Contents

Ι	Top	ology	1
	1	General	1
	2	Limits and continuity	2
	3	Compactness	3
	4	Connectedness and path-connectedness	4
	5	Pointwise convergence	5
Π	Met	ric spaces	6
	1	General	6
	2	Compactness	6
	3	Limits of functions	7
	4	Uniform convergence	7
	5	Miscellaneous	8
III	Nor	med linear spaces	9
	1	Elementary facts	9
			~
	2	Norms on product spaces	9
	2 3	Norms on product spaces $\dots \dots \dots$	9 1
	2 3 4	Norms on product spaces $\dots \dots \dots$	9 1 2
	2 3 4 5	Norms on product spaces \dots	9 1 2 4
	2 3 4 5 6	Norms on product spaces	9 .1 .2 .4 .5
	2 3 4 5 6 7	Norms on product spaces1The space $B(X,V)$ 1The space $B\mathcal{L}(V_1,\ldots,V_n;W)$ 1Polygonal connectedness1Convergence in norm1Normed algebras1	9 .1 .2 .4 .5 .7
	$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7$	Norms on product spaces1The space $B(X,V)$ 1The space $B\mathcal{L}(V_1,\ldots,V_n;W)$ 1Polygonal connectedness1Convergence in norm1Normed algebras17.1Miscellaneous1	9 .1 .2 .4 .5 .7 .9
	2 3 4 5 6 7 8	Norms on product spaces1The space $B(X, V)$ 1The space $B\mathcal{L}(V_1, \ldots, V_n; W)$ 1Polygonal connectedness1Convergence in norm1Normed algebras17.1Miscellaneous1Banach algebras1	9 .1 .2 .4 .5 .7 .9
IV	2 3 4 5 6 7 8 Rea	Norms on product spaces1The space $B(X, V)$ 1The space $B\mathcal{L}(V_1, \ldots, V_n; W)$ 1Polygonal connectedness1Convergence in norm1Normed algebras17.1Miscellaneous1Banach algebras1Is and complex numbers2	9 .1 .2 .4 .5 .7 .9 .9

Chapter I

Topology

1 General

January 20, 2023

Lemma 1.1. Convergence and limits of sequences are preserved while going across subspaces.

Definition 1.2 (Bolzano-Weierstraß property). A topological space X is said to have the Bolzano-Weierstraß property iff every sequence has a convergent subsequence.

Definition 1.3 (Domains and regions). A *domain* is a nonempty, connected, open subset. A *region* is a subset that is contained in the closure of its interior.¹

Lemma 1.4 (Closure and limit points). Let E be a subspace of X with $(x_i) \in E$ and $x \in X$. Then the following hold:

- (i) $x_i \to x \implies x \in \overline{E}$. The converse² holds if X is metrizable.
- (ii) $x_i \to x$ with x_i 's being distinct $\implies x \in \ell(E)$. The converse³ holds if X is metrizable.

 $^{^{1}\}mathrm{That}$ is, it is a domain plus some of its limit points. $^{2}\mathrm{CC}$ used. $^{3}\mathrm{DCC}$ used.

2 Limits and continuity

January 20, 2023

Definition 2.1 (Limits of functions). Let X, Y be topological spaces and $f: S \to Y$ where $S \subseteq X$. Let $c \in X$ and $L \in Y$. Then we write

$$f(x) \to L \text{ as } x \to c$$

iff for every open neighborhood V of L, there exists an open neighborhood U of c such that

$$f(U \cap S \setminus \{c\}) \subseteq V.$$

Definition 2.2 (Continuity). A function $f: X \to Y$ between topological spaces is said to be continuous at $c \in X$ iff for every open neighborhood V of f(c), the set $f^{-1}(V)$ contains an open neighborhood of c.

Proposition 2.3. A function $f: X \to Y$ is continuous \iff for any $A \subseteq X$, we have

$$f(\overline{A}) \subseteq f(A).$$

Lemma 2.4 (Relation between limits and continuity). A function $f: X \to Y$ between topological spaces is continuous at $c \in X \iff f(x) \to f(c)$ as $x \to c$.

Lemma 2.5 (Restrictions and limits). Let X, Y be topological spaces and $f: S \to T$ where $S \subseteq X$ and $T \subseteq Y$. Let $A \subseteq S$ and $f(A) \subseteq B \subseteq Y$. Define $g: A \to B$ by $x \mapsto f(x)$. Then for $c \in X$ and $L \in T \cap B$, the following hold:

- (i) $f(x) \to L$ as $x \to c \implies g(x) \to L$ as $x \to c$ (A being seen as the subspace of X).
- (ii) The converse holds if we have that $U_0 \cap S \subseteq A$ for some open neighborhood U_0 of c (in X).

