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Chapter I

Topology

1 General

January 20, 2023

Lemma 1.1. Convergence and limits of sequences are preserved while going
across subspaces.

Definition 1.2 (Bolzano-Weierstraß property). A topological spaceX is said
to have the Bolzano-Weierstraß property iff every sequence has a convergent
subsequence.

Definition 1.3 (Domains and regions). A domain is a nonempty, connected,
open subset. A region is a subset that is contained in the closure of its
interior.1

Lemma 1.4 (Closure and limit points). Let E be a subspace of X with
(xi) ∈ E and x ∈ X. Then the following hold:

(i) xi → x =⇒ x ∈ E. The converse2 holds if X is metrizable.

(ii) xi → x with xi’s being distinct =⇒ x ∈ ℓ(E). The converse3 holds if
X is metrizable.

1That is, it is a domain plus some of its limit points.
2CC used.
3DCC used.
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CHAPTER I. TOPOLOGY 2

2 Limits and continuity

January 20, 2023

Definition 2.1 (Limits of functions). Let X, Y be topological spaces and
f : S → Y where S ⊆ X. Let c ∈ X and L ∈ Y . Then we write

f(x) → L as x → c

iff for every open neighborhood V of L, there exists an open neighborhood
U of c such that

f(U ∩ S \ {c}) ⊆ V .

Definition 2.2 (Continuity). A function f : X → Y between topological
spaces is said to be continuous at c ∈ X iff for every open neighborhood V
of f(c), the set f−1(V ) contains an open neighborhood of c.

Proposition 2.3. A function f : X → Y is continuous ⇐⇒ for any A ⊆ X,
we have

f(A) ⊆ f(A).

Lemma 2.4 (Relation between limits and continuity). A function f : X → Y
between topological spaces is continuous at c ∈ X ⇐⇒ f(x) → f(c) as
x → c.

Lemma 2.5 (Restrictions and limits). Let X, Y be topological spaces and
f : S → T where S ⊆ X and T ⊆ Y . Let A ⊆ S and f(A) ⊆ B ⊆ Y . Define
g : A → B by x 7→ f(x). Then for c ∈ X and L ∈ T ∩B, the following hold:

(i) f(x) → L as x → c =⇒ g(x) → L as x → c (A being seen as the
subspace of X).

(ii) The converse holds if we have that U0 ∩ S ⊆ A for some open neigh-
borhood U0 of c (in X).

Lemma 2.6 (Restrictions and continuity). Let f : X → Y between topologi-
cal spaces where Y is a subspace of a space Y ′. Let S ⊆ X and f(S) ⊆ T ⊆
Y ′. Define g : S → T by x 7→ f(x). Then for c ∈ S, the following hold:

(i) f is continuous at c =⇒ g is continuous at c.

(ii) The converse holds if U0 ⊆ S for some open neighborhood U0 of c (in
X).
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Proposition 2.7 (Limits of compositions). Let f : E → F and g : F → Z
where E, F are subspaces of X, Y respectively. Let f(x) → L as x → c and
g(y) → M as y → L. Also assume that M = g(L) if L ∈ F . Then

(g ◦ f)(x) → M as x → c.

Lemma 2.8 (Regularity). For a space X, the following are equivalent:

(i) Any point and a closed set not containing it can be separated by disjoint
open sets.

(ii) Any open neighborhood of a point contains the closure of an open set
containing the point.

Theorem 2.9 (Extending a function continuously). Let f : E → Y where
E is a subspace of a space X, and Y a regular space. Let S ⊆ E \ E and
g : S → Y be such that f(x) → g(s) as x → s for each s ∈ S. Then the
extended function E ∪ S → Y is continuous.

Lemma 2.10 (Denseness). A subset is dense ⇐⇒ it intersects with each
nonempty open set.

Proposition 2.11. A continuous function into a Hausdorff space is deter-
mined by its values on a dense subset of the domain.

3 Compactness

January 20, 2023

Definition 3.1 (Covers). A set {Uα} of (open) subsets of a topological space
is said to be an (open) cover of a subset E ⊆ X iff

⋃
α Uα ⊇ E.

Definition 3.2 (Compact sets). A subset E of a topological space X is said
to be compact in X iff every open cover of E has a finite subcover.

Lemma 3.3. Compactness is preserved while going across subspaces.

