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Chapter 1

Topology

1 General
January 20, 2023

Lemma 1.1. Convergence and limits of sequences are preserved while going
across subspaces.

Definition 1.2 (Bolzano-Weierstrafl property). A topological space X is said
to have the Bolzano-Weierstrafl property iff every sequence has a convergent
subsequence.

Definition 1.3 (Domains and regions). A domain is a nonempty, connected,
open subset. A region is a subset that is contained in the closure of its
interior.

Lemma 1.4 (Closure and limit points). Let E be a subspace of X with
(x;) € E and x € X. Then the following hold:

(i) z; — v = x € E. The converse® holds if X is metrizable.

(ii) x; — x with x;’s being distinct => x € ((F). The converse® holds if
X 1is metrizable.

IThat is, it is a domain plus some of its limit points.
2CC used.
3DCC used.
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2 Limits and continuity

January 20, 2023

Definition 2.1 (Limits of functions). Let X, Y be topological spaces and
f: S =Y where S C X. Let c€ X and L € Y. Then we write

flz) > Lasx—c

iff for every open neighborhood V' of L, there exists an open neighborhood
U of ¢ such that
FUNS\{er) € V.

Definition 2.2 (Continuity). A function f: X — Y between topological
spaces is said to be continuous at ¢ € X iff for every open neighborhood V'
of f(c), the set f~1(V) contains an open neighborhood of c.

Proposition 2.3. A function f: X — Y is continuous <= forany A C X,
we have

f(A) C f(A).

Lemma 2.4 (Relation between limits and continuity). A function f: X —Y
between topological spaces is continuous at ¢ € X <= f(x) — f(c) as
T —c.

Lemma 2.5 (Restrictions and limits). Let X, Y be topological spaces and
f:S—=T where SCX and T CY. Let AC S and f(A) C B CY. Define
g: A— B byxw— f(x). Then for c € X and L € T N B, the following hold:
(i) f(xr) > Lasx - ¢ = g(x) = L as x — ¢ (A being seen as the
subspace of X ).

(i) The converse holds if we have that Uy S C A for some open neigh-
borhood Uy of ¢ (in X ).

Lemma 2.6 (Restrictions and continuity). Let f: X — Y between topologi-
cal spaces where Y is a subspace of a space Y'. Let S C X and f(S) CT C
Y'. Define g: S — T by x — f(x). Then for c € S, the following hold:

(1) f is continuous at ¢ = g is continuous at c.

(i) The converse holds if Uy C S for some open neighborhood Uy of ¢ (in
X).
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Proposition 2.7 (Limits of compositions). Let f: E — F and g: F — Z
where E, F' are subspaces of X, Y respectively. Let f(z) — L as x — ¢ and
g(y) = M asy — L. Also assume that M = g(L) if L € F. Then

(go f)(z) = M asz — c.

Lemma 2.8 (Regularity). For a space X, the following are equivalent:

(i) Any point and a closed set not containing it can be separated by disjoint
open sets.

(i) Any open neighborhood of a point contains the closure of an open set
containing the point.

Theorem 2.9 (Extending a function continuously). Let f: E — Y where
E is a subspace of a space X, and Y a regular space. Let S C E\ E and
g: S = Y be such that f(x) — g(s) as © — s for each s € S. Then the
extended function EUS — Y is continuous.

Lemma 2.10 (Denseness). A subset is dense <= it intersects with each
nonempty open set.

Proposition 2.11. A continuous function into a Hausdorff space is deter-
maned by its values on a dense subset of the domain.

3 Compactness

January 20, 2023

Definition 3.1 (Covers). A set {U,} of (open) subsets of a topological space
is said to be an (open) cover of a subset £ C X iff |J, U, 2 E.

Definition 3.2 (Compact sets). A subset E of a topological space X is said
to be compact in X iff every open cover of E has a finite subcover.

Lemma 3.3. Compactness is preserved while going across subspaces.
Remark. This allows to drop “in X” from “E is compact in X 7.

Proposition 3.4. Closed subsets of compact spaces are compact.

Proposition 3.5. Continuous image of a compact set is compact.
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4 Connectedness and path-connectedness

January 20, 2023

Definition 4.1 (Connectedness). A space is said to be connected iff it can’t
be partitioned into two nonempty open sets.

Definition 4.2 (Path connectedness). A path from a point x to a point y
in a space X is a continuous function f: [0,1] — X such that f(0) = z and

f) =y
A space is called path connected iff any two points can be connected by
a path.