Lemma 2.6 (Restrictions and continuity). Let $f: X \to Y$ between topological spaces where Y is a subspace of a space Y'. Let $S \subseteq X$ and $f(S) \subseteq T \subseteq Y'$. Define $g: S \to T$ by $x \mapsto f(x)$. Then for $c \in S$, the following hold:

- (i) f is continuous at $c \implies g$ is continuous at c.
- (ii) The converse holds if $U_0 \subseteq S$ for some open neighborhood U_0 of c (in X).

Proposition 2.7 (Limits of compositions). Let $f: E \to F$ and $g: F \to Z$ where E, F are subspaces of X, Y respectively. Let $f(x) \to L$ as $x \to c$ and $g(y) \to M$ as $y \to L$. Also assume that M = g(L) if $L \in F$. Then

$$(g \circ f)(x) \to M \text{ as } x \to c$$

Lemma 2.8 (Regularity). For a space X, the following are equivalent:

- (i) Any point and a closed set not containing it can be separated by disjoint open sets.
- (ii) Any open neighborhood of a point contains the closure of an open set containing the point.

Theorem 2.9 (Extending a function continuously). Let $f: E \to Y$ where E is a subspace of a space X, and Y a regular space. Let $S \subseteq \overline{E} \setminus E$ and $g: S \to Y$ be such that $f(x) \to g(s)$ as $x \to s$ for each $s \in S$. Then the extended function $E \cup S \to Y$ is continuous.

Lemma 2.10 (Denseness). A subset is dense \iff it intersects with each nonempty open set.

Proposition 2.11. A continuous function into a Hausdorff space is determined by its values on a dense subset of the domain.

3 Compactness

January 20, 2023

Definition 3.1 (Covers). A set $\{U_{\alpha}\}$ of (open) subsets of a topological space is said to be an (open) cover of a subset $E \subseteq X$ iff $\bigcup_{\alpha} U_{\alpha} \supseteq E$.

Definition 3.2 (Compact sets). A subset E of a topological space X is said to be compact in X iff every open cover of E has a finite subcover.

Lemma 3.3. Compactness is preserved while going across subspaces.

Remark. This allows to drop "in X" from "E is compact in X".

Proposition 3.4. Closed subsets of compact spaces are compact.

Proposition 3.5. Continuous image of a compact set is compact.

4 Connectedness and path-connectedness

January 20, 2023

Definition 4.1 (Connectedness). A space is said to be connected iff it can't be partitioned into two nonempty open sets.

Definition 4.2 (Path connectedness). A *path* from a point x to a point y in a space X is a continuous function $f: [0,1] \to X$ such that f(0) = x and f(1) = y.

A space is called *path connected* iff any two points can be connected by a path.

Corollary 4.3. Path connectivity of points induces a partition of the space.

Definition 4.4 (Linear continua). A linear continuum is a totally ordered set with least-upper-bound property⁴ such that between any two points lies another point.

Theorem 4.5 (Linear continua are connected). Convex subsets of linear continua are connected.

Proposition 4.6. Path connectedness \implies connectedness.⁵

Proposition 4.7. Continuous image of a (path-)connected set is (path-)connected.

Proposition 4.8. Closure of connected is connected.⁶

Corollary 4.9 (Intermediate value). Let $f: X \to Y$ be continuous where X is connected and Y is under order topology. Let r lie between f(x) and f(x) for $x, z \in X$. Then there exists a $y \in X$ such that r = f(y).

Example 4.10 (Topologist's sine curve). Define

$$S := \{(x, \sin(1/x)) : x > 0\} \subseteq \mathbb{R}^2.$$

Then \overline{S} is connected, but not path-connected!

⁴We mean that *bounded* nonempty sets have least upper bounds. ⁵Converse is *not* true. See Example 4.10.

⁶Not true for path-connected! See Example 4.10.

5 Pointwise convergence

January 27, 2023

Definition 5.1 (Pointwise convergence). Let X be a set and Y be a topological space. Then a sequence of function (f_n) on $X \to Y$ is said to converge pointwise to a function $f: X \to Y$ iff for each $x \in X$, we have that

 $f_n(x) \to f(x)$ as $n \to \infty$.

Corollary 5.2. In a Hausdorff space, the pointwise limit, if existent, is unique.

Chapter II

Metric spaces

January 12, 2023

1 General

January 23, 2023

Lemma 1.1. The subspace topology on a subset of a metric space is the same as the topology induced by the restricted metric.

Lemma 1.2. Cauchy-ness of sequences is preserved while going across metric subspaces.

Proposition 1.3. Metric is continuous as both $X \times X \to \mathbb{R}$ as well as $X \to \mathbb{R}$.