Remark. This allows to drop “in X” from “E is compact in X”.

Proposition 3.4. Closed subsets of compact spaces are compact.

Proposition 3.5. Continuous image of a compact set is compact.
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4 Connectedness and path-connectedness

January 20, 2023

Definition 4.1 (Connectedness). A space is said to be connected iff it can’t
be partitioned into two nonempty open sets.

Definition 4.2 (Path connectedness). A path from a point x to a point y
in a space X is a continuous function f : [0, 1] → X such that f(0) = x and
f(1) = y.

A space is called path connected iff any two points can be connected by
a path.

Corollary 4.3. Path connectivity of points induces a partition of the space.

Definition 4.4 (Linear continua). A linear continuum is a totally ordered
set with least-upper-bound property4 such that between any two points lies
another point.

Theorem 4.5 (Linear continua are connected). Convex subsets of linear
continua are connected.

Proposition 4.6. Path connectedness =⇒ connectedness.5

Proposition 4.7. Continuous image of a (path-)connected set is (path-)connected.

Proposition 4.8. Closure of connected is connected.6

Corollary 4.9 (Intermediate value). Let f : X → Y be continuous where X
is connected and Y is under order topology. Let r lie between f(x) and f(x)
for x, z ∈ X. Then there exists a y ∈ X such that r = f(y).

Example 4.10 (Topologist’s sine curve). Define

S := {(x, sin(1/x)) : x > 0} ⊆ R2.

Then S is connected, but not path-connected!

4We mean that bounded nonempty sets have least upper bounds.
5Converse is not true. See Example 4.10.
6Not true for path-connected! See Example 4.10.
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5 Pointwise convergence

January 27, 2023

Definition 5.1 (Pointwise convergence). Let X be a set and Y be a topo-
logical space. Then a sequence of function (fn) on X → Y is said to converge
pointwise to a function f : X → Y iff for each x ∈ X, we have that

fn(x) → f(x) as n → ∞.

Corollary 5.2. In a Hausdorff space, the pointwise limit, if existent, is
unique.



Chapter II

Metric spaces

January 12, 2023

1 General

January 23, 2023

Lemma 1.1. The subspace topology on a subset of a metric space is the same
as the topology induced by the restricted metric.

Lemma 1.2. Cauchy-ness of sequences is preserved while going across metric
subspaces.

Proposition 1.3. Metric is continuous as both X × X → R as well as
X → R.

Lemma 1.4. Closed subsets of a complete space are precisely its complete
subsets.

2 Compactness

Definition 2.1 (Totally bounded). A subset E of a metric space X is said
to be totally bounded in S iff for each ε > 0, finitely many balls of radius ε
cover E.

Lemma 2.2. (Total) boundedness is preserved while going across metric sub-
spaces.

6
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Lemma 2.3. Finite unions of bounded sets are bounded.

Theorem 2.4 (Compactness in metric spaces). Let X be a metric space and
E ⊆ X. Then the following are equivalent:1

(i) E is complete and totally bounded.

(ii) E has the Bolzano-Weierstraß property.

(iii) E is compact.

Corollary 2.5 (Extreme value). A continuous function from a compact space
X to R achieves its maximum and minimum over X.

3 Limits of functions

Proposition 3.1 (Uniqueness of limits of functions). Let X be a topological
space and Y be a metric space. Let f : S → Y where S ⊆ X. Then for a
point c ∈ X, the following hold:

(i) c ∈ ℓ(S) =⇒ f(x) → L as x → c for at most one L ∈ Y .

(ii) c /∈ ℓ(S) =⇒ f(x) → L as x → c for all L ∈ Y .2

Notation. Thus, for a metric space codomain, and for c ∈ ℓ(S), we denote
the unique limit, if existent, by

lim
x→c

f(x).

4 Uniform convergence

January 27, 2023

Definition 4.1 (Uniform convergence). Let X be a set and Y be a metric
space. Then a sequence of functions (fn) on X → Y is said to converge
uniformly to a function f : X → Y iff for every ε > 0, there exists an N such
that for all n ≥ N and for each x ∈ X, we have

d(fn(x), f(x)) < ε.

1AC used.
2This also holds when Y is a general topological space.
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Corollary 4.2. Uniform limit is also a pointwise limit and hence unique.