Corollary 4.3. Path connectivity of points induces a partition of the space.

Definition 4.4 (Linear continua). A linear continuum is a totally ordered
set with least-upper-bound property* such that between any two points lies
another point.

Theorem 4.5 (Linear continua are connected). Conver subsets of linear
continua are connected.

Proposition 4.6. Path connectedness = connectedness.”
Proposition 4.7. Continuous image of a (path-)connected set is (path-)connected.
Proposition 4.8. Closure of connected is connected.®

Corollary 4.9 (Intermediate value). Let f: X — Y be continuous where X
is connected and Y is under order topology. Let r lie between f(x) and f(z)
for x,z € X. Then there exists a y € X such that r = f(y).

Example 4.10 (Topologist's sine curve). Define
S = {(x,sin(1/2)) : 2 > 0} C R%

Then S is connected, but not path-connected!

4We mean that bounded nonempty sets have least upper bounds.
SConverse is not true. See Example 4.10.
6Not true for path-connected! See Example 4.10.
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5 Pointwise convergence

January 27, 2023

Definition 5.1 (Pointwise convergence). Let X be a set and Y be a topo-
logical space. Then a sequence of function (f,,) on X — Y is said to converge
pointwise to a function f: X — Y iff for each x € X, we have that

fo(z) = f(x) as n — oc.

Corollary 5.2. In a Hausdorff space, the pointwise limit, if existent, 1is
UNIQUE.
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Metric spaces

January 12, 2023

1 General

January 23, 2023

Lemma 1.1. The subspace topology on a subset of a metric space is the same
as the topology induced by the restricted metric.

Lemma 1.2. Cauchy-ness of sequences is preserved while going across metric
subspaces.

Proposition 1.3. Metric is continuous as both X x X — R as well as
X =R

Lemma 1.4. Closed subsets of a complete space are precisely its complete
subsets.

2 Compactness

Definition 2.1 (Totally bounded). A subset E of a metric space X is said
to be totally bounded in S iff for each € > 0, finitely many balls of radius ¢
cover [,

Lemma 2.2. (Total) boundedness is preserved while going across metric sub-
spaces.
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Lemma 2.3. Finite unions of bounded sets are bounded.

Theorem 2.4 (Compactness in metric spaces). Let X be a metric space and
E C X. Then the following are equivalent:*

(i) E is complete and totally bounded.
(i) E has the Bolzano-Weierstrafl property.
(i1i) E is compact.

Corollary 2.5 (Extreme value). A continuous function from a compact space
X to R achieves its marimum and minimum over X.

3 Limits of functions

Proposition 3.1 (Uniqueness of limits of functions). Let X be a topological
space and Y be a metric space. Let f: S — Y where S C X. Then for a
point ¢ € X, the following hold:

(i) c€l(S) = f(x) = L as x — ¢ for at most one L € Y.

(ii) c¢ ((S) = f(x) > Lasx—cforalLeY.?
Notation. Thus, for a metric space codomain, and for ¢ € £(S), we denote
the unique limit, if existent, by

lim f(x).

T—C

4 Uniform convergence

January 27, 2023

Definition 4.1 (Uniform convergence). Let X be a set and Y be a metric
space. Then a sequence of functions (f,) on X — Y is said to converge
uniformly to a function f: X — Y iff for every € > 0, there exists an N such
that for all n > N and for each x € X, we have

d(fulz), f(2)) <e.

LAC used.
2This also holds when Y is a general topological space.
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Corollary 4.2. Uniform limit is also a pointwise limit and hence unique.

Lemma 4.3 (Cauchy criterion for uniform convergence). Let X be a set and
Y be a metric space. Let f: X — Y be the pointwise limit of a sequence of
functions (f,) on X — Y. Then the following are equivalent:
(i) fn — f uniformly.
(ii) For each € > 0, there exists an N such that for all m,n > N, we have
d(fm(x), fu(z)) <€ forallz € X.

Theorem 4.4 (Uniform limit preserves continuity). Let E be a subspace of
a topological space X and Y be a metric space. Let (f,) be a sequence of
functions E — Y converging uniformly to f: E — Y. Let ¢ € X and for
each n, let f,(x) — L, as x — c¢. Let lim, ,o L, = L. Then f(x) — L as
T — c.

5 Miscellaneous

January 27, 2023

Theorem 5.1 (Contraction mapping). Let X be a nonempty complete metric
space and f: X — X be such that there exists a ¢ € [0,1) such that

d(f(z), f(y)) < cd(x,y).

