Contents

I Topology 1
1 General 1
2 Limits and continuity 2
3 Compactness 3
4 Connectedness and path-connectedness 4
5 Pointwise convergence 5
II Metric spaces 6
1 General 6
2 Compactness 6
3 Limits of functions 7
4 Uniform convergence 7
5 Miscellaneous 8
III Normed linear spaces 9
1 Elementary facts 9
2 Norms on product spaces 9
3 The space $\mathrm{B}(X, V)$ 11
4 The space $\mathrm{B} \mathcal{L}\left(V_{1}, \ldots, V_{n} ; W\right)$ 12
5 Polygonal connectedness 14
6 Convergence in norm 15
7 Normed algebras 17
7.1 Miscellaneous 19
8 Banach algebras 19
IV Reals and complex numbers 21
1 Reals 21

Chapter I

Topology

1 General

January 20, 2023
Lemma 1.1. Convergence and limits of sequences are preserved while going across subspaces.

Definition 1.2 (Bolzano-Weierstraß property). A topological space X is said to have the Bolzano-Weierstraß property iff every sequence has a convergent subsequence.

Definition 1.3 (Domains and regions). A domain is a nonempty, connected, open subset. A region is a subset that is contained in the closure of its interior. ${ }^{1}$

Lemma 1.4 (Closure and limit points). Let E be a subspace of X with $\left(x_{i}\right) \in E$ and $x \in X$. Then the following hold:
(i) $x_{i} \rightarrow x \Longrightarrow x \in \bar{E}$. The converse ${ }^{2}$ holds if X is metrizable.
(ii) $x_{i} \rightarrow x$ with x_{i} 's being distinct $\Longrightarrow x \in \ell(E)$. The converse ${ }^{3}$ holds if X is metrizable.

[^0]
2 Limits and continuity

January 20, 2023
Definition 2.1 (Limits of functions). Let X, Y be topological spaces and $f: S \rightarrow Y$ where $S \subseteq X$. Let $c \in X$ and $L \in Y$. Then we write

$$
f(x) \rightarrow L \text { as } x \rightarrow c
$$

iff for every open neighborhood V of L, there exists an open neighborhood U of c such that

$$
f(U \cap S \backslash\{c\}) \subseteq V
$$

Definition 2.2 (Continuity). A function $f: X \rightarrow Y$ between topological spaces is said to be continuous at $c \in X$ iff for every open neighborhood V of $f(c)$, the set $f^{-1}(V)$ contains an open neighborhood of c.

Proposition 2.3. A function $f: X \rightarrow Y$ is continuous \Longleftrightarrow for any $A \subseteq X$, we have

$$
f(\bar{A}) \subseteq \overline{f(A)}
$$

Lemma 2.4 (Relation between limits and continuity). A function $f: X \rightarrow Y$ between topological spaces is continuous at $c \in X \Longleftrightarrow f(x) \rightarrow f(c)$ as $x \rightarrow c$.

Lemma 2.5 (Restrictions and limits). Let X, Y be topological spaces and $f: S \rightarrow T$ where $S \subseteq X$ and $T \subseteq Y$. Let $A \subseteq S$ and $f(A) \subseteq B \subseteq Y$. Define $g: A \rightarrow B$ by $x \mapsto f(x)$. Then for $c \in X$ and $L \in T \cap B$, the following hold:
(i) $f(x) \rightarrow L$ as $x \rightarrow c \Longrightarrow g(x) \rightarrow L$ as $x \rightarrow c$ (A being seen as the subspace of $X)$.
(ii) The converse holds if we have that $U_{0} \cap S \subseteq A$ for some open neighborhood U_{0} of $c($ in $X)$.

Lemma 2.6 (Restrictions and continuity). Let $f: X \rightarrow Y$ between topological spaces where Y is a subspace of a space Y^{\prime}. Let $S \subseteq X$ and $f(S) \subseteq T \subseteq$ Y^{\prime}. Define $g: S \rightarrow T$ by $x \mapsto f(x)$. Then for $c \in S$, the following hold:
(i) f is continuous at $c \Longrightarrow g$ is continuous at c.
(ii) The converse holds if $U_{0} \subseteq S$ for some open neighborhood U_{0} of c (in $X)$.

Proposition 2.7 (Limits of compositions). Let $f: E \rightarrow F$ and $g: F \rightarrow Z$ where E, F are subspaces of X, Y respectively. Let $f(x) \rightarrow L$ as $x \rightarrow c$ and $g(y) \rightarrow M$ as $y \rightarrow L$. Also assume that $M=g(L)$ if $L \in F$. Then

$$
(g \circ f)(x) \rightarrow M \text { as } x \rightarrow c .
$$

Lemma 2.8 (Regularity). For a space X, the following are equivalent:
(i) Any point and a closed set not containing it can be separated by disjoint open sets.
(ii) Any open neighborhood of a point contains the closure of an open set containing the point.

Theorem 2.9 (Extending a function continuously). Let $f: E \rightarrow Y$ where E is a subspace of a space X, and Y a regular space. Let $S \subseteq \bar{E} \backslash E$ and $g: S \rightarrow Y$ be such that $f(x) \rightarrow g(s)$ as $x \rightarrow s$ for each $s \in S$. Then the extended function $E \cup S \rightarrow Y$ is continuous.