Lemma 1.4. Closed subsets of a complete space are precisely its complete subsets.

2 Compactness

Definition 2.1 (Totally bounded). A subset *E* of a metric space *X* is said to be totally bounded in *S* iff for each $\varepsilon > 0$, finitely many balls of radius ε cover *E*.

Lemma 2.2. (Total) boundedness is preserved while going across metric subspaces.

Lemma 2.3. Finite unions of bounded sets are bounded.

Theorem 2.4 (Compactness in metric spaces). Let X be a metric space and $E \subseteq X$. Then the following are equivalent:¹

- (i) E is complete and totally bounded.
- (ii) E has the Bolzano-Weierstraß property.
- *(iii)* E is compact.

Corollary 2.5 (Extreme value). A continuous function from a compact space X to \mathbb{R} achieves its maximum and minimum over X.

3 Limits of functions

Proposition 3.1 (Uniqueness of limits of functions). Let X be a topological space and Y be a metric space. Let $f: S \to Y$ where $S \subseteq X$. Then for a point $c \in X$, the following hold:

(i) $c \in \ell(S) \implies f(x) \to L \text{ as } x \to c \text{ for at most one } L \in Y.$ (ii) $c \notin \ell(S) \implies f(x) \to L \text{ as } x \to c \text{ for all } L \in Y.^2$

Notation. Thus, for a metric space codomain, and for $c \in \ell(S)$, we denote the unique limit, if existent, by

$$\lim_{x \to c} f(x)$$

4 Uniform convergence

January 27, 2023

Definition 4.1 (Uniform convergence). Let X be a set and Y be a metric space. Then a sequence of functions (f_n) on $X \to Y$ is said to converge uniformly to a function $f: X \to Y$ iff for every $\varepsilon > 0$, there exists an N such that for all $n \ge N$ and for each $x \in X$, we have

$$d(f_n(x), f(x)) < \varepsilon.$$

 $^{^1\}mathsf{AC}$ used.

²This also holds when Y is a general topological space.

Corollary 4.2. Uniform limit is also a pointwise limit and hence unique.

Lemma 4.3 (Cauchy criterion for uniform convergence). Let X be a set and Y be a metric space. Let $f: X \to Y$ be the pointwise limit of a sequence of functions (f_n) on $X \to Y$. Then the following are equivalent:

- (i) $f_n \to f$ uniformly.
- (ii) For each $\varepsilon > 0$, there exists an N such that for all $m, n \ge N$, we have $d(f_m(x), f_n(x)) < \varepsilon$ for all $x \in X$.

Theorem 4.4 (Uniform limit preserves continuity). Let E be a subspace of a topological space X and Y be a metric space. Let (f_n) be a sequence of functions $E \to Y$ converging uniformly to $f: E \to Y$. Let $c \in X$ and for each n, let $f_n(x) \to L_n$ as $x \to c$. Let $\lim_{n\to\infty} L_n = L$. Then $f(x) \to L$ as $x \to c$.

5 Miscellaneous

January 27, 2023

Theorem 5.1 (Contraction mapping). Let X be a nonempty complete metric space and $f: X \to X$ be such that there exists a $c \in [0, 1)$ such that

$$d(f(x), f(y)) \le cd(x, y).$$

Then there exists a unique fixed point of f.

Chapter III

Normed linear spaces

Convention. V will denote a general normed linear space over \mathbb{K} , and W a general vector space over \mathbb{K} .

Generic bases of V and W will respectively be denoted by \mathcal{B} and \mathcal{C} . Ω will denote an open set in V.

1 Elementary facts

January 12, 2023

Proposition 1.1. On V, the following functions are continuous:

- (i) Addition: As both, $V \times V \to V$, and as $V \to V$ with a fixed addend vector.
- (ii) Scalar multiplication: As $\mathbb{K} \times V \to V$, as $V \to V$ with a fixed scalar and as $\mathbb{K} \to V$ with a fixed vector.
- (iii) Norm.

Definition 1.2 (Banach spaces). A Banach space is a complete normed linear space.

Proposition 1.3. Finite-dimensional normed linear spaces are Banach.

2 Norms on product spaces

March 12, 2023

Proposition 2.1 (l_p -norms on $V_1 \times \cdots \times V_n$). For any $p \in [1, \infty)$, the following defines a norm on $V_1 \times \cdots \times V_n$:

$$\|v\|_p := \left(\sum_{i=1}^n \|v_i\|^p\right)^{1/p}$$

We also have the following norm:

$$\|v\|_{\infty} := \max_{1 \le i \le n} \|v_i\|$$

Further, all these norms are equivalent via

$$||v||_{\infty} \le ||v||_p \le n^{1/p} ||v||_p$$

and generate the product topology.