Lemma 4.3 (Cauchy criterion for uniform convergence). Let X be a set and
Y be a metric space. Let f : X → Y be the pointwise limit of a sequence of
functions (fn) on X → Y . Then the following are equivalent:

(i) fn → f uniformly.

(ii) For each ε > 0, there exists an N such that for all m,n ≥ N , we have
d(fm(x), fn(x)) < ε for all x ∈ X.

Theorem 4.4 (Uniform limit preserves continuity). Let E be a subspace of
a topological space X and Y be a metric space. Let (fn) be a sequence of
functions E → Y converging uniformly to f : E → Y . Let c ∈ X and for
each n, let fn(x) → Ln as x → c. Let limn→∞ Ln = L. Then f(x) → L as
x → c.

5 Miscellaneous

January 27, 2023

Theorem 5.1 (Contraction mapping). Let X be a nonempty complete metric
space and f : X → X be such that there exists a c ∈ [0, 1) such that

d(f(x), f(y)) ≤ cd(x, y).

Then there exists a unique fixed point of f .



Chapter III

Normed linear spaces

Convention. V will denote a general normed linear space over K, and W
a general vector space over K.

Generic bases of V and W will respectively be denoted by B and C.
Ω will denote an open set in V .

1 Elementary facts

January 12, 2023

Proposition 1.1. On V , the following functions are continuous:

(i) Addition: As both, V × V → V , and as V → V with a fixed addend
vector.

(ii) Scalar multiplication: As K × V → V , as V → V with a fixed scalar
and as K → V with a fixed vector.

(iii) Norm.

Definition 1.2 (Banach spaces). A Banach space is a complete normed
linear space.

Proposition 1.3. Finite-dimensional normed linear spaces are Banach.

2 Norms on product spaces

March 12, 2023

9



CHAPTER III. NORMED LINEAR SPACES 10

Proposition 2.1 (lp-norms on V1 × · · · × Vn). For any p ∈ [1,∞), the
following defines a norm on V1 × · · · × Vn:

∥v∥p :=
( n∑

i=1

∥vi∥p
)1/p

We also have the following norm:

∥v∥∞ := max
1≤i≤n

∥vi∥

Further, all these norms are equivalent via

∥v∥∞ ≤ ∥v∥p ≤ n1/p∥v∥p

and generate the product topology.

Lemma 2.2.

(i) ∥w∥ := maxẽ∈C|wẽ| defines a norm on W .

(ii) If f : V → W is a vector space isomorphism, then w 7→ ∥f−1(w)∥
defines a norm on W with respect to to which, f becomes an isometry.

Theorem 2.3. Any two norms on a finite-dimensional vector space are
equivalent.

Corollary 2.4. Any linear map from a finite-dimensional normed linear
space to an arbitrary normed linear space is continuous.

Corollary 2.5. If dimV < ∞ and V ∼= W as vector spaces, then for any
norm on W , we also have that V ∼= W as normed linear spaces.

Corollary 2.6. Let V = U1 ⊕ · · · ⊕ Un, where Ui’s are subspaces of V .
Consider U1 × · · · × Un under any of the (equivalent) lp-norms. Then

dimV < ∞ =⇒ U1 × · · · × Un
∼= V as normed linear spaces.

Remark. This fails for infinite-dimensional V ’s even though n < ∞.1 (The
statement for n = ∞ is obviously false for this would mean that any two
norms on a space are equivalent.)

However, for finite-dimensional spaces, this means that the “topology can
be recovered just from the basis”.

1See https://math.stackexchange.com/a/4620769/673223.

https://math.stackexchange.com/a/4620769/673223
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Corollary 2.7 (Convergence in finite dimensions). In a normed linear space
with a basis (v1, . . . , vn),

n∑
k=1

a
(i)
k vk

i−→
n∑

k=1

akvk ⇐⇒ a
(i)
k

i−→ ak for all k’s.

Corollary 2.8 (Limits of functions in finite dimensions). Let dimV < ∞
and f : E → V where E is a subset of a topological space X. Let f decompose
into fe : E → K for e ∈ B. Let c ∈ X and v ∈ V . Then

f(x) → v as x → c ⇐⇒ fe(x) → ve as x → c for each e ∈ B.

3 The space B(X,V )

March 11, 2023

Proposition 3.1. WX is a vector space for any set X.