Lemma 2.10 (Denseness). A subset is dense \Longleftrightarrow it intersects with each nonempty open set.

Proposition 2.11. A continuous function into a Hausdorff space is determined by its values on a dense subset of the domain.

3 Compactness

January 20, 2023
Definition 3.1 (Covers). A set $\left\{U_{\alpha}\right\}$ of (open) subsets of a topological space is said to be an (open) cover of a subset $E \subseteq X$ iff $\bigcup_{\alpha} U_{\alpha} \supseteq E$.

Definition 3.2 (Compact sets). A subset E of a topological space X is said to be compact in X iff every open cover of E has a finite subcover.

Lemma 3.3. Compactness is preserved while going across subspaces.

Remark. This allows to drop "in X " from " E is compact in X ".

Proposition 3.4. Closed subsets of compact spaces are compact.
Proposition 3.5. Continuous image of a compact set is compact.

4 Connectedness and path-connectedness

January 20, 2023
Definition 4.1 (Connectedness). A space is said to be connected iff it can't be partitioned into two nonempty open sets.

Definition 4.2 (Path connectedness). A path from a point x to a point y in a space X is a continuous function $f:[0,1] \rightarrow X$ such that $f(0)=x$ and $f(1)=y$.

A space is called path connected iff any two points can be connected by a path.

Corollary 4.3. Path connectivity of points induces a partition of the space.
Definition 4.4 (Linear continua). A linear continuum is a totally ordered set with least-upper-bound property ${ }^{4}$ such that between any two points lies another point.

Theorem 4.5 (Linear continua are connected). Convex subsets of linear continua are connected.

Proposition 4.6. Path connectedness \Longrightarrow connectedness. ${ }^{5}$
Proposition 4.7. Continuous image of a (path-)connected set is (path-)connected.
Proposition 4.8. Closure of connected is connected. ${ }^{6}$
Corollary 4.9 (Intermediate value). Let $f: X \rightarrow Y$ be continuous where X is connected and Y is under order topology. Let r lie between $f(x)$ and $f(x)$ for $x, z \in X$. Then there exists a $y \in X$ such that $r=f(y)$.

Example 4.10 (Topologist's sine curve). Define

$$
S:=\{(x, \sin (1 / x)): x>0\} \subseteq \mathbb{R}^{2}
$$

Then \bar{S} is connected, but not path-connected!

[^1]
5 Pointwise convergence

January 27, 2023
Definition 5.1 (Pointwise convergence). Let X be a set and Y be a topological space. Then a sequence of function $\left(f_{n}\right)$ on $X \rightarrow Y$ is said to converge pointwise to a function $f: X \rightarrow Y$ iff for each $x \in X$, we have that

$$
f_{n}(x) \rightarrow f(x) \text { as } n \rightarrow \infty .
$$

Corollary 5.2. In a Hausdorff space, the pointwise limit, if existent, is unique.

Chapter II

Metric spaces

January 12, 2023

1 General

January 23, 2023
Lemma 1.1. The subspace topology on a subset of a metric space is the same as the topology induced by the restricted metric.

Lemma 1.2. Cauchy-ness of sequences is preserved while going across metric subspaces.

Proposition 1.3. Metric is continuous as both $X \times X \rightarrow \mathbb{R}$ as well as $X \rightarrow \mathbb{R}$.

Lemma 1.4. Closed subsets of a complete space are precisely its complete subsets.

2 Compactness

Definition 2.1 (Totally bounded). A subset E of a metric space X is said to be totally bounded in S iff for each $\varepsilon>0$, finitely many balls of radius ε cover E.

Lemma 2.2. (Total) boundedness is preserved while going across metric subspaces.

Lemma 2.3. Finite unions of bounded sets are bounded.
Theorem 2.4 (Compactness in metric spaces). Let X be a metric space and $E \subseteq X$. Then the following are equivalent: ${ }^{1}$
(i) E is complete and totally bounded.
(ii) E has the Bolzano-Weierstraß property.
(iii) E is compact.

Corollary 2.5 (Extreme value). A continuous function from a compact space X to \mathbb{R} achieves its maximum and minimum over X.

3 Limits of functions

Proposition 3.1 (Uniqueness of limits of functions). Let X be a topological space and Y be a metric space. Let $f: S \rightarrow Y$ where $S \subseteq X$. Then for a point $c \in X$, the following hold:
(i) $c \in \ell(S) \Longrightarrow f(x) \rightarrow L$ as $x \rightarrow c$ for at most one $L \in Y$.
(ii) $c \notin \ell(S) \Longrightarrow f(x) \rightarrow L$ as $x \rightarrow c$ for all $L \in Y$. ${ }^{2}$

Notation. Thus, for a metric space codomain, and for $c \in \ell(S)$, we denote the unique limit, if existent, by

$$
\lim _{x \rightarrow c} f(x)
$$

4 Uniform convergence

January 27, 2023
Definition 4.1 (Uniform convergence). Let X be a set and Y be a metric space. Then a sequence of functions $\left(f_{n}\right)$ on $X \rightarrow Y$ is said to converge uniformly to a function $f: X \rightarrow Y$ iff for every $\varepsilon>0$, there exists an N such that for all $n \geq N$ and for each $x \in X$, we have

$$
d\left(f_{n}(x), f(x)\right)<\varepsilon
$$

[^2]Corollary 4.2. Uniform limit is also a pointwise limit and hence unique.
Lemma 4.3 (Cauchy criterion for uniform convergence). Let X be a set and Y be a metric space. Let $f: X \rightarrow Y$ be the pointwise limit of a sequence of functions $\left(f_{n}\right)$ on $X \rightarrow Y$. Then the following are equivalent:
(i) $f_{n} \rightarrow f$ uniformly.
(ii) For each $\varepsilon>0$, there exists an N such that for all $m, n \geq N$, we have $d\left(f_{m}(x), f_{n}(x)\right)<\varepsilon$ for all $x \in X$.