Lemma 2.2.

- (i) $||w|| := \max_{\tilde{e} \in \mathcal{C}} |w_{\tilde{e}}|$ defines a norm on W.
- (ii) If $f: V \to W$ is a vector space isomorphism, then $w \mapsto ||f^{-1}(w)||$ defines a norm on W with respect to to which, f becomes an isometry.

Theorem 2.3. Any two norms on a finite-dimensional vector space are equivalent.

Corollary 2.4. Any linear map from a finite-dimensional normed linear space to an arbitrary normed linear space is continuous.

Corollary 2.5. If dim $V < \infty$ and $V \cong W$ as vector spaces, then for any norm on W, we also have that $V \cong W$ as normed linear spaces.

Corollary 2.6. Let $V = U_1 \oplus \cdots \oplus U_n$, where U_i 's are subspaces of V. Consider $U_1 \times \cdots \times U_n$ under any of the (equivalent) l_p -norms. Then

 $\dim V < \infty \implies U_1 \times \cdots \times U_n \cong V$ as normed linear spaces.

Remark. This fails for infinite-dimensional V's even though $n < \infty$.¹ (The statement for $n = \infty$ is obviously false for this would mean that any two norms on a space are equivalent.)

However, for finite-dimensional spaces, this means that the "topology can be recovered just from the basis".

¹See https://math.stackexchange.com/a/4620769/673223.

Corollary 2.7 (Convergence in finite dimensions). In a normed linear space with a basis (v_1, \ldots, v_n) ,

$$\sum_{k=1}^{n} a_{k}^{(i)} v_{k} \stackrel{i}{\longrightarrow} \sum_{k=1}^{n} a_{k} v_{k} \iff a_{k}^{(i)} \stackrel{i}{\longrightarrow} a_{k} \text{ for all } k \text{ 's.}$$

Corollary 2.8 (Limits of functions in finite dimensions). Let $\dim V < \infty$ and $f: E \to V$ where E is a subset of a topological space X. Let f decompose into $f_e: E \to \mathbb{K}$ for $e \in \mathcal{B}$. Let $c \in X$ and $v \in V$. Then

$$f(x) \to v \text{ as } x \to c \iff f_e(x) \to v_e \text{ as } x \to c \text{ for each } e \in \mathcal{B}.$$

3 The space B(X, V)

March 11, 2023

Proposition 3.1. W^X is a vector space for any set X.

Definition 3.2 (Bounded functions). A function $f: X \to V$, where X is any set, is called bounded iff ||f(x)||'s are bounded for $x \in X$.

We also define

$$B(X, V) := \{ \text{bounded functions } X \to V \}.$$

Remark. Bounded-ness of multi-linear maps is something completely different! See Definition 4.2.

Proposition 3.3 (A norm on B(X, V)). For any set X, we have that B(X, V) is a linear subspace of V^X , and

$$||f||_{\infty} := \sup_{x \in X} ||f(x)||$$

defines a norm on B(X, V).

Further, the convergence in $\|\cdot\|_{\infty}$ is the same as uniform convergence (for bounded functions).

Theorem 3.4. If V is Banach, then so is B(X, V).

4 The space $\mathrm{B}\mathcal{L}(V_1,\ldots,V_n;W)$

March 11, 2023

Convention. In this section, V_i 's will denote normed linear spaces over \mathbb{K} .

Notation. We'll use the $\mathcal{L}(\{V_i\}; W)$ notation for the set of multi-linear maps. The semi-colon ";" will differentiate the usual "linear" case or the "multi-linear" case for $V_1 \to W$. However, in that case, we conveniently have $\mathcal{L}(V_1, W) = \mathcal{L}(V_1; W)$.

Corollary 4.1. $\mathcal{L}(V_1, \ldots, V_n; W)$ is a linear subspace of $W^{V_1 \times \cdots \times V_n}$.

Definition 4.2 (Bounded multi-linear maps). Let W also have a norm. Then a multi-linear map $f \in \mathcal{L}(V_1, \ldots, V_n; W)$, for $n \ge 0,^2$ is called bounded iff it is bounded as a function on the product of discs $||x_i|| \le 1$, or equivalently, iff there exists an $M \ge 0$ such that

$$||f(x_1, \dots, x_n)|| \le M ||x_1|| \cdots ||x_n|| \qquad (x_i \in V_i).$$

We also define

 $B\mathcal{L}(V_1,\ldots,V_n;W) := \{ \text{bounded multi-linear maps } V_1 \times \cdots \times V_n \to W \}.$

Proposition 4.3 (A norm on $B\mathcal{L}(V_1, \ldots, V_n; W)$). Let W also come equipped with a norm. Then for any $n \geq 0$, we have that $B\mathcal{L}(V_1, \ldots, V_n; W)$ is a subspace of $\mathcal{L}(V_1, \ldots, V_n; W)$ and that

$$\|f\| := \|f|_{D_1 \times \dots \times D_n}\|_{\infty}$$

= $\sup_{\|x_i\| \le 1} \|f(x_1, \dots, x_n)\|$
= $\sup_{\|x\|_{\infty} \le 1} \|f(x)\|$

defines a norm on $B\mathcal{L}(V_1, \ldots, V_n; W)$, where D_i is the unit disc of the *i*-th space.