Definition 3.2 (Bounded functions). A function f : X → V , where X is
any set, is called bounded iff ∥f(x)∥’s are bounded for x ∈ X.

We also define

B(X, V ) := {bounded functions X → V }.

Remark. Bounded-ness of multi-linear maps is something completely dif-
ferent! See Definition 4.2.

Proposition 3.3 (A norm on B(X, V )). For any set X, we have that B(X, V )
is a linear subspace of V X , and

∥f∥∞ := sup
x∈X

∥f(x)∥

defines a norm on B(X, V ).
Further, the convergence in ∥·∥∞ is the same as uniform convergence (for

bounded functions).

Theorem 3.4. If V is Banach, then so is B(X, V ).
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4 The space BL(V1, . . . , Vn;W )

March 11, 2023

Convention. In this section, Vi’s will denote normed linear spaces over K.

Notation. We’ll use the L({Vi};W ) notation for the set of multi-linear
maps. The semi-colon “;” will differentiate the usual “linear” case or the
“multi-linear” case for V1 → W . However, in that case, we conveniently have
L(V1,W ) = L(V1;W ).

Corollary 4.1. L(V1, . . . , Vn;W ) is a linear subspace of W V1×···×Vn.

Definition 4.2 (Bounded multi-linear maps). LetW also have a norm. Then
a multi-linear map f ∈ L(V1, . . . , Vn;W ), for n ≥ 0,2 is called bounded iff it
is bounded as a function on the product of discs ∥xi∥ ≤ 1, or equivalently,
iff there exists an M ≥ 0 such that

∥f(x1, . . . , xn)∥ ≤ M∥x1∥ · · · ∥xn∥ (xi ∈ Vi).

We also define

BL(V1, . . . , Vn;W ) := {bounded multi-linear maps V1 × · · · × Vn → W}.

Proposition 4.3 (A norm on BL(V1, . . . , Vn;W )). Let W also come equipped
with a norm. Then for any n ≥ 0, we have that BL(V1, . . . , Vn;W ) is a
subspace of L(V1, . . . , Vn;W ) and that

∥f∥ :=
∥∥f |D1×···×Dn

∥∥
∞

= sup
∥xi∥≤1

∥f(x1, . . . , xn)∥

= sup
∥x∥∞≤1

∥f(x)∥

defines a norm on BL(V1, . . . , Vn;W ), where Di is the unit disc of the i-th
space.

For n ̸= 0, we also have

∥f∥ = sup
xi ̸=0

∥f(x1, . . . , xn)∥
∥x1∥ · · · ∥xn∥

.

2Note that for n = 0, the set L(V1, . . . , Vn;W ) is a singleton containing the empty map.
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Corollary 4.4. Let W , U be normed linear spaces. Let f ∈ BL(V1, . . . , Vn;W )
and g ∈ BL(W ;U). Then g ◦ f ∈ BL(V1, . . . , Vn;U) with

∥g ◦ f∥ ≤ ∥g∥ ∥f∥.

Corollary 4.5. Let W also have a norm and let ϕ ∈ BL(V ;W ) be invertible
with ϕ−1 ∈ BL(V ;W ) as well.3 Then

∥ϕ∥, ∥ϕ−1∥ ≤ 1 =⇒ ϕ is an isometry =⇒ ∥ϕ∥ = 1 = ∥ϕ−1∥.

Remark. Up till now, we didn’t need any norm on V1 × · · · × Vn. Just the
norms on Vi’s were sufficient to define a norm on BL(V1, . . . , Vn;W ).

Corollary 4.6. Let X be a bounded subset4 of V1×· · ·×Vn and W be normed.
Then the restrictions of bounded multi-linear maps V1 × · · · × Vn → W to
X → W form a subspace of B(X,W ).

Proposition 4.7 (Characterizing continuity). Let W have a norm and f ∈
L(V1, . . . , Vn;W ). Then the following are equivalent:

(i) f is continuous.

(ii) f is continuous at 0.

(iii) f is bounded.