Theorem 4.4 (Uniform limit preserves continuity). Let E be a subspace of a topological space X and Y be a metric space. Let $\left(f_{n}\right)$ be a sequence of functions $E \rightarrow Y$ converging uniformly to $f: E \rightarrow Y$. Let $c \in X$ and for each n, let $f_{n}(x) \rightarrow L_{n}$ as $x \rightarrow c$. Let $\lim _{n \rightarrow \infty} L_{n}=L$. Then $f(x) \rightarrow L$ as $x \rightarrow c$.

5 Miscellaneous

January 27, 2023
Theorem 5.1 (Contraction mapping). Let X be a nonempty complete metric space and $f: X \rightarrow X$ be such that there exists a $c \in[0,1)$ such that

$$
d(f(x), f(y)) \leq c d(x, y)
$$

Then there exists a unique fixed point of f.

Chapter III

Normed linear spaces

Convention. V will denote a general normed linear space over \mathbb{K}, and W a general vector space over \mathbb{K}.

Generic bases of V and W will respectively be denoted by \mathcal{B} and \mathcal{C}.
Ω will denote an open set in V.

1 Elementary facts

January 12, 2023
Proposition 1.1. On V, the following functions are continuous:
(i) Addition: As both, $V \times V \rightarrow V$, and as $V \rightarrow V$ with a fixed addend vector.
(ii) Scalar multiplication: As $\mathbb{K} \times V \rightarrow V$, as $V \rightarrow V$ with a fixed scalar and as $\mathbb{K} \rightarrow V$ with a fixed vector.
(iii) Norm.

Definition 1.2 (Banach spaces). A Banach space is a complete normed linear space.

Proposition 1.3. Finite-dimensional normed linear spaces are Banach.

2 Norms on product spaces

March 12, 2023

Proposition 2.1 (l_{p}-norms on $V_{1} \times \cdots \times V_{n}$). For any $p \in[1, \infty)$, the following defines a norm on $V_{1} \times \cdots \times V_{n}$:

$$
\|v\|_{p}:=\left(\sum_{i=1}^{n}\left\|v_{i}\right\|^{p}\right)^{1 / p}
$$

We also have the following norm:

$$
\|v\|_{\infty}:=\max _{1 \leq i \leq n}\left\|v_{i}\right\|
$$

Further, all these norms are equivalent via

$$
\|v\|_{\infty} \leq\|v\|_{p} \leq n^{1 / p}\|v\|_{p}
$$

and generate the product topology.

Lemma 2.2.

(i) $\|w\|:=\max _{\tilde{e} \in \mathcal{C}}\left|w_{\tilde{e}}\right|$ defines a norm on W.
(ii) If $f: V \rightarrow W$ is a vector space isomorphism, then $w \mapsto\left\|f^{-1}(w)\right\|$ defines a norm on W with respect to to which, f becomes an isometry.

Theorem 2.3. Any two norms on a finite-dimensional vector space are equivalent.

Corollary 2.4. Any linear map from a finite-dimensional normed linear space to an arbitrary normed linear space is continuous.

Corollary 2.5. If $\operatorname{dim} V<\infty$ and $V \cong W$ as vector spaces, then for any norm on W, we also have that $V \cong W$ as normed linear spaces.

Corollary 2.6. Let $V=U_{1} \oplus \cdots \oplus U_{n}$, where U_{i} 's are subspaces of V. Consider $U_{1} \times \cdots \times U_{n}$ under any of the (equivalent) l_{p}-norms. Then

$$
\operatorname{dim} V<\infty \Longrightarrow U_{1} \times \cdots \times U_{n} \cong V \text { as normed linear spaces. }
$$

Remark. This fails for infinite-dimensional V 's even though $n<\infty$. ${ }^{1}$ (The statement for $n=\infty$ is obviously false for this would mean that any two norms on a space are equivalent.)

However, for finite-dimensional spaces, this means that the "topology can be recovered just from the basis".