Then there exists a unique fixed point of f.



Chapter 111

Normed linear spaces

Convention. V will denote a general normed linear space over K, and W
a general vector space over K.

Generic bases of V' and W will respectively be denoted by B and C.

Q) will denote an open set in V.

1 Elementary facts

January 12, 2023

Proposition 1.1. On V, the following functions are continuous:
(1) Addition: As both, V. xV — V, and as V — V with a fived addend

vector.

(11) Scalar multiplication: As K xV — V, as V. — V with a fized scalar
and as K — V' with a fized vector.

(iii) Norm.

Definition 1.2 (Banach spaces). A Banach space is a complete normed
linear space.

Proposition 1.3. Finite-dimensional normed linear spaces are Banach.

2 Norms on product spaces

March 12, 2023
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Proposition 2.1 (I/,-norms on V; x --- x V,,). For any p € [1,00), the
following defines a norm on Vi X -+ X V,,:

" 1/p
ol := (3 llill”)
=1

We also have the following norm:

e

Further, all these norms are equivalent via
[l < [lolly < 270l
and generate the product topology.
Lemma 2.2.

(i) ||Jw]|| := maxzec|ws| defines a norm on W.

(ii) If f: V. — W s a vector space isomorphism, then w — ||f~1(w)|
defines a norm on W with respect to to which, f becomes an isometry.

Theorem 2.3. Any two norms on a finite-dimensional vector space are
equivalent.

Corollary 2.4. Any linear map from a finite-dimensional normed linear
space to an arbitrary normed linear space is continuous.

Corollary 2.5. If dimV < oo and V = W as vector spaces, then for any
norm on W, we also have that V=W as normed linear spaces.

Corollary 2.6. Let V = Uy & --- @& U, where U;’s are subspaces of V.
Consider Uy x --- x U, under any of the (equivalent) l,-norms. Then

dmV <o = Uy x--- x U, 2V as normed linear spaces.

Remark. This fails for infinite-dimensional V'’s even though n < co.! (The
statement for n = oo is obviously false for this would mean that any two
norms on a space are equivalent.)

However, for finite-dimensional spaces, this means that the “topology can
be recovered just from the basis”.

!See https://math.stackexchange.com/a/4620769/673223.


https://math.stackexchange.com/a/4620769/673223
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Corollary 2.7 (Convergence in finite dimensions). In a normed linear space
with a basis (vy,...,v,),

n n
ZGS)U’“ — Zak’uk = a,(;) —5 ay, for all k’s.
k=1 k=1

Corollary 2.8 (Limits of functions in finite dimensions). Let dimV < oo
and f: E — V where E is a subset of a topological space X . Let f decompose
mnto fo: E—K foree B. Let c€ X andv € V. Then

f(x) s vasx — c < fe(x) = v. as x — ¢ for each e € B.

3 The space B(X, V)
March 11, 2023
Proposition 3.1. W¥ is a vector space for any set X.

Definition 3.2 (Bounded functions). A function f: X — V, where X is
any set, is called bounded iff || f(z)||’s are bounded for z € X.
We also define

B(X,V) := {bounded functions X — V'}.

Remark. Bounded-ness of multi-linear maps is something completely dif-
ferent! See Definition 4.2.

Proposition 3.3 (A norm on B(X, V). For any set X, we have that B(X, V)
is a linear subspace of VX, and

[ /llso := supl| (2]l

defines a norm on B(X,V).
Further, the convergence in ||-||o is the same as uniform convergence (for
bounded functions).

Theorem 3.4. If V is Banach, then so is B(X, V).
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4 The space BL(Vy,...,V,;; W)

March 11, 2023

Convention. In this section, V;’s will denote normed linear spaces over K.

Notation. We’ll use the L({V;}; W) notation for the set of multi-linear
maps. The semi-colon “” will differentiate the usual “linear” case or the
“multi-linear” case for Vi — W. However, in that case, we conveniently have

LI, W) = LV W),

Corollary 4.1. L(Vy,..., Vs W) is a linear subspace of WV1>>xVn,

Definition 4.2 (Bounded multi-linear maps). Let W also have a norm. Then
a multi-linear map f € L(V,...,V,; W), for n > 0,% is called bounded iff it
is bounded as a function on the product of discs ||z;|| < 1, or equivalently,
iff there exists an M > 0 such that

[f(@1, )| < M|z [zl (2 € V).
We also define
BL(Vi, ..., Vy; W) := {bounded multi-linear maps V; x --- x V,, - W}.