Theorem 4.8 (Canonical isomorphisms). Let W ′, Ui, U
′
i ’s be vector spaces

for 1 ≤ i ≤ n (0 ≤ m ≤ n) over K such that Ui
∼= U ′

i for each i and W ∼= W ′

as vector spaces via αi’s and β. Let σ be a permutation on {1, . . . , n}. Then
we have the following vector space isomorphisms:5

L(U1, . . . , Un;W ) ∼= L(U ′
1, . . . , U

′
n;W

′)

L(U1, . . . , Un;W ) ∼= L(Uσ(1), . . . , Uσ(n);W )

L
(
U1, . . . , Um;L(Um+1, . . . , Un;W )

) ∼= L(U1, . . . , Un;W )

The isomorphisms can be described as follows: Let f (in left-hand-side)
and g (in right-hand-side) be a corresponded pair of maps. Then we demand
that

3This will also hold if we replace “BL” by “B”, and “∥·∥” by “∥·∥∞”.
4“Boundedness” can be talked of only when we have a metric on V1 × · · · × Vn.
5The first is the “axiom of substitution”.
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(i) β(f(u1, . . . , un)) = g(α1(u1), . . . , αn(un)) for the first;

(ii) f(u1, . . . , un) = g(uσ(1), . . . , uσ(n)) for the second; and,

(iii) f(u1, . . . , um)(um+1, . . . , un) = g(u1, . . . , un) for the third.

In the above, if Ui, U
′
i ’s, W

′ are normed with αi’s, β being normed linear
space isomorphisms,6 then the above vector space isomorphisms can also be
restricted by replacing “L” by “BL”, yielding normed linear space isomor-
phisms. In fact, the obtained isomorphisms are isometries7 in the second
and third cases. In the first case, it becomes an isometry if αi’s and β are
isometries.

Theorem 4.9. If W is Banach, then so is BL(V1, . . . , Vn;W ).

5 Polygonal connectedness

January 20, 2023

Definition 5.1 (Polygonal lines in vector spaces8 over K). For w1, w2 ∈ W ,
we define the line segment9

[w1;w2] := {tw1 + (1− t)w2 : t ∈ [0, 1]}.

We define (u; v), etc. in the obvious way.
For w1, . . . , wn ∈ W , where n ≥ 0, we call

⋃n−1
i=1 [wi;wi+1] a polygonal line.

A subset E ⊆ W is called polygonally connected iff any two points in W
can be polygonally connected within E.

Corollary 5.2. Polygonal connectedness =⇒ path connectedness in a
normed linear space.

Corollary 5.3. Polygonal connectivity of points induces a partition of a
vector space.

Lemma 5.4 (Balls of normed linear space are convex). If x, y are contained
in a ball, then the segment [x; y] also lies in the ball.

6A linear isomorphism that is also a homeomorphism.
7We adopt the usual “metric space definition” of an isometry. (Note that it may not be

bijective.) Then it follows that for normed linear spaces, isometries also preserve norms.
8This definition does not require V to be normed.
9Reference: https://planetmath.org/linesegment.

https://planetmath.org/linesegment
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Proposition 5.5. A domain of a normed linear space is polygonally con-
nected.

Proposition 5.6. Let V be an inner-product space and B be orthonormal.
Then any two points of a domain can be connected by a polynomial line, lying
completely inside the domain, with each segment of the line being along one
of the directions in B.

Result 5.7 (Balls have segments in normed spaces). Let x0 ∈ Ω and v ∈ V \{0}.
Then there exists an ε > 0 such that for each t ∈ BK

ε (0), we have

x0 + tv ∈ Ω.

Consequently, singletons are not open in a nonzero normed linear space, and
hence Ω ⊆ ℓ(Ω).

Result 5.8 (Closure of balls in normed linear spaces). In a normed linear space,
we have

Br(x) = Dr(x).

6 Convergence in norm

January 27, 2023

Definition 6.1 (Convergence in norm). The series
∑∞

i=0 vi in V is said to
converge in norm10 iff

∑∞
i=0∥vi∥ converges in R.

Corollary 6.2. Convergence-in-norm implies Cauchy-ness.

Proposition 6.3 (Characterizing completeness for normed spaces). V is
Banach ⇐⇒ convergence-in-norm implies convergence for series.

Remark. This justifies calling convergence-in-norm as absolute convergence
if V is Banach.

10Note that we are not defining convergence-in-norm for sequences, just for series. This
is an instance where the difference in “type” is crucial.
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Corollary 6.4 (Weierstraß M -test). Let X be a set and (fn) ∈ B(X, V ).
Let (Mn) ∈ R such that ∥fn∥∞ ≤ Mn and

∑∞
n=0Mn is convergent. Then the

following hold:

(i)
∑∞

n=0 fn converges in norm (of B(X, V )).