[^3]Corollary 2.7 (Convergence in finite dimensions). In a normed linear space with a basis $\left(v_{1}, \ldots, v_{n}\right)$,

$$
\sum_{k=1}^{n} a_{k}^{(i)} v_{k} \xrightarrow{i} \sum_{k=1}^{n} a_{k} v_{k} \Longleftrightarrow a_{k}^{(i)} \xrightarrow{i} a_{k} \text { for all } k \text { 's. }
$$

Corollary 2.8 (Limits of functions in finite dimensions). Let $\operatorname{dim} V<\infty$ and $f: E \rightarrow V$ where E is a subset of a topological space X. Let f decompose into $f_{e}: E \rightarrow \mathbb{K}$ for $e \in \mathcal{B}$. Let $c \in X$ and $v \in V$. Then

$$
f(x) \rightarrow v \text { as } x \rightarrow c \Longleftrightarrow f_{e}(x) \rightarrow v_{e} \text { as } x \rightarrow c \text { for each } e \in \mathcal{B} .
$$

3 The space $\mathrm{B}(X, V)$

March 11, 2023
Proposition 3.1. W^{X} is a vector space for any set X.
Definition 3.2 (Bounded functions). A function $f: X \rightarrow V$, where X is any set, is called bounded iff $\|f(x)\|$'s are bounded for $x \in X$.

We also define

$$
\mathrm{B}(X, V):=\{\text { bounded functions } X \rightarrow V\} .
$$

Remark. Bounded-ness of multi-linear maps is something completely different! See Definition 4.2 .

Proposition 3.3 (A norm on $\mathrm{B}(X, V)$). For any set X, we have that $\mathrm{B}(X, V)$ is a linear subspace of V^{X}, and

$$
\|f\|_{\infty}:=\sup _{x \in X}\|f(x)\|
$$

defines a norm on $\mathrm{B}(X, V)$.
Further, the convergence in $\|\cdot\|_{\infty}$ is the same as uniform convergence (for bounded functions).

Theorem 3.4. If V is Banach, then so is $\mathrm{B}(X, V)$.

4 The space $\mathrm{B} \mathcal{L}\left(\boldsymbol{V}_{1}, \ldots, V_{n} ; \boldsymbol{W}\right)$

March 11, 2023
Convention. In this section, V_{i} 's will denote normed linear spaces over \mathbb{K}.

Notation. We'll use the $\mathcal{L}\left(\left\{V_{i}\right\} ; W\right)$ notation for the set of multi-linear maps. The semi-colon ";" will differentiate the usual "linear" case or the "multi-linear" case for $V_{1} \rightarrow W$. However, in that case, we conveniently have $\mathcal{L}\left(V_{1}, W\right)=\mathcal{L}\left(V_{1} ; W\right)$.

Corollary 4.1. $\mathcal{L}\left(V_{1}, \ldots, V_{n} ; W\right)$ is a linear subspace of $W^{V_{1} \times \cdots \times V_{n}}$.
Definition 4.2 (Bounded multi-linear maps). Let W also have a norm. Then a multi-linear map $f \in \mathcal{L}\left(V_{1}, \ldots, V_{n} ; W\right)$, for $n \geq 0,{ }^{2}$ is called bounded iff it is bounded as a function on the product of discs $\left\|x_{i}\right\| \leq 1$, or equivalently, iff there exists an $M \geq 0$ such that

$$
\left\|f\left(x_{1}, \ldots, x_{n}\right)\right\| \leq M\left\|x_{1}\right\| \cdots\left\|x_{n}\right\| \quad\left(x_{i} \in V_{i}\right)
$$

We also define

$$
\mathrm{B} \mathcal{L}\left(V_{1}, \ldots, V_{n} ; W\right):=\left\{\text { bounded multi-linear maps } V_{1} \times \cdots \times V_{n} \rightarrow W\right\}
$$

Proposition 4.3 (A norm on $\mathrm{B} \mathcal{L}\left(V_{1}, \ldots, V_{n} ; W\right)$). Let W also come equipped with a norm. Then for any $n \geq 0$, we have that $\mathrm{B} \mathcal{L}\left(V_{1}, \ldots, V_{n} ; W\right)$ is a subspace of $\mathcal{L}\left(V_{1}, \ldots, V_{n} ; W\right)$ and that

$$
\begin{aligned}
\|f\| & =\left\|\left.f\right|_{D_{1} \times \cdots \times D_{n}}\right\|_{\infty} \\
& =\sup _{\left\|x_{i}\right\| \leq 1}\left\|f\left(x_{1}, \ldots, x_{n}\right)\right\| \\
& =\sup _{\|x\|_{\infty} \leq 1}\|f(x)\|
\end{aligned}
$$

defines a norm on $\mathrm{B} \mathcal{L}\left(V_{1}, \ldots, V_{n} ; W\right)$, where D_{i} is the unit disc of the i-th space.

For $n \neq 0$, we also have

$$
\|f\|=\sup _{x_{i} \neq 0} \frac{\left\|f\left(x_{1}, \ldots, x_{n}\right)\right\|}{\left\|x_{1}\right\| \cdots\left\|x_{n}\right\|}
$$

[^4]Corollary 4.4. Let W, U be normed linear spaces. Let $f \in \mathrm{~B} \mathcal{L}\left(V_{1}, \ldots, V_{n} ; W\right)$ and $g \in \mathrm{~B} \mathcal{L}(W ; U)$. Then $g \circ f \in \mathrm{~B} \mathcal{L}\left(V_{1}, \ldots, V_{n} ; U\right)$ with

$$
\|g \circ f\| \leq\|g\|\|f\|
$$

Corollary 4.5. Let W also have a norm and let $\phi \in \mathrm{B} \mathcal{L}(V ; W)$ be invertible with $\phi^{-1} \in \mathrm{~B} \mathcal{L}(V ; W)$ as well. ${ }^{3}$ Then

$$
\|\phi\|,\left\|\phi^{-1}\right\| \leq 1 \Longrightarrow \phi \text { is an isometry } \Longrightarrow\|\phi\|=1=\left\|\phi^{-1}\right\| .
$$

Remark. Up till now, we didn't need any norm on $V_{1} \times \cdots \times V_{n}$. Just the norms on V_{i} 's were sufficient to define a norm on $\mathrm{B} \mathcal{L}\left(V_{1}, \ldots, V_{n} ; W\right)$.