Proposition 4.3 (A norm on BL(Vy, ..., V,; W)). Let W also come equipped
with a norm. Then for any n > 0, we have that BL(Vy,...,V,; W) is a
subspace of L(V1,...,V,; W) and that

1 s= (| 1prcxnn |

= Sup ||f($177$n)||
flz:]|<1

= sup [|f(2)]
lzlleo<1
defines a norm on BL(Vy, ..., V; W), where D; is the unit disc of the i-th
space.
For n # 0, we also have

flxy,...,x
20 [Tl |zl
ZNote that for n = 0, the set L(V1, ..., Vy; W) is a singleton containing the empty map.
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Corollary 4.4. Let W, U be normed linear spaces. Let f € BL(Vy, ..., V,; W)
and g € BL(W;U). Then go f € BL(VA, ...,V U) with

lg o fIl < llgll Il f1I-

Corollary 4.5. Let W also have a norm and let ¢ € BL(V; W) be invertible
with ¢~ € BL(V; W) as well.®> Then

Il lo™" | <1 = ¢ is an isometry = [l¢] =1 = [l¢o~"]|.

Remark. Up till now, we didn’t need any norm on Vi X --- x V,,. Just the
norms on V;’s were sufficient to define a norm on BL(V1, . .., Vi, W).

Corollary 4.6. Let X be a bounded subset* of Vi x---xV,, and W be normed.
Then the restrictions of bounded multi-linear maps Vi x --- x V,, — W to
X — W form a subspace of B(X,W).

Proposition 4.7 (Characterizing continuity). Let W have a norm and f €
LV, ...,V W). Then the following are equivalent:

(i) f is continuous.

(i1) f is continuous at 0.

(11i) [ is bounded.
Theorem 4.8 (Canonical isomorphisms). Let W', U;, U!’s be vector spaces
for1 <i<n (0 <m <n)overK such that U; = U] for each i and W = W'

as vector spaces via «;’s and . Let o be a permutation on {1,...,n}. Then
we have the following vector space isomorphisms:®

LU, ... .U W) LU, ... .U W)
LU, ... Uy W)= LUy, - Uginy; W)
LU, Upi LU, - Uy W) 2 LUy, ..., Ups W)

The isomorphisms can be described as follows: Let f (in left-hand-side)
and g (in right-hand-side) be a corresponded pair of maps. Then we demand
that

3This will also hold if we replace “BL” by “B”, and “||-||” by “||/lec”-
4“Boundedness” can be talked of only when we have a metric on V; x --- x V,.
5The first is the “axiom of substitution”.
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(Z) B(f(ub tee 7un>) = g(Ql(ul)a ce 7an(un)) fOT the ﬁ?"St,'
(ii) f(ui,... un) = g(Uoq),-- -, Uswn)) for the second; and,

(111) f(ur, ... um)(Unsts - un) = g(ug, ..., uy) for the third.

In the above, if U;, U!’s, W' are normed with «;’s, B being normed linear
space isomorphisms,® then the above vector space isomorphisms can also be
restricted by replacing “L” by “BL”, yielding normed linear space isomor-
phisms. In fact, the obtained isomorphisms are isometries’ in the second
and third cases. In the first case, it becomes an isometry if o;’s and 3 are
1sometries.

Theorem 4.9. If W is Banach, then so is BL(Vy,..., V,; W).

5 Polygonal connectedness

January 20, 2023

Definition 5.1 (Polygonal lines in vector spaces® over K). For wy,w, € W,
we define the line segment®

[wy; wa] := {twy + (1 — t)wy : t € [0, 1]}.

We define (u;v), etc. in the obvious way.

For wy, ..., w, € W, where n > 0, we call U?;ll [w;; wig1] a polygonal line.

A subset E C W is called polygonally connected iff any two points in W
can be polygonally connected within F.

Corollary 5.2. Polygonal connectedness = path connectedness in a
normed linear space.

Corollary 5.3. Polygonal connectivity of points induces a partition of a
vector space.

Lemma 5.4 (Balls of normed linear space are convex). If z, y are contained
in a ball, then the segment [z;y| also lies in the ball.

6A linear isomorphism that is also a homeomorphism.

"We adopt the usual “metric space definition” of an isometry. (Note that it may not be
bijective.) Then it follows that for normed linear spaces, isometries also preserve norms.

8This definition does not require V' to be normed.

9Reference: https://planetmath.org/linesegment.


https://planetmath.org/linesegment
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Proposition 5.5. A domain of a normed linear space is polygonally con-
nected.