(ii) The partial sums
∑k

n=0 fn converge uniformly to
∑∞

n=0 fn.

Proposition 6.5 (Root test). Let (vi) ∈ V and define L ∈ [0,∞) ∪ {∞} as

L := lim sup
i→∞

∥vi∥1/i.

Then the following hold:

(i) L < 1 =⇒
∑∞

i=0 vi converges in norm.

(ii) L > 1 =⇒
(∥∥∑n

i=0 vi
∥∥)

n
is unbounded.

Proposition 6.6 (Ratio test). Let (vn) ∈ V \ {0} and define L+, L− ∈
[0,∞) ∪ {∞} as

L+ := lim sup
i→∞

∥vi+1∥
∥vi∥

, and

L− := lim inf
i→∞

∥vi+1∥
∥vi∥

.

Then the following hold:

(i) L+ < 1 =⇒
∑∞

i=0 vi converges in norm.

(ii) There exists an N such that ∥vi+1∥/∥vi∥ ≥ 1 for all i ≥ N =⇒∑∞
i=0 vi diverges.

(iii) L− > 1 =⇒
(∥∥∑n

i=0 vi
∥∥)

n
is unbounded.

Remark. Root test is more powerful than the ratio test. See Proposi-
tion 1.4.

Proposition 6.7. Sum and scalar multiplication preserve convergence-in-
norm.
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7 Normed algebras

January 20, 2023

Definition 7.1 (Normed algebras). A normed algebra is a K-algebra to-
gether which is also a normed vector space with the following additional
property:

∥uv∥ ≤ ∥u∥ ∥v∥.

Example 7.2.

(i) L(W ;W ) forms an associative K-algebra.

(ii) BL(V ;V ) is a subalgebra of the normed algebra L(V ;V ).

Convention. In this section, A will stand for a normed algebra.

Proposition 7.3 (Limits of products of functions). Let f, g : E → A where
E is a subset of a topological space X. Let c ∈ X and u, v ∈ V such that
f(x) → u and g(x) → v as x → c. Then, as x → c,

f(x)g(x) → uv.

Proposition 7.4 (Limits of multiplicative inverses of functions). Let f : E →
A where E is a subset of a topological space X. Let ∥uv∥ = ∥u∥ ∥v∥ hold
in A. Let f(x) ̸= 0 and f(x)−1 existent for each x ∈ E. Let c ∈ X and
u ∈ V \ {0} such that u−1 exists and f(x) → u as x → c. Then, as x → c,

f(x)−1 → u−1.

Definition 7.5 (Cauchy product of series). Let R be a ring and
∑∞

i=0 ai,∑∞
i=0 bi be formal series in R. Then their Cauchy product is defined to be

the formal series
∑∞

i=0 ci where ci is given by

ci :=
∑
j+k=i

ajbk.
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Example 7.6 (Cauchy product doesn’t preserve convergence!). The Cauchy
product of the convergent series11

∞∑
n=0

(−1)n√
n+ 1

with itself diverges in R.

Theorem 7.7 (Convergent-in-norm× convergent = convergent). Let
∑∞

i=0 ai
and

∑∞
i=0 bi converge to A and B respectively in A. Further assume that∑∞

i=0 ai is convergent in norm. Then their Cauchy product converges to
AB.12

Proposition 7.8. Cauchy product preserves convergence in norm.

Corollary 7.9 (Cauchy-Hadamard on power series). Consider the formal
power series

∑∞
i=0 ci(x−x0)

i with ci, x0 ∈ A. Define L := lim supi≥0∥ci∥1/i ∈
[0,∞) ∪ {∞} and the radius of convergence of the series to be

R :=


0, L = ∞
1/L, 0 < L < ∞
∞, L = 0

.

Then for any x ∈ A, the following hold:

(i) ∥x− x0∥ < R =⇒
∑∞

i=0 ci(x− x0)
i converges in norm.

(ii) ∥x− x0∥ > R =⇒
(∥∥∑n

i=0 ci(x− x0)
i
∥∥)

n
is unbounded.

Now, define13 f : BR(x0) → A such that for each x ∈ BR(x0), we have

∞∑
i=0

ci(x− x0)
i = f(x).