Corollary 4.6. Let X be a bounded subset ${ }^{4}$ of $V_{1} \times \cdots \times V_{n}$ and W be normed. Then the restrictions of bounded multi-linear maps $V_{1} \times \cdots \times V_{n} \rightarrow W$ to $X \rightarrow W$ form a subspace of $\mathrm{B}(X, W)$.

Proposition 4.7 (Characterizing continuity). Let W have a norm and $f \in$ $\mathcal{L}\left(V_{1}, \ldots, V_{n} ; W\right)$. Then the following are equivalent:
(i) f is continuous.
(ii) f is continuous at 0 .
(iii) f is bounded.

Theorem 4.8 (Canonical isomorphisms). Let $W^{\prime}, U_{i}, U_{i}^{\prime}$'s be vector spaces for $1 \leq i \leq n(0 \leq m \leq n)$ over \mathbb{K} such that $U_{i} \cong U_{i}^{\prime}$ for each i and $W \cong W^{\prime}$ as vector spaces via α_{i} 's and β. Let σ be a permutation on $\{1, \ldots, n\}$. Then we have the following vector space isomorphisms: ${ }^{5}$

$$
\begin{aligned}
\mathcal{L}\left(U_{1}, \ldots, U_{n} ; W\right) & \cong \mathcal{L}\left(U_{1}^{\prime}, \ldots, U_{n}^{\prime} ; W^{\prime}\right) \\
\mathcal{L}\left(U_{1}, \ldots, U_{n} ; W\right) & \cong \mathcal{L}\left(U_{\sigma(1)}, \ldots, U_{\sigma(n)} ; W\right) \\
\mathcal{L}\left(U_{1}, \ldots, U_{m} ; \mathcal{L}\left(U_{m+1}, \ldots, U_{n} ; W\right)\right) & \cong \mathcal{L}\left(U_{1}, \ldots, U_{n} ; W\right)
\end{aligned}
$$

The isomorphisms can be described as follows: Let f (in left-hand-side) and g (in right-hand-side) be a corresponded pair of maps. Then we demand that

[^5](i) $\beta\left(f\left(u_{1}, \ldots, u_{n}\right)\right)=g\left(\alpha_{1}\left(u_{1}\right), \ldots, \alpha_{n}\left(u_{n}\right)\right)$ for the first;
(ii) $f\left(u_{1}, \ldots, u_{n}\right)=g\left(u_{\sigma(1)}, \ldots, u_{\sigma(n)}\right)$ for the second; and,
(iii) $f\left(u_{1}, \ldots, u_{m}\right)\left(u_{m+1}, \ldots, u_{n}\right)=g\left(u_{1}, \ldots, u_{n}\right)$ for the third.

In the above, if U_{i}, U_{i}^{\prime} 's, W^{\prime} are normed with α_{i} 's, β being normed linear space isomorphisms, ${ }^{6}$ then the above vector space isomorphisms can also be restricted by replacing " \mathcal{L} " by " \mathcal{L} ", yielding normed linear space isomorphisms. In fact, the obtained isomorphisms are isometries ${ }^{7}$ in the second and third cases. In the first case, it becomes an isometry if α_{i} 's and β are isometries.

Theorem 4.9. If W is Banach, then so is $\mathrm{B} \mathcal{L}\left(V_{1}, \ldots, V_{n} ; W\right)$.

5 Polygonal connectedness

January 20, 2023
Definition 5.1 (Polygonal lines in vector spaces ${ }^{8}$ over \mathbb{K}). For $w_{1}, w_{2} \in W$, we define the line segment ${ }^{9}$

$$
\left[w_{1} ; w_{2}\right]:=\left\{t w_{1}+(1-t) w_{2}: t \in[0,1]\right\} .
$$

We define $(u ; v)$, etc. in the obvious way.
For $w_{1}, \ldots, w_{n} \in W$, where $n \geq 0$, we call $\bigcup_{i=1}^{n-1}\left[w_{i} ; w_{i+1}\right]$ a polygonal line.
A subset $E \subseteq W$ is called polygonally connected iff any two points in W can be polygonally connected within E.

Corollary 5.2. Polygonal connectedness \Longrightarrow path connectedness in a normed linear space.

Corollary 5.3. Polygonal connectivity of points induces a partition of a vector space.

Lemma 5.4 (Balls of normed linear space are convex). If x, y are contained in a ball, then the segment $[x ; y]$ also lies in the ball.

[^6]Proposition 5.5. A domain of a normed linear space is polygonally connected.

Proposition 5.6. Let V be an inner-product space and \mathcal{B} be orthonormal. Then any two points of a domain can be connected by a polynomial line, lying completely inside the domain, with each segment of the line being along one of the directions in \mathcal{B}.