For $n \neq 0$, we also have

$$||f|| = \sup_{x_i \neq 0} \frac{||f(x_1, \dots, x_n)||}{||x_1|| \cdots ||x_n||}.$$

²Note that for n = 0, the set $\mathcal{L}(V_1, \ldots, V_n; W)$ is a singleton containing the empty map.

Corollary 4.4. Let W, U be normed linear spaces. Let $f \in B\mathcal{L}(V_1, \ldots, V_n; W)$ and $g \in B\mathcal{L}(W; U)$. Then $g \circ f \in B\mathcal{L}(V_1, \ldots, V_n; U)$ with

$$||g \circ f|| \le ||g|| ||f||.$$

Corollary 4.5. Let W also have a norm and let $\phi \in B\mathcal{L}(V; W)$ be invertible with $\phi^{-1} \in B\mathcal{L}(V; W)$ as well.³ Then

$$\|\phi\|, \|\phi^{-1}\| \le 1 \implies \phi \text{ is an isometry} \implies \|\phi\| = 1 = \|\phi^{-1}\|.$$

Remark. Up till now, we didn't need any norm on $V_1 \times \cdots \times V_n$. Just the norms on V_i 's were sufficient to define a norm on $B\mathcal{L}(V_1, \ldots, V_n; W)$.

Corollary 4.6. Let X be a bounded subset⁴ of $V_1 \times \cdots \times V_n$ and W be normed. Then the restrictions of bounded multi-linear maps $V_1 \times \cdots \times V_n \to W$ to $X \to W$ form a subspace of B(X, W).

Proposition 4.7 (Characterizing continuity). Let W have a norm and $f \in \mathcal{L}(V_1, \ldots, V_n; W)$. Then the following are equivalent:

- (i) f is continuous.
- (ii) f is continuous at 0.
- *(iii)* f is bounded.

Theorem 4.8 (Canonical isomorphisms). Let W', U_i , U'_i 's be vector spaces for $1 \le i \le n$ ($0 \le m \le n$) over \mathbb{K} such that $U_i \cong U'_i$ for each i and $W \cong W'$ as vector spaces via α_i 's and β . Let σ be a permutation on $\{1, \ldots, n\}$. Then we have the following vector space isomorphisms:⁵

$$\mathcal{L}(U_1, \dots, U_n; W) \cong \mathcal{L}(U'_1, \dots, U'_n; W')$$
$$\mathcal{L}(U_1, \dots, U_n; W) \cong \mathcal{L}(U_{\sigma(1)}, \dots, U_{\sigma(n)}; W)$$
$$\mathcal{L}(U_1, \dots, U_m; \mathcal{L}(U_{m+1}, \dots, U_n; W)) \cong \mathcal{L}(U_1, \dots, U_n; W)$$

The isomorphisms can be described as follows: Let f (in left-hand-side) and g (in right-hand-side) be a corresponded pair of maps. Then we demand that

³This will also hold if we replace "B \mathcal{L} " by "B", and " $\|\cdot\|$ " by " $\|\cdot\|_{\infty}$ ".

⁴ "Boundedness" can be talked of only when we have a metric on $V_1 \times \cdots \times V_n$.

⁵The first is the "axiom of substitution".

- (i) $\beta(f(u_1,\ldots,u_n)) = g(\alpha_1(u_1),\ldots,\alpha_n(u_n))$ for the first;
- (ii) $f(u_1,\ldots,u_n) = g(u_{\sigma(1)},\ldots,u_{\sigma(n)})$ for the second; and,
- (*iii*) $f(u_1, ..., u_m)(u_{m+1}, ..., u_n) = g(u_1, ..., u_n)$ for the third.

In the above, if U_i , U'_i 's, W' are normed with α_i 's, β being normed linear space isomorphisms,⁶ then the above vector space isomorphisms can also be restricted by replacing " \mathcal{L} " by "B \mathcal{L} ", yielding normed linear space isomorphisms. In fact, the obtained isomorphisms are isometries⁷ in the second and third cases. In the first case, it becomes an isometry if α_i 's and β are isometries.

