separate.
10l.u.b.’s and g.l.b.’s for this general R are defined in the same way as for partial orders.
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Proposition 6.6 (Positive and negative cones). Let G be an ordered group and

P := {g ∈ G : g > e}.

Then the following hold:

(i) x < y ⇐⇒ yx−1 ∈ P .

(ii) PP ⊆ P .

(iii) P−1 = {g ∈ G : g < e}.
(iv) P , {e}, P−1 partition G.

Proposition 6.7 (Characterizing via positive cones). Let G be a group and P ⊆ G
such that PP ⊆ P , and P , {e}, P−1 partition G. Define

x < y iff yx−1 ∈ P .

Then this order makes G an ordered group with

P = {g ∈ G : g > e}.

Proposition 6.8. Let G be an ordered group.11 Let n ≥ 0 and a1, . . . , an, b1, . . . , bn ∈
X such that each ai ≤ bi. Then we have

n∏
i=1

ai ≤
n∏

i=1

bi.

Proposition 6.9 (Monotonicity of xt). In an ordered group, the following hold:12

(i) x 7→ xt is strictly increasing (respectively decreasing) for positive (respectively
negative) rational t.

(ii) t 7→ xt is strictly increasing (respectively decreasing) for x > e (respectively
x < e).

Proposition 6.10 (Supremum of product set). Let G be a bi-ordered group with
least upper bound property. Let A,B ⊆ G. Then we have

sup(AB) = (supA)(supB).

11We don’t need associativity or inverses—just a right-invariant order and an identity.
12Domains contain appropriate elements such that xt is defined.
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Definition 6.11 (Absolute value). Let G be an ordered abelian group and x ∈ G.
Then we define

|x| :=


x, x > 0

0, x = 0

−x, x < 0

.

Proposition 6.12 (Properties of absolute value). In an ordered abelian group, the
following hold:

(i) |x| ≥ 0 with equality holding ⇐⇒ x = 0.

(ii) |nx| = |n| |x| for n ∈ Z.13 In particular, |−x| = |x|.
(iii) |x| < α ⇐⇒ −α < x < α.

(iv) x ∈ {−|x|, |x|}.
(v)

∣∣|x| − |y|
∣∣ ≤ |x + y| ≤ |x| + |y|. Further,

∣∣∑
s∈S as

∣∣ ≤ ∑
s∈S|as| for any finite

set S with as’s being group elements.

Proposition 6.13 (Interpretations of Nx in fields). If a field contains a copy of
naturals, and hence integers and rationals, then Nx is the same, whether considered
as integer times a group element, or as a product of two field elements.

Proposition 6.14 (Additional property of absolute value in fields). In an ordered
field, we also have14

|xy| = |x| |y|.

Further, |xn| = |x|n for n ≥ 0, and for n < 0 as well if x ̸= 0. In particular,
|x−1| = |x|−1 for x ̸= 0.

6.2 Ordered Archimedean fields

Proposition 6.15 (Characterizing Archimedean-ness). Let F be an ordered field.
Then the following are equivalent:

(i) N (or equivalently, Q) is unbounded in F .

(ii) For any x, ε > 0 in F , there exists an N ∈ N such that Nε > x.

(iii) For any x, ε > 1 in F , there exists an N ∈ N such that εN > x.

Proposition 6.16 (Consequences). Let F be an ordered Archimedean field. Then
the following hold:

13Z is also an ordered abelian group.
14cf. (ii) of Proposition 6.12.
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(i) (Floor and ceiling). Let x be a rational. Then we can define

⌊x⌋ := max {i ∈ Z : i ≤ x}, and
⌈x⌉ := min {i ∈ Z : i ≥ x}.

These are characterized by the fact that these are unique integers such that

⌊x⌋ ≤ x < ⌊x⌋+ 1, and

⌈x⌉ − 1 < x ≤ ⌈x⌉.

(ii) Between any two field elements exist rationals (and irrationals too, if F has
any).

(iii) Any field element is surrounded by arbitrarily close rationals (and irrationals
too, if F has any).


	Set theory
	Fundamentals
	Functions
	Images and inverse images
	Cartesian products
	Natural numbers
	n-fold Cartesian products
	Cardinality of sets

	The number systems
	The integers
	Axiomatizing existence
	Constructing integers from naturals

	The rationals
	The reals
	Constructing reals from rationals
	Extended reals


	Limits of sequences
	Convergence and limit laws
	limsup, liminf and limit points
	Real exponentiation

	Series
	Finite series

	Appendices
	Basics
	Regularity
	Russel's paradox
	Set theoretic formulation of different objects
	Finite products and sums
	n-th roots and rational exponents
	Order
	Ordered groups
	Ordered Archimedean fields