Result 5.7 (Balls have segments in normed spaces). Let $x_{0} \in \Omega$ and $v \in V \backslash\{0\}$. Then there exists an $\varepsilon>0$ such that for each $t \in B_{\varepsilon}^{\mathbb{K}}(0)$, we have

$$
x_{0}+t v \in \Omega .
$$

Consequently, singletons are not open in a nonzero normed linear space, and hence $\Omega \subseteq \ell(\Omega)$.

Result 5.8 (Closure of balls in normed linear spaces). In a normed linear space, we have

$$
\overline{B_{r}(x)}=D_{r}(x)
$$

6 Convergence in norm

January 27, 2023
Definition 6.1 (Convergence in norm). The series $\sum_{i=0}^{\infty} v_{i}$ in V is said to converge in norm ${ }^{10}$ iff $\sum_{i=0}^{\infty}\left\|v_{i}\right\|$ converges in \mathbb{R}.

Corollary 6.2. Convergence-in-norm implies Cauchy-ness.
Proposition 6.3 (Characterizing completeness for normed spaces). V is Banach \Longleftrightarrow convergence-in-norm implies convergence for series.

Remark. This justifies calling convergence-in-norm as absolute convergence if V is Banach.

[^7]Corollary 6.4 (Weierstraß M-test). Let X be a set and $\left(f_{n}\right) \in \mathrm{B}(X, V)$. Let $\left(M_{n}\right) \in \mathbb{R}$ such that $\left\|f_{n}\right\|_{\infty} \leq M_{n}$ and $\sum_{n=0}^{\infty} M_{n}$ is convergent. Then the following hold:
(i) $\sum_{n=0}^{\infty} f_{n}$ converges in norm (of $\mathrm{B}(X, V)$).
(ii) The partial sums $\sum_{n=0}^{k} f_{n}$ converge uniformly to $\sum_{n=0}^{\infty} f_{n}$.

Proposition 6.5 (Root test). Let $\left(v_{i}\right) \in V$ and define $L \in[0, \infty) \cup\{\infty\}$ as

$$
L:=\underset{i \rightarrow \infty}{\limsup }\left\|v_{i}\right\|^{1 / i} .
$$

Then the following hold:
(i) $L<1 \Longrightarrow \sum_{i=0}^{\infty} v_{i}$ converges in norm.
(ii) $L>1 \Longrightarrow\left(\left\|\sum_{i=0}^{n} v_{i}\right\|\right)_{n}$ is unbounded.

Proposition 6.6 (Ratio test). Let $\left(v_{n}\right) \in V \backslash\{0\}$ and define $L^{+}, L^{-} \in$ $[0, \infty) \cup\{\infty\}$ as

$$
\begin{aligned}
L^{+} & :=\limsup _{i \rightarrow \infty} \frac{\left\|v_{i+1}\right\|}{\left\|v_{i}\right\|}, \text { and } \\
L^{-} & :=\liminf _{i \rightarrow \infty} \frac{\left\|v_{i+1}\right\|}{\left\|v_{i}\right\|}
\end{aligned}
$$

Then the following hold:
(i) $L^{+}<1 \Longrightarrow \sum_{i=0}^{\infty} v_{i}$ converges in norm.
(ii) There exists an N such that $\left\|v_{i+1}\right\| /\left\|v_{i}\right\| \geq 1$ for all $i \geq N \Longrightarrow$ $\sum_{i=0}^{\infty} v_{i}$ diverges.
(iii) $L^{-}>1 \Longrightarrow\left(\left\|\sum_{i=0}^{n} v_{i}\right\|\right)_{n}$ is unbounded.

Remark. Root test is more powerful than the ratio test. See Proposition 1.4.

Proposition 6.7. Sum and scalar multiplication preserve convergence-innorm.

7 Normed algebras

January 20, 2023
Definition 7.1 (Normed algebras). A normed algebra is a \mathbb{K}-algebra together which is also a normed vector space with the following additional property:

$$
\|u v\| \leq\|u\|\|v\|
$$

Example 7.2.

(i) $\mathcal{L}(W ; W)$ forms an associative \mathbb{K}-algebra.
(ii) $\mathrm{B} \mathcal{L}(V ; V)$ is a subalgebra of the normed algebra $\mathcal{L}(V ; V)$.

Convention. In this section, A will stand for a normed algebra.

Proposition 7.3 (Limits of products of functions). Let $f, g: E \rightarrow A$ where E is a subset of a topological space X. Let $c \in X$ and $u, v \in V$ such that $f(x) \rightarrow u$ and $g(x) \rightarrow v$ as $x \rightarrow c$. Then, as $x \rightarrow c$,

$$
f(x) g(x) \rightarrow u v .
$$

Proposition 7.4 (Limits of multiplicative inverses of functions). Let $f: E \rightarrow$ A where E is a subset of a topological space X. Let $\|u v\|=\|u\|\|v\|$ hold in A. Let $f(x) \neq 0$ and $f(x)^{-1}$ existent for each $x \in E$. Let $c \in X$ and $u \in V \backslash\{0\}$ such that u^{-1} exists and $f(x) \rightarrow u$ as $x \rightarrow c$. Then, as $x \rightarrow c$,

$$
f(x)^{-1} \rightarrow u^{-1}
$$

Definition 7.5 (Cauchy product of series). Let R be a ring and $\sum_{i=0}^{\infty} a_{i}$, $\sum_{i=0}^{\infty} b_{i}$ be formal series in R. Then their Cauchy product is defined to be the formal series $\sum_{i=0}^{\infty} c_{i}$ where c_{i} is given by

$$
c_{i}:=\sum_{j+k=i} a_{j} b_{k} .
$$

Example 7.6 (Cauchy product doesn't preserve convergence!). The Cauchy product of the convergent series ${ }^{11}$