Theorem 4.9. If W is Banach, then so is $B\mathcal{L}(V_1, \ldots, V_n; W)$.

5 Polygonal connectedness

January 20, 2023

Definition 5.1 (Polygonal lines in vector spaces⁸ over \mathbb{K}). For $w_1, w_2 \in W$, we define the *line segment*⁹

$$[w_1; w_2] := \{ tw_1 + (1-t)w_2 : t \in [0,1] \}.$$

We define (u; v), etc. in the obvious way.

For $w_1, \ldots, w_n \in W$, where $n \ge 0$, we call $\bigcup_{i=1}^{n-1} [w_i; w_{i+1}]$ a polygonal line.

A subset $E \subseteq W$ is called *polygonally connected* iff any two points in W can be polygonally connected within E.

Corollary 5.2. Polygonal connectedness \implies path connectedness in a normed linear space.

Corollary 5.3. Polygonal connectivity of points induces a partition of a vector space.

Lemma 5.4 (Balls of normed linear space are convex). If x, y are contained in a ball, then the segment [x; y] also lies in the ball.

⁶A linear isomorphism that is also a homeomorphism.

⁷We adopt the usual "metric space definition" of an isometry. (Note that it may not be bijective.) Then it follows that for normed linear spaces, isometries also preserve norms.

⁸This definition does not require V to be normed.

⁹Reference: https://planetmath.org/linesegment.

Proposition 5.5. A domain of a normed linear space is polygonally connected.

Proposition 5.6. Let V be an inner-product space and \mathcal{B} be orthonormal. Then any two points of a domain can be connected by a polynomial line, lying completely inside the domain, with each segment of the line being along one of the directions in \mathcal{B} .

Result 5.7 (Balls have segments in normed spaces). Let $x_0 \in \Omega$ and $v \in V \setminus \{0\}$. Then there exists an $\varepsilon > 0$ such that for each $t \in B_{\varepsilon}^{\mathbb{K}}(0)$, we have

$$x_0 + tv \in \Omega$$

Consequently, singletons are not open in a nonzero normed linear space, and hence $\Omega \subseteq \ell(\Omega)$.

Result 5.8 (Closure of balls in normed linear spaces). In a normed linear space, we have

$$B_r(x) = D_r(x).$$

6 Convergence in norm

January 27, 2023

Definition 6.1 (Convergence in norm). The series $\sum_{i=0}^{\infty} v_i$ in V is said to converge in norm¹⁰ iff $\sum_{i=0}^{\infty} ||v_i||$ converges in \mathbb{R} .

Corollary 6.2. Convergence-in-norm implies Cauchy-ness.

Proposition 6.3 (Characterizing completeness for normed spaces). V is Banach \iff convergence-in-norm implies convergence for series.

Remark. This justifies calling convergence-in-norm as absolute convergence if V is Banach.

¹⁰Note that we are not defining convergence-in-norm for sequences, just for series. This is an instance where the difference in "type" is crucial.

Corollary 6.4 (Weierstraß *M*-test). Let X be a set and $(f_n) \in B(X, V)$. Let $(M_n) \in \mathbb{R}$ such that $||f_n||_{\infty} \leq M_n$ and $\sum_{n=0}^{\infty} M_n$ is convergent. Then the following hold:

- (i) $\sum_{n=0}^{\infty} f_n$ converges in norm (of B(X, V)).
- (ii) The partial sums $\sum_{n=0}^{k} f_n$ converge uniformly to $\sum_{n=0}^{\infty} f_n$.

Proposition 6.5 (Root test). Let $(v_i) \in V$ and define $L \in [0, \infty) \cup \{\infty\}$ as

$$L := \limsup_{i \to \infty} \|v_i\|^{1/i}.$$

Then the following hold:

- (i) $L < 1 \implies \sum_{i=0}^{\infty} v_i$ converges in norm. (ii) $L > 1 \implies \left(\left\| \sum_{i=0}^n v_i \right\| \right)_n$ is unbounded.

Proposition 6.6 (Ratio test). Let $(v_n) \in V \setminus \{0\}$ and define $L^+, L^- \in$ $[0,\infty) \cup \{\infty\}$ as

$$L^{+} := \limsup_{i \to \infty} \frac{\|v_{i+1}\|}{\|v_{i}\|}, \text{ and}$$
$$L^{-} := \liminf_{i \to \infty} \frac{\|v_{i+1}\|}{\|v_{i}\|}.$$

Then the following hold:

- (i) $L^+ < 1 \implies \sum_{i=0}^{\infty} v_i$ converges in norm.
- (ii) There exists an N such that $||v_{i+1}||/||v_i|| \ge 1$ for all $i \ge N \implies$ $\sum_{i=0}^{\infty} v_i$ diverges.
- (iii) $L^- > 1 \implies \left(\left\| \sum_{i=0}^n v_i \right\| \right)_n$ is unbounded.