Proposition 5.6. Let V' be an inner-product space and B be orthonormal.
Then any two points of a domain can be connected by a polynomial line, lying
completely inside the domain, with each segment of the line being along one
of the directions in B.

Result 5.7 (Balls have segments in normed spaces). Let g € Q2 and v € V\{0}.
Then there exists an & > 0 such that for each t € BX(0), we have

o +tv € Q.

Consequently, singletons are not open in a nonzero normed linear space, and
hence Q2 C /(£2).

Result 5.8 (Closure of balls in normed linear spaces). In a normed linear space,
we have

B.(z) = D,(x).

6 Convergence in norm

January 27, 2023

Definition 6.1 (Convergence in norm). The series Y >° v; in V is said to
. 10 ﬂ- 00 ) . R
converge in norm™ iff 7 |lv;|| converges in R.

Corollary 6.2. Convergence-in-norm implies Cauchy-ness.
Proposition 6.3 (Characterizing completeness for normed spaces). V' is

Banach <= convergence-in-norm implies convergence for series.

Remark. This justifies calling convergence-in-norm as absolute convergence
it V' is Banach.

10Note that we are not defining convergence-in-norm for sequences, just for series. This
is an instance where the difference in “type” is crucial.
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Corollary 6.4 (Weierstrall M-test). Let X be a set and (f,) € B(X,V).
Let (M,) € R such that || fu||ec < M, and Y ", M, is convergent. Then the
following hold:

(i) >0~ fn converges in norm (of B(X,V)).
(ii) The partial sums 2220 fn converge uniformly to > fu-

Proposition 6.5 (Root test). Let (v;) € V and define L € [0,00) U {00} as

L := lim sup||v;||*/".
1—00
Then the following hold:
(i) L<1 = Y 2 v; converges in norm.
(i) L>1 = (|| X yvil|), is unbounded.

Proposition 6.6 (Ratio test). Let (v,) € V \ {0} and define Lt L~ €
0, 00) U {0} as

L" := limsup HUiHH, and
i—00 HUzH

L™ :=liminf HUHI”.
imoo v

Then the following hold:
(i) LT <1 = >, v converges in norm.
(i) There exists an N such that ||vig1l/[|vil| > 1 for alli > N =
Yoo Ui diverges.
(iii) L~ >1 = (| X0, vZH)n is unbounded.

Remark. Root test is more powerful than the ratio test. See Proposi-
tion 1.4.

Proposition 6.7. Sum and scalar multiplication preserve convergence-in-
norm.
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7 Normed algebras

January 20, 2023

Definition 7.1 (Normed algebras). A normed algebra is a K-algebra to-
gether which is also a normed vector space with the following additional

property:
Juv|| < Jlull [0l

Example 7.2.
(i) L(W ;W) forms an associative K-algebra.
(i) BL(V;V) is a subalgebra of the normed algebra L(V; V).

Convention. In this section, A will stand for a normed algebra.

Proposition 7.3 (Limits of products of functions). Let f,g: E — A where
E is a subset of a topological space X. Let ¢ € X and u,v € V' such that
f(z) = u and g(x) = v as x — c. Then, as x — c,

f(x)g(x) = uv.

Proposition 7.4 (Limits of multiplicative inverses of functions). Let f: E —
A where E is a subset of a topological space X. Let |luv| = |Ju|l|v]|| hold
in A. Let f(z) # 0 and f(z)~' ewistent for each v € E. Let ¢ € X and
uw e V\ {0} such that u™"' exists and f(zx) — u as * — c. Then, as © — c,

flz)™ = u ™t

Definition 7.5 (Cauchy product of series). Let R be a ring and Y .-, a;,
> o2y bi be formal series in R. Then their Cauchy product is defined to be
the formal series ).~ ¢; where ¢; is given by

C; ‘= Z ajbk.

k=i
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Example 7.6 (Cauchy product doesn't preserve convergence!). The Cauchy
product of the convergent series'!

=, (-1
2 +1

n=0 n

with itself diverges in R.

Theorem 7.7 (Convergent-in-norm x convergent = convergent). Let Y .-, a;
and Y o2, bi converge to A and B respectively in A. Further assume that
> ooo @i is convergent in norm. Then their Cauchy product converges to
AB.*?

Proposition 7.8. Cauchy product preserves convergence in norm.