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}
$$

with itself diverges in \mathbb{R}.
Theorem 7.7 (Convergent-in-norm \times convergent $=$ convergent). Let $\sum_{i=0}^{\infty} a_{i}$ and $\sum_{i=0}^{\infty} b_{i}$ converge to A and B respectively in A. Further assume that $\sum_{i=0}^{\infty} a_{i}$ is convergent in norm. Then their Cauchy product converges to $A B .^{12}$

Proposition 7.8. Cauchy product preserves convergence in norm.
Corollary 7.9 (Cauchy-Hadamard on power series). Consider the formal power series $\sum_{i=0}^{\infty} c_{i}\left(x-x_{0}\right)^{i}$ with $c_{i}, x_{0} \in A$. Define $L:=\lim \sup _{i \geq 0}\left\|c_{i}\right\|^{1 / i} \in$ $[0, \infty) \cup\{\infty\}$ and the radius of convergence of the series to be

$$
R:= \begin{cases}0, & L=\infty \\ 1 / L, & 0<L<\infty \\ \infty, & L=0\end{cases}
$$

Then for any $x \in A$, the following hold:
(i) $\left\|x-x_{0}\right\|<R \Longrightarrow \sum_{i=0}^{\infty} c_{i}\left(x-x_{0}\right)^{i}$ converges in norm.
(ii) $\left\|x-x_{0}\right\|>R \Longrightarrow\left(\left\|\sum_{i=0}^{n} c_{i}\left(x-x_{0}\right)^{i}\right\|\right)_{n}$ is unbounded.

Now, define ${ }^{13} f: B_{R}\left(x_{0}\right) \rightarrow A$ such that for each $x \in B_{R}\left(x_{0}\right)$, we have

$$
\sum_{i=0}^{\infty} c_{i}\left(x-x_{0}\right)^{i}=f(x)
$$

Then for any $\varepsilon>0$, we have the uniform convergence

$$
\sum_{i=0}^{n} c_{i}\left(x-x_{0}\right)^{i} \xrightarrow{n} f \text { in } D_{R-\varepsilon}\left(x_{0}\right) .
$$

Also, f is continuous.

[^8]
Remark.

(i) Behaviour on the boundary of is not determined: In \mathbb{C}, while $\sum_{n=0}^{\infty} z^{n}$ converges nowhere on the boundary, $\sum_{n=0}^{\infty} z^{n} / n^{2}$ converges on every point of the boundary. Also see Corollary 7.12.
(ii) A power series that does not converge uniformly over it's ball of convergence: $\sum_{n=0}^{\infty} x^{n}$ in \mathbb{R}.

7.1 Miscellaneous

January 27, 2023
Theorem 7.10. Let $\left(v_{i}\right) \in V$ such that $\left(\left\|\sum_{i=0}^{n} v_{i}\right\|\right)_{n}$ is bounded. Let $a_{0} \geq$ $a_{1} \geq \cdots \geq 0$ be reals with $\lim _{i \rightarrow \infty} a_{i}=0$. Then the partial sums $\sum_{i=0}^{n} a_{i} v_{i}$ form a Cauchy sequence.

Corollary 7.11 (Alternating series). Let $a_{0} \geq a_{1} \geq \cdots \geq 0$ be reals with $\lim _{i \rightarrow \infty} a_{i}=0$. Then $\sum_{i=0}^{\infty}(-1)^{i} a_{i}$ is convergent.

Corollary 7.12. Let A be a normed algebra and $\sum_{i=0}^{\infty} a_{i}\left(x-x_{0}\right)^{i}$ be a power series with reals $a_{0} \geq a_{1} \geq \cdots \geq 0$. Then the series converges for $x \in B_{1}\left(x_{0}\right)$. We also have convergence on $D_{1}\left(x_{0}\right) \backslash\left\{x_{0}+1\right\}$ if the norm is multiplicative, or if the nonzeroes in A are invertible.

8 Banach algebras

March 11, 2023
Definition 8.1 (Banach algebra). A Banach space that also forms a \mathbb{K} algebra, or equivalently, a complete normed linear space.

Example 8.2. If V is Banach, then $\mathrm{B} \mathcal{L}(V ; V)$ is a Banach algebra.

Convention. In this subsection, we'll take \mathscr{B} to be a Banach algebra with identity, ${ }^{14}$ and will set Inv \mathscr{B} to be the set of all the invertible elements of \mathscr{B}.

[^9]Proposition 8.3 (Exponentiation). Let $x \in \mathscr{B}$. Then the series

$$
\sum_{i=1}^{\infty} \frac{1}{n!} x^{n}
$$

converges in \mathscr{B}.

Notation. We denote this sum by $\exp (x)$, or e^{x}.