Remark. Root test is more powerful than the ratio test. See Proposition 1.4.

Proposition 6.7. Sum and scalar multiplication preserve convergence-innorm.

7 Normed algebras

January 20, 2023

Definition 7.1 (Normed algebras). A normed algebra is a \mathbb{K} -algebra together which is also a normed vector space with the following additional property:

$$||uv|| \le ||u|| \, ||v||$$

Example 7.2.

(i) $\mathcal{L}(W; W)$ forms an associative \mathbb{K} -algebra.

(ii) $B\mathcal{L}(V; V)$ is a subalgebra of the normed algebra $\mathcal{L}(V; V)$.

Convention. In this section, A will stand for a normed algebra.

Proposition 7.3 (Limits of products of functions). Let $f, g: E \to A$ where E is a subset of a topological space X. Let $c \in X$ and $u, v \in V$ such that $f(x) \to u$ and $g(x) \to v$ as $x \to c$. Then, as $x \to c$,

$$f(x)g(x) \to uv.$$

Proposition 7.4 (Limits of multiplicative inverses of functions). Let $f: E \to A$ where E is a subset of a topological space X. Let ||uv|| = ||u|| ||v|| hold in A. Let $f(x) \neq 0$ and $f(x)^{-1}$ existent for each $x \in E$. Let $c \in X$ and $u \in V \setminus \{0\}$ such that u^{-1} exists and $f(x) \to u$ as $x \to c$. Then, as $x \to c$,

$$f(x)^{-1} \to u^{-1}.$$

Definition 7.5 (Cauchy product of series). Let R be a ring and $\sum_{i=0}^{\infty} a_i$, $\sum_{i=0}^{\infty} b_i$ be formal series in R. Then their Cauchy product is defined to be the formal series $\sum_{i=0}^{\infty} c_i$ where c_i is given by

$$c_i := \sum_{j+k=i} a_j b_k.$$

Example 7.6 (Cauchy product doesn't preserve convergence!). The Cauchy product of the convergent series¹¹

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$$

with itself diverges in \mathbb{R} .

Theorem 7.7 (Convergent-in-norm × convergent = convergent). Let $\sum_{i=0}^{\infty} a_i$ and $\sum_{i=0}^{\infty} b_i$ converge to A and B respectively in A. Further assume that $\sum_{i=0}^{\infty} a_i$ is convergent in norm. Then their Cauchy product converges to AB.¹²

Proposition 7.8. Cauchy product preserves convergence in norm.

Corollary 7.9 (Cauchy-Hadamard on power series). Consider the formal power series $\sum_{i=0}^{\infty} c_i (x-x_0)^i$ with $c_i, x_0 \in A$. Define $L := \limsup_{i \ge 0} \|c_i\|^{1/i} \in [0, \infty) \cup \{\infty\}$ and the radius of convergence of the series to be

$$R := \begin{cases} 0, & L = \infty \\ 1/L, & 0 < L < \infty \\ \infty, & L = 0 \end{cases}$$

Then for any $x \in A$, the following hold:

(i) $||x - x_0|| < R \implies \sum_{i=0}^{\infty} c_i (x - x_0)^i$ converges in norm.

(ii) $||x - x_0|| > R \implies (||\sum_{i=0}^n c_i(x - x_0)^i||)_n$ is unbounded.

Now, define¹³ $f: B_R(x_0) \to A$ such that for each $x \in B_R(x_0)$, we have

$$\sum_{i=0}^{\infty} c_i (x - x_0)^i = f(x).$$

Then for any $\varepsilon > 0$, we have the uniform convergence

$$\sum_{i=0}^{n} c_i (x - x_0)^i \xrightarrow{n} f \text{ in } D_{R-\varepsilon}(x_0)$$

Also, f is continuous.

¹¹Convergence follows from Corollary 7.11.

¹²No commutativity or associativity required!

¹³Obvious definitions of balls when R = 0 or ∞ .

Remark.

- (i) Behaviour on the boundary of is not determined: In \mathbb{C} , while $\sum_{n=0}^{\infty} z^n$ converges nowhere on the boundary, $\sum_{n=0}^{\infty} z^n/n^2$ converges on every point of the boundary. Also see Corollary 7.12.
- (ii) A power series that does not converge uniformly over it's ball of convergence: $\sum_{n=0}^{\infty} x^n$ in \mathbb{R} .