Then for any ε > 0, we have the uniform convergence

n∑
i=0

ci(x− x0)
i n−→ f in DR−ε(x0).

Also, f is continuous.

11Convergence follows from Corollary 7.11.
12No commutativity or associativity required!
13Obvious definitions of balls when R = 0 or ∞.
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Remark.

(i) Behaviour on the boundary of is not determined: In C, while
∑∞

n=0 z
n

converges nowhere on the boundary,
∑∞

n=0 z
n/n2 converges on every

point of the boundary. Also see Corollary 7.12.

(ii) A power series that does not converge uniformly over it’s ball of con-
vergence:

∑∞
n=0 x

n in R.

7.1 Miscellaneous

January 27, 2023

Theorem 7.10. Let (vi) ∈ V such that
(∥∥∑n

i=0 vi
∥∥)

n
is bounded. Let a0 ≥

a1 ≥ · · · ≥ 0 be reals with limi→∞ ai = 0. Then the partial sums
∑n

i=0 aivi
form a Cauchy sequence.

Corollary 7.11 (Alternating series). Let a0 ≥ a1 ≥ · · · ≥ 0 be reals with
limi→∞ ai = 0. Then

∑∞
i=0(−1)iai is convergent.

Corollary 7.12. Let A be a normed algebra and
∑∞

i=0 ai(x−x0)
i be a power

series with reals a0 ≥ a1 ≥ · · · ≥ 0. Then the series converges for x ∈ B1(x0).
We also have convergence on D1(x0) \ {x0 +1} if the norm is multiplicative,
or if the nonzeroes in A are invertible.

8 Banach algebras

March 11, 2023

Definition 8.1 (Banach algebra). A Banach space that also forms a K al-
gebra, or equivalently, a complete normed linear space.

Example 8.2. If V is Banach, then BL(V ;V ) is a Banach algebra.

Convention. In this subsection, we’ll take B to be a Banach algebra with
identity,14 and will set InvB to be the set of all the invertible elements of
B.

14For we’ll want our power series to start from 1.
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Proposition 8.3 (Exponentiation). Let x ∈ B. Then the series

∞∑
i=1

1

n!
xn

converges in B.

Notation. We denote this sum by exp(x), or ex.

Proposition 8.4. If x, y commute in B, then

ex ey = ex+y = ey ex.

Corollary 8.5. exp: (B,+) → (InvB, ·) is a group homomorphism.

Proposition 8.6. If ∥x∥ < 1 in B, then 1− x is invertible with

(1− x)−1 =
∞∑
i=0

xn

where right-hand-side is convergent.

Proposition 8.7 (InvB is open in B). Whenever x ∈ InvB, we have that
B1/∥x−1∥(x) ⊆ InvB.

Theorem 8.8. x 7→ x−1 is a self-homeomorphism on InvB.



Chapter IV

Reals and complex numbers

1 Reals

February 11, 2023

Proposition 1.1 (Characterizing lim sup). Let (an) ∈ R be bounded. Then
lim supi→∞ ai is the unique real L such that the following hold:

(i) For every ε > 0, there exists an N such that an < L+ ε for all n ≥ N .

(ii) For every ε > 0 and every N , there exists an n ≥ N such that an >
L− ε.

Lemma 1.2. Let (an) ∈ (0,∞) and (bn) ∈ [0,∞) with an → a where a ∈
(0,∞) ∪ {∞}. Then1

lim sup
i→∞

aibi = a
(
lim sup

i→∞
bi
)
.

Proposition 1.3. Uniform limit of Riemann-integrable functions [a, b] → R
is Riemann-integrable.

Proposition 1.4 (Root test better than ratio test). Let (an) ∈ (0,∞). Then

lim inf
i→∞

ai+1

ai
≤ lim inf

i→∞
a
1/i
i ≤ lim sup

i→∞
a
1/i
i ≤ lim sup

i→∞

ai+1

ai
.

Remark.

1We are (perversely) allowing multiplication by ∞.

21
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(i) We can have lim sup a
1/i
i < 1 < lim sup ai+1/ai, or lim inf ai+1/ai < 1 <

lim sup a
1/i
i in which case, the ratio test gives no information, but root

test does.

(ii) Since lim inf ai+1/ai ≤ lim sup a
1/i
i ≤ lim sup ai+1/ai, the root test gives

answer whenever ratio test does!
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