Proposition 8.4. If x, y commute in \mathscr{B}, then

$$
e^{x} e^{y}=e^{x+y}=e^{y} e^{x} .
$$

Corollary 8.5. $\exp :(\mathscr{B},+) \rightarrow(\operatorname{Inv} \mathscr{B}, \cdot)$ is a group homomorphism.
Proposition 8.6. If $\|x\|<1$ in \mathscr{B}, then $1-x$ is invertible with

$$
(1-x)^{-1}=\sum_{i=0}^{\infty} x^{n}
$$

where right-hand-side is convergent.
Proposition $8.7(\operatorname{Inv} \mathscr{B}$ is open in $\mathscr{B})$. Whenever $x \in \operatorname{Inv} \mathscr{B}$, we have that $B_{1 /\left\|x^{-1}\right\|}(x) \subseteq \operatorname{Inv} \mathscr{B}$.

Theorem 8.8. $x \mapsto x^{-1}$ is a self-homeomorphism on $\operatorname{Inv} \mathscr{B}$.

Chapter IV

Reals and complex numbers

1 Reals

February 11, 2023
Proposition 1.1 (Characterizing limsup). Let $\left(a_{n}\right) \in \mathbb{R}$ be bounded. Then $\lim \sup _{i \rightarrow \infty} a_{i}$ is the unique real L such that the following hold:
(i) For every $\varepsilon>0$, there exists an N such that $a_{n}<L+\varepsilon$ for all $n \geq N$.
(ii) For every $\varepsilon>0$ and every N, there exists an $n \geq N$ such that $a_{n}>$ $L-\varepsilon$.

Lemma 1.2. Let $\left(a_{n}\right) \in(0, \infty)$ and $\left(b_{n}\right) \in[0, \infty)$ with $a_{n} \rightarrow$ a where $a \in$ $(0, \infty) \cup\{\infty\}$. Then ${ }^{1}$

$$
\limsup _{i \rightarrow \infty} a_{i} b_{i}=a\left(\limsup _{i \rightarrow \infty} b_{i}\right) .
$$

Proposition 1.3. Uniform limit of Riemann-integrable functions $[a, b] \rightarrow \mathbb{R}$ is Riemann-integrable.

Proposition 1.4 (Root test better than ratio test). Let $\left(a_{n}\right) \in(0, \infty)$. Then

$$
\liminf _{i \rightarrow \infty} \frac{a_{i+1}}{a_{i}} \leq \liminf _{i \rightarrow \infty} a_{i}^{1 / i} \leq \limsup _{i \rightarrow \infty} a_{i}^{1 / i} \leq \limsup _{i \rightarrow \infty} \frac{a_{i+1}}{a_{i}}
$$

Remark.

[^10](i) We can have $\lim \sup a_{i}^{1 / i}<1<\limsup a_{i+1} / a_{i}$, or $\lim \inf a_{i+1} / a_{i}<1<$ $\lim \sup a_{i}^{1 / i}$ in which case, the ratio test gives no information, but root test does.
(ii) Since $\lim \inf a_{i+1} / a_{i} \leq \limsup a_{i}^{1 / i} \leq \lim \sup a_{i+1} / a_{i}$, the root test gives answer whenever ratio test does!

[^0]: ${ }^{1}$ That is, it is a domain plus some of its limit points.
 ${ }^{2} \mathrm{CC}$ used.
 ${ }^{3}$ DCC used.

[^1]: ${ }^{4}$ We mean that bounded nonempty sets have least upper bounds.
 ${ }^{5}$ Converse is not true. See Example 4.10.
 ${ }^{6}$ Not true for path-connected! See Example 4.10.

[^2]: ${ }^{1} \mathrm{AC}$ used.
 ${ }^{2}$ This also holds when Y is a general topological space.

[^3]: ${ }^{1}$ See https://math.stackexchange.com/a/4620769/673223.

[^4]: ${ }^{2}$ Note that for $n=0$, the set $\mathcal{L}\left(V_{1}, \ldots, V_{n} ; W\right)$ is a singleton containing the empty map.

[^5]: ${ }^{3}$ This will also hold if we replace " $\mathrm{B} \mathcal{L}$ " by " B ", and " $\|\cdot\|$ " by " $\|\cdot\|_{\infty}$ ".
 4 "Boundedness" can be talked of only when we have a metric on $V_{1} \times \cdots \times V_{n}$.
 ${ }^{5}$ The first is the "axiom of substitution".

[^6]: ${ }^{6}$ A linear isomorphism that is also a homeomorphism.
 ${ }^{7}$ We adopt the usual "metric space definition" of an isometry. (Note that it may not be bijective.) Then it follows that for normed linear spaces, isometries also preserve norms.
 ${ }^{8}$ This definition does not require V to be normed.
 ${ }^{9}$ Reference: https://planetmath.org/linesegment.

[^7]: ${ }^{10}$ Note that we are not defining convergence-in-norm for sequences, just for series. This is an instance where the difference in "type" is crucial.

[^8]: ${ }^{11}$ Convergence follows from Corollary 7.11.
 ${ }^{12}$ No commutativity or associativity required!
 ${ }^{13}$ Obvious definitions of balls when $R=0$ or ∞.

[^9]: ${ }^{14}$ For we'll want our power series to start from 1.

[^10]: ${ }^{1}$ We are (perversely) allowing multiplication by ∞.