7.1 Miscellaneous

January 27, 2023

Theorem 7.10. Let $(v_i) \in V$ such that $\left(\left\| \sum_{i=0}^n v_i \right\| \right)_n$ is bounded. Let $a_0 \geq a_1 \geq \cdots \geq 0$ be reals with $\lim_{i\to\infty} a_i = 0$. Then the partial sums $\sum_{i=0}^n a_i v_i$ form a Cauchy sequence.

Corollary 7.11 (Alternating series). Let $a_0 \ge a_1 \ge \cdots \ge 0$ be reals with $\lim_{i\to\infty} a_i = 0$. Then $\sum_{i=0}^{\infty} (-1)^i a_i$ is convergent.

Corollary 7.12. Let A be a normed algebra and $\sum_{i=0}^{\infty} a_i(x-x_0)^i$ be a power series with reals $a_0 \ge a_1 \ge \cdots \ge 0$. Then the series converges for $x \in B_1(x_0)$. We also have convergence on $D_1(x_0) \setminus \{x_0+1\}$ if the norm is multiplicative, or if the nonzeroes in A are invertible.

8 Banach algebras

March 11, 2023

Definition 8.1 (Banach algebra). A Banach space that also forms a \mathbb{K} algebra, or equivalently, a complete normed linear space.

Example 8.2. If V is Banach, then $B\mathcal{L}(V;V)$ is a Banach algebra.

Convention. In this subsection, we'll take \mathscr{B} to be a Banach algebra with identity,¹⁴ and will set Inv \mathscr{B} to be the set of all the invertible elements of \mathscr{B} .

 $^{^{14}}$ For we'll want our power series to start from 1.

Proposition 8.3 (Exponentiation). Let $x \in \mathcal{B}$. Then the series

$$\sum_{i=1}^{\infty} \frac{1}{n!} x^n$$

converges in \mathcal{B} .

Notation. We denote this sum by $\exp(x)$, or e^x .

Proposition 8.4. If x, y commute in \mathcal{B} , then

$$e^x e^y = e^{x+y} = e^y e^x.$$

Corollary 8.5. exp: $(\mathcal{B}, +) \to (\operatorname{Inv} \mathcal{B}, \cdot)$ is a group homomorphism.

Proposition 8.6. If ||x|| < 1 in \mathscr{B} , then 1 - x is invertible with

$$(1-x)^{-1} = \sum_{i=0}^{\infty} x^n$$

where right-hand-side is convergent.

Proposition 8.7 (Inv \mathscr{B} is open in \mathscr{B}). Whenever $x \in \text{Inv} \mathscr{B}$, we have that $B_{1/||x^{-1}||}(x) \subseteq \text{Inv} \mathscr{B}$.

Theorem 8.8. $x \mapsto x^{-1}$ is a self-homeomorphism on Inv \mathscr{B} .

Chapter IV

Reals and complex numbers

1 Reals

February 11, 2023

Proposition 1.1 (Characterizing lim sup). Let $(a_n) \in \mathbb{R}$ be bounded. Then $\limsup_{i\to\infty} a_i$ is the unique real L such that the following hold:

- (i) For every $\varepsilon > 0$, there exists an N such that $a_n < L + \varepsilon$ for all $n \ge N$.
- (ii) For every $\varepsilon > 0$ and every N, there exists an $n \ge N$ such that $a_n > L \varepsilon$.

Lemma 1.2. Let $(a_n) \in (0, \infty)$ and $(b_n) \in [0, \infty)$ with $a_n \to a$ where $a \in (0, \infty) \cup \{\infty\}$. Then¹

$$\limsup_{i \to \infty} a_i b_i = a \left(\limsup_{i \to \infty} b_i\right).$$

Proposition 1.3. Uniform limit of Riemann-integrable functions $[a, b] \rightarrow \mathbb{R}$ is Riemann-integrable.

Proposition 1.4 (Root test better than ratio test). Let $(a_n) \in (0, \infty)$. Then

$$\liminf_{i \to \infty} \frac{a_{i+1}}{a_i} \le \liminf_{i \to \infty} a_i^{1/i} \le \limsup_{i \to \infty} a_i^{1/i} \le \limsup_{i \to \infty} \frac{a_{i+1}}{a_i}.$$

Remark.

¹We are (perversely) allowing multiplication by ∞ .

CHAPTER IV. REALS AND COMPLEX NUMBERS

- (i) We can have $\limsup a_i^{1/i} < 1 < \limsup a_{i+1}/a_i$, or $\liminf a_{i+1}/a_i < 1 < \limsup a_i^{1/i}$ in which case, the ratio test gives no information, but root test does.
- (ii) Since $\liminf_{i \neq 1} a_i \leq \limsup_{i \neq 1} a_i^{1/i} \leq \limsup_{i \neq 1} a_{i+1} a_i$, the root test gives answer whenever ratio test does!