Corollary 7.9 (Cauchy-Hadamard on power series). Consider the formal
power series > oo ¢i(x —xo)" with ¢;, x9 € A. Define L := limsup,olc;||'/* €
[0,00) U{oo} and the radius of convergence of the series to be

0, L =0
R:=<¢1/L, 0<L<oo.
o, L=0

Then for any x € A, the following hold:
(i) [z — x| < R = Y ;o cil@ — x0)" converges in norm.
(ii) ||z —zol| > R = (|| Xigcilz — x0)']|),, is unbounded.
Now, define'® f: Br(xg) — A such that for each x € Br(xg), we have

Zcz T —x0) = f(z).

=0

Then for any € > 0, we have the uniform convergence

ch-(a: —x0)" = f in Dp_.(x0).

1=0

Also, f is continuous.

1 Convergence follows from Corollary 7.11.
12No commutativity or associativity required!
13Obvious definitions of balls when R = 0 or co.
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Remark.

(i) Behaviour on the boundary of is not determined: In C, while Y > 2"

converges nowhere on the boundary, ) > 2" /n® converges on every
point of the boundary. Also see Corollary 7.12.

(ii) A power series that does not converge uniformly over it’s ball of con-
vergence: » .~ x" in R.

7.1 Miscellaneous

January 27, 2023

Theorem 7.10. Let (v;) € V such that (|| X7, vZ”)n is bounded. Let ag >
a; > -+ > 0 be reals with lim; .o, a; = 0. Then the partial sums Z?:o a;v;
form a Cauchy sequence.

Corollary 7.11 (Alternating series). Let ag > a3 > --- > 0 be reals with
lim; oo a; = 0. Then Y oo(—1)'a; is convergent.

Corollary 7.12. Let A be a normed algebra and ;- a;(x — x0)" be a power
series with reals ag > ay > -+ > 0. Then the series converges for x € By(xg).
We also have convergence on Dy(xg) \ {xo+ 1} if the norm is multiplicative,
or if the nonzeroes in A are invertible.

8 Banach algebras

March 11, 2023

Definition 8.1 (Banach algebra). A Banach space that also forms a K al-
gebra, or equivalently, a complete normed linear space.

Example 8.2. If V' is Banach, then BL(V; V') is a Banach algebra.

Convention. In this subsection, we’ll take 9 to be a Banach algebra with
identity,** and will set Inv % to be the set of all the invertible elements of

B

MFor we’ll want our power series to start from 1.
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Proposition 8.3 (Exponentiation). Let © € 9. Then the series

converges in AB.
Notation. We denote this sum by exp(x), or e®.

Proposition 8.4. If x, y commute in B, then

e?e¥ = "V = ¥ e,

Corollary 8.5. exp: (B,+) — (Inv A, ) is a group homomorphism.

Proposition 8.6. If |z|| <1 in B, then 1 — x is invertible with

(1—2)"t= Zx”

where right-hand-side is convergent.

Proposition 8.7 (Inv % is open in B). Whenever x € Inv B, we have that
Bl/Hx—lH (.Q?) g Inv A.

Theorem 8.8. x +— z7! is a self-homeomorphism on Inv %.
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Reals and complex numbers

1 Reals

February 11, 2023

Proposition 1.1 (Characterizing lim sup). Let (a,) € R be bounded. Then
lim sup,_, ., a; is the unique real L such that the following hold:

(i) For every e > 0, there exists an N such that a,, < L+¢ for allm > N.
(i) For every e > 0 and every N, there exists an n > N such that a, >
L—ce.

Lemma 1.2. Let (a,) € (0,00) and (b,) € [0,00) with a, — a where a €
(0,00) U {oc}. Then!

limsup a;b; = a (lim sup bi) .
1—00 1—00

Proposition 1.3. Uniform limit of Riemann-integrable functions [a,b] — R
15 Riemann-integrable.

Proposition 1.4 (Root test better than ratio test). Let (a,) € (0,00). Then

Q41 Q41

e . 1/i . 1/i .
lim inf < liminfa, /i < limsupa, /i < lim sup
1—00 a; 1—00 i—00 i—00 a;

Remark.

'We are (perversely) allowing multiplication by oc.
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/

. . 1/i . o
(i) We can have limsupa;’* < 1 < limsup a;;1/a;, or liminfa;,i/a; <1 <

/

. 1/i . . . . . .
limsupa;’" in which case, the ratio test gives no information, but root

test does.
(ii) Since liminf a;y1/a; < limsup a; /i < limsup a;41/a;, the root test gives
answer whenever ratio test does!